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PROBABILISTIC MODELS IN CRYPTOGRAPHY, CODING

THEORY AND TESTS FOR PRNG

Verica Bakeva

This paper is a review of some applications of probabilistic models in
cryptography, coding theory and tests for pseudo-random number genera-
tors (PRNG). Using quasigroup transformations, we design streams ciphers
and error-correcting codes with suitable properties. Some tests for pseudo-
random number generators are designed, too. They are based on random
walk on discrete coordinate plane.

1. Introduction

Many processes in nature, technics, communications, transport and many other
areas include the randomness in themselves, i.e. they are stochastic processes.
Mathematical models which describe them are probability models. In this paper
a review of some applications of probability models in cryptography and coding
theory is given. Main parts of these results are published in paper [1], [2] and
[3]. In Section 2, using the quasigroup transformation, we define a stream cypher
which is resistant on brute force and statistical kind of attacks. In Section 3, we
use quasigroups to define a suitable channel code of stream nature. This code
corrects errors in the channel with high probability. In Section 4, using ran-
dom walks on discrete plane, we design several tests for pseudo-random number
generators.
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2. Encryption and decryption functions

Cryptography is the study of mathematical techniques related to aspects of in-
formation security when messages are transmitted through an insecure channel.
Information security means confidentiality (secrecy), data integrity, entity au-
thentication and data origin authentication, etc. To make this possible it is
necessary to transform a message in such way to hide its substance. This pro-
cess is called encryption and an encrypted message is ciphertext. The process of
turning ciphertext into origin message is decryption. Now, a cryptographic algo-
rithm is a mathematical function used for encryption and decryption. There are
two important classes of encryption algorithm: block ciphers and stream ciphers.
Here, a stream cipher is proposed.

Let A be an alphabet (|A| ≥ 2) and denote by A+ = {x1 . . . xk| xi ∈
A, k ≥ 1} the set of all finite strings over A. Assuming that (A, ∗) is a given

quasigroup, for a fixed letter a ∈ A we define transformations E = E
(1)
a : A+ →

A+ and D = D
(1)
a : A+ → A+ by

E(x1 . . . xk) = y1 . . . yk ⇔

{

y1 = a ∗ x1,
yi+1 = yi ∗ xi+1, (i = 1, . . . , k − 1)

(1)

D(y1 . . . yk) = x1 . . . xk ⇔

{

x1 = a \ y1,
xi+1 = yi \ yi+1, (i = 1, . . . , k − 1)

(2)

where xi, yi ∈ A, k ≥ 1. Then, for given quasigroup operations ∗1, ∗2, . . . , ∗n on
the set A, we can define mappings E1, E2, . . . , En, D1, D2, . . . , Dn in the same
manner as previous by choosing fixed elements a1, a2, . . . , an ∈ A (such that Ei,
Di are corresponding to ∗i and ai). Let

E = E(n)
an,...,a1

= En ◦En−1 ◦ . . . ◦E1, D = D(n)
a1,...,an

= D1 ◦D2 ◦ . . . ◦Dn

where ◦ is the usual composition of mappings. It is easy to check that the
mappings E and D are bijections and D = E−1 is the inverse bijection of E.
So, these functions can be used for encryption and decryption purposes. If the
function E is used for encryption, we have proved that our encryption algorithm
is resistant of brute-force attacks. It follows from the next theorem.

Theorem 1. For finding all pairs of n-tuples (∗1, . . . , ∗n), n ≥ 2, of quasi-
group operations on A such that the equality

E(n)
an ,...,a1

(b1b2 . . . bk) = c1c2 . . . ck

holds for given a1, . . . , an ∈ A, one needs to make at least as many trials as there
are (n− 1)-tuples of quasigroup operations on A.
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Now, the number of quasigroup operation on a set A is a huge one (for example
there are more than 1058000 quasigroup operations when |A| = 256) and thus the
brute force attack is not reasonable by Theorem 1.

In the next part we prove that the statistical kind of attacks are not promising,
too.

2.1. The uniformity obtained by quasigroups

Let now take that the alphabet A be {0, . . . , s− 1} where 0, 1, . . . , s− 1 (s > 1)
are integers, and we define a sequence od random variables {Yn| n ≥ 1} as
follows. Let us have a probability distribution (q0, q1, . . . , qs−1) of the letters

0,1, . . . , s− 1, such that qi > 0 for each i = 0, 1, . . . , s − 1 and

s−1
∑

i=0

qi = 1.

Consider a transformation E = E(1) obtained by a quasigroup operation ∗ on A,
and let γ = E(β) where β = b1 . . . bk, γ = c1 . . . ck ∈ A+ (bi, ci ∈ A). We assume
that the string β is arbitrary chosen. Then by {Ym = i} we denote the random
event that the m-th letter in the string γ is exactly i. The construction of the
mapping E given by (1) implies

P (Ym = j| Ym−1 = jm−1, . . . , Y1 = j1) = P (Ym = j| Ym−1 = jm−1)

since the appearance of the m-th member in γ depends only of the (m − 1)-
th member in γ, and not of the (m − 2)-th,. . . , 1-st ones. So, the sequence
{Ym| m ≥ 1} is a Markov chain, and we refer to it as a quasigroup Markov chain
(qMc).

Let pij denote the transition probability that in the string γ the letter j

appears immediately after the given letter i, i.e.

pij = P (Ym = j| Ym−1 = i), i, j = 0, 1, . . . , s− 1.

The definition of qMc implies that pij does not depend of m, so we have that
qMc is a homogeneous Markov chain. The probabilities pij can be determined as
follows. Let i, j, t ∈ A and let i∗ t = j be a true equality in the quasigroup (A, ∗).
Then

P (Ym = j| Ym−1 = i) = qt,

since the quasigroup equation i ∗ x = j has a unique solution for the unknown x.
So, pij > 0 for each i, j = 0, . . . , s− 1, i.e. the transition matrix Π = (pij) of qMc

is regular. Clearly, as in any Markov chain,
s−1
∑

j=0

pij = 1. But for the qMc we also
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have
s−1
∑

i=0

pij =
∑

t∈A

qt = 1

i.e. the transition matrix Π of a qMc is doubly stochastic.

Theorem 2. Let β = b1b2 . . . bk ∈ A+ and γ = E(1)(β). Then the probability
of the appearance of a letter i at the m-th place of the string γ = c1 . . . ck is

approximately
1

s
, for each i ∈ A and each m = 1, 2, . . . , k.

P r o o f. As we have shown above, the transition matrix Π is regular and
doubly stochastic. The regularity of Π implies that there is a unique fixed prob-
ability vector p = (p0, . . . , ps−1) such that pΠ = p, and all components of p are
positive. Also, since Π is a doubly stochastic matrix too, one can check that
(

1

s
,
1

s
, . . . ,

1

s

)

is a solution of pΠ = p. So, pi =
1

s
(i = 0, . . . , s− 1). �

The theorem 2 tells us that the distribution of the letters in the string γ =
E(β) obtained from a sufficiently large string β is uniform.

Let consider the distributions of the substrings ci+1 . . . ci+l of the string γ =
E(n)(β) (β = b1b2 . . . bk ∈ A+), where l ≥ 1 is fixed and i ∈ {0, 1, . . . , k − l}. As
usual, we say that ci+1 . . . ci+l is a substring of γ of length l.

Define a sequence {Z
(n)
m | m ≥ 1} of random variables by

Z
(n)
m = t⇐⇒











Y
(n)
m = i

(n)
m , Y

(n)
m+1 = i

(n)
m+1, . . . , Y

(n)
m+l−1 = i

(n)
m+l−1,

t = i
(n)
m sl−1 + i

(n)
m+1s

l−2 + . . . + i
(n)
m+l−2s + i

(n)
m+l−1

where the superscripts (n) denote the fact that we are considering substrings

of a string γ = i
(n)
1 i

(n)
2 . . . i

(n)
k obtained from a string β by transformations of

kind E(n). Thus, Y
(n)
m is just the random variable Ym defined as before. We have

proved that the sequence {Z
(n)
m |m ≥ 1} is also a Markov chain (n-qMc). By using

the induction of the number n of quasigroup operations, we have also proved that
its transition matrix is regular and doubly stochastic for each 1 ≤ l ≤ n. On the
same way as previous, we obtained that the next theorem holds.

Theorem 3. Let 1 ≤ l ≤ n, β = b1b2 . . . bk ∈ A+ and γ = E(n)(β). Then
the distribution of substrings of γ of length l is uniform.
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Remark. Generally, the distribution of the substrings of lengths l for l > n
in a string γ = E(n)(β) is not uniform, since the transition matrix must not be
doubly stochastic.

According to Theorem 2 and Theorem 3, it is sufficient to choose enough
large number of quasigroup operations, and the distributions of letters, pairs of
letters, triplets, and so on, in the transformed text will be uniform and statistical
kind of attacks are not reasonable. The detailes of the proof of the Theorem 3
are published in the paper [1].

3. Error-correcting code

Error-correcting and error-detecting codes take the most important place in cod-
ing theory. Error-correcting codes are widely used in applications such as return-
ing pictures from deep space, design of registration numbers and so on. They are
used to correct errors when messages are transmitted through a noisy communi-
cation channel. A channel may be a telephone line, a high frequency radio link,
or a satellite communication link. A noise may be produced by human errors,
lightnings, thermal noises, imperfections in equipment, etc., and may result in
errors so that the data received is different from that sent. The object of an error-
correcting code is to encode the data, by adding a certain amount of redundancy
to the message, so that the original message can be recovered if (not too many)
errors have been occurred.

Here, we define an error-correcting code using quasigroups. In what follows
we consider only the set A = {0, 1}, and ∗ will denote a quasigroup operation on
the set A. There are only two quasigroup operations on the set A, and here we
took (A, ∗) to be defined by the table

* 0 1

0 1 0
1 0 1

(3)

Let a1a2 . . . an . . . be a source message, where ai ∈ A = {0, 1}, for each i and let
b0 ∈ A be a given (known) binary letter. The sequence b1b2 . . . bn . . . is obtained
from the sequence a1a2 . . . an . . . such that bi = bi−1 ∗ ai, for each i = 1, 2, . . ..
Actually, b1b2 . . . bn = E(a1a2 . . . an), where the transformation E is defined as
in (1). Now, we send the sequence a1b1a2b2 . . . anbn . . . through a noisy channel.
Since there are noises in the channel, the sequence obtained in the exit of the
channel can be different than the sent ones. We consider binary symmetrical
channel, which means that 0 can be replaced by 1 (and opposite, 1 by 0) with
probability p (0 < p < 1/2).
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The reason why the sequence a1b1a2b2 . . . anbn . . . is sent, is for checking the
correctness of the transmission of the binary data a1a2 . . . an . . .. The checking
of the correctness and correction of the incorrect transmitted data can start
immediately after receiving of the first two letters of the message. Namely, when
the letters a1 and b1 are received, it can be checked if b0 ∗ a1 = b1, after that
if b1 ∗ a2 = b2, and so on. Since there are noises in the channel, some of the
equations in the previous sequence should not be satisfied. Therefore, we propose
the following algorithm for error correction (Table 1).

if bi−1 ∗ ai 6= bi and bi ∗ ai+1 6= bi+1 then bi ← 1− bi

if bi−1 ∗ ai 6= bi and bi ∗ ai+1 = bi+1 then ai ← 1− ai

Table 1: Algorithm for error-correction

Theorem 4. (see [3]) If the error distance is at least 3 then all of the errors
will be corrected (i.e. the obtained message at the exit of the channel will be
identical with the source one).

In the worst case, a subsequence of a given message will be incorrectly received
if the errors will happen on the distance less than 3. The probability of that event
is

p2 + p(1− p)p + p(1− p)2p = p2[3(1 − p) + p2],

and this probability is small for enough small values of p. On this way, we
have constructed codes which correct incorrectly transmitted letters with high
probability. The advantage of our code is in its stream nature. All codes which
we know use blocks with fixed or variable length as codewords and decoding can
start after receiving of one block. Here, the decoding can start immediately after
receiving of the first two letters.

4. Tests for pseudo-random number generator

There are many situations in cryptography where it is important to be able to
generate random numbers, bit-strings, etc. But, in practice, we cannot design
a perfect random generator, since the way we are building the device is not a
random one, which affects the uniformity of the produced sequences. That is
why we use the word ”pseudo” and we have to measure the randomness of the
obtained sequences. There are a lot of tests for such measurements and all of
them measure the difference between the obtained sequences by a PRNG and the
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theoretically supposed ideal random sequence. We can classify PRNGs depending
of the tests which they have passed. So, for obtaining a better classification we
should have many different tests. Here, using the random walk (with fixed and
random number of steps) on a discrete coordinate plane and three different ways
of dividing the plane of regions, we propose 6 new tests for PRNG’s.

Random walking with fixed number of steps is defined on the following way.
Let k be a fixed positive integer. Let α = s1s2 . . . sd be a given sequence, where
si ∈ {0, 1, 2, 3}. Beginning from the coordinate center (0, 0) we make k steps
(left, right, up, down) according to the values of the first k elements s1s2 . . . sk

and we add 1 to the weight of the coordinate (m,n) where the walk is stopped.
After that, beginning again from (0, 0), we continue to walk following the next
k elements sk+1 . . . s2k and we increase the weight of the point where the walk
stopped, and so on. This walk is called ”chess-walk”. For a given pseudo-random
sequence, we can count the weights of the points of the plane. Note that the
weight of a point is, in fact, the frequency of stops at that point. On the other
hand, assuming that we have a perfectly uniform random sequence, we can count
the weights as a product of the probability of the arrival at the point (m,n)
and the number of trials, obtaining in such a way the theoretical frequency of
arrivals. Since the walk is according to a random sequence, the points of stops
can be described by a random vector (X,Y ) and its probability distribution is
determined by the following theorem.

Theorem 5. Let (m,n) be a point of the discrete plane and let k be a positive
integer. Then the probability Pk(m,n) = P{X = m,Y = n} that a walk beginning
from the coordinate center (0, 0) will stop at the point (m,n) after k steps is equal
to 0 in the case when |m|+ |n| > k or the number |m|+ |n|+ k is odd, and in the
opposite case it is equal to

Pk(m,n) =
1

4k

k−|m|−|n|
2

∑

q=0

(

k

|m|+ q

)(

k − |m| − q

q

)(

k − |m| − 2q
k−|m|−|n|−2q

2

)

.

The coordinate X (or Y ) can be presented as a sum X =

k
∑

i=1

Xi, where Xi

is a r.v. denoting the walking in the i-th step and

Xi :

(

−1 0 1
1/4 1/2 1/4

)

.(4)

Namely, Xi = −1 if the step is to the left, Xi = 1 if the step is to the right and
Xi = 0 if the step is up or down. The mean and the variance of Xi are EXi = 0
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and DXi = 1/2 which imply that EX = 0 and DX = k/2. By the central limit
theorem we have:

Corollary 1. The distribution of the random variable X converge to the nor-
mal N(0, k/2) distribution for enough large k.

We define another kind of walk called a ”sun-walk”. The difference be-
tween the chess-walk and the sun-walk is only in choosing a different number
of steps before stop. Namely, now at first we fix an integer l > 1. Then we
read the numbers s1, s2, . . . , sl of the sequence α = s1s2 . . . sd and after that be-
ginning from (0, 0) we make k1 steps following the sequence sl+1 . . . sl+k1

, where
k1 = 4l−1 · s1 + 4l−2 · s2 + . . . + 4 · sl−1 + sl (i.e. we consider that the se-
quence (s1s2 . . . sl)4 is the notation of k1 in 4-base system). As previous, we
increase the weight of the point where the walk stopped. After that we choose
the next l members sk1+l+1, . . . , sk1+2l and beginning again from (0, 0) we make
k2 = (sk1+l+1 . . . sk1+2l)4 steps following the sequence sk1+2l+1 . . . sk1+2l+k2

, and
so on. Note that 0 ≤ ki ≤ 4l − 1 for each i = 1, 2, . . . So, the number of steps ki

can be considered as a random variable K with set of values {0, 1, . . . 4l−1}. Let
consider the case of a perfectly uniform random sequence. Then using the total
probability theorem, the probability P (m,n) = P{X = m,Y = n} that a walk
beginning from the coordinate center (0, 0) will stop at the point (m,n) is given by

P (m,n) =

4l−1
∑

k=0

Pk(m,n)P{K = k}, where Pk(m,n) is defined as for chess-walk.

Also, in this case, K has the uniform distribution on the set {0, 1, . . . 4l − 1} and

so P{K = k} =
1

4l
. Thus, we have proved

Theorem 6.

P (m,n) =
1

4l

4l−1
∑

k=0

Pk(m,n).

Also, can be proved that

Corollary 2. The distribution of the random variable X can be approximated

by the normal N

(

0,
4l − 1

4

)

distribution.

For designing of tests we consider three ways of dividing the plane by using:

1) the coordinate axis - the plane is divided on four quadrants: {(x, y)|x ≥
0, y > 0}, {(x, y)|x < 0, y ≥ 0}, {(x, y)|x ≤ 0, y < 0}, {(x, y)|x > 0, y ≤ 0};
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2) circles - the plane is divided on rings {(x, y) | (2i)2 ≤ x2 + y2 < (2i + 2)2}
for i = 0, 1, 2 . . .;

3) squares - the plane is divided on bands {(x, y) | 2i ≤ |x|+ |y| < 2i +2} for
i = 0, 1, 2, . . . .

Now, using the combinations of the three ways of dividing the discrete plane
on regions and the two types of walking, we design the following six tests.

– Chess-Quadrant Test (CQT)

– Sun-Quadrant Test (SQT)

– Chess-Circle Test (CCT)

– Sun-Circle Test (SCT)

– Chess-Square Test (CST)

– Sun-Square Test (SST)

In each of them, we compare the random sequences obtained by PRNGs with
the supposed theoretical ones by using the Pearson χ2-test.

Remark. We have divided the discrete plane on circles because of the
normal distribution (Propositions 1 and 2). On the other side, the limitations
|m| + |n| ≤ k in Theorem 5 suggested the division of the discrete plane by this
kind of squares.

We made many experiments in order to check several PRNGs presented in
[5] with our tests. We checked MWC (multiply-with-carry) generator, KISS gen-
erators, ULTRA which combines a Fibonacci generator, CG (congruential gen-
erator), RAN2 from Numerical Recipes [4] and MSRAN (system generator in
Microsoft Fortran). The obtained results are given in Table 2 below. For each
PRNG we have presented results of two experiments, and the bold numbers de-
note the cases when the PRNG did not pass the corresponding test. In our
experiments we wanted to have about r = 106 stops, i.e. the weight of the plane
to be about 106. We took k = 256 (and then d is about 256 × 106) when chess-
walk was used, and l = 4 for the sun-walk (in which case the number of steps
before stops is between 0 and 255, and the average value of d is about 130×106).

It can be seen from the Table 2 that we can classify different PRNGs. So,
MWC and ULTRA passed the tests quite well, KISS passed the tests relatively
well, while RAN2 and MSRAN did not pass the tests designed by sun-walk (and
it seems that MSRAN is better then RAN2 according to these tests). Depending
on the parameters of CG, we obtained quite different values of χ2-statistics, i.e.
we can conclude that CG is a kind of unstable PRNG. The obtained results are
published in the paper [2].
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CQT SQT CCT SCT CST SST

MWC 3.6507 1.1157 28.2029 31.0619 30.1743 51.8553

1.9320 5.2171 29.1727 15.4776 28.3449 27.2860

KISS 7.6002 0.4745 39.5095 16.6549 50.3437 26.7905
5.1371 4.4888 41.9264 17.6388 64.0689 23.4839

ULTRA 7.4117 2.9033 17.3133 20.9626 34.0260 25.2775
1.8869 10.2128 24.4770 18.8330 34.1187 25.2625

CG 42.0610 11.8853 596.0693 161.7642 536.1579 156.8406

646.3155 389.4645 26.2560 35.5271 41.2609 28.1710

RAN2 16.5810 31.7990 25.5687 517.5578 29.4951 554.2418

11.3912 13.3155 27.8888 551.4363 28.9031 606.0271

MSRAN 5.0328 9.9846 19.7406 444.5602 31.1509 508.2729

4.4327 8.3007 32.1389 447.7816 43.5622 521.6509

Table 2: The values of χ2-test statistics
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