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S T U D I A  M A T H E M A T I C A  
B U L G A R IC A

NONLINEAR ESTIMATES IN ANISOTROPIC GEVREY  
SPACES

Lucio Cadeddu*, Todor Gramchev*

A b s t r a c t . We introduce scales of Banach spaces of anisotropic Gevrey 
functions depending on multidimensional parameters. We prove estimates in 
such spaces for composition maps and nonlinearities in conservative forms. 
Applications for solvability and regularity of solutions of nonlinear PDEs are 
outlined.

1. Anisotropic Gevrey Spaces
Let О С  W1 be an open domain and let a — ( a i , . . . ,  on) E  [1, + o o [ n . We define 
G°n(ft) - the spaces of the uniformly anisotropic Ga(ft) Gevrey functions - as the 
set of all ∕  E  C°°(∩) such that there exists С > 0 satisfying

(1.1) sup \∂%f(x)\ < C '^ +1a!cr, ö E Z ” .

where a\ =  a \ \ . . .  a n!, a\a =  a\ai . . .  an\an, a  =  ( a i , . . . ,  an) E  In particular, 
if o\ =  . . .  an =  5 we recover the well known space G^n(0) of uniformly Gevrey 
functions of index «s. Local Gevrey spaces Gs(0) are defined in a natural way 
cf. [18], [16] for more details on Gevrey spaces. In particular, note that ∂x : 
G°n(tt) I-» G°n(tt) for all ß E  and G°n(tt) ^  G^n(fl) provided aj < Tj, 
j  = l , . . . , n .
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We point out that the Gevrey spaces are a natural framework for the study 
of PDEs with multiple characteristics and questions of regularity of solutions 
to evolution PDEs of Mathematical Physics. Typically, in the applications, one 
introduces scales of Banach spaces with norms depending on one parameter. The 
first type of norms is

(!∙2) I NU t  := ∑  47l|∂£«ll < +∞>

where || ∙ || stands for the sup-norm in О or for some LP based Sobolev norms
II ∙ ||я *, 1 < p < 00 , к > 0 . cf. [1], [10], [11] and the references therein. Another 
approach relies on the use of exponential norms by means of the Fourier transform 
cf. [2], [4], [5], [6], [7], [8], [10], [12], [14], [17]).

Given ∕  E G^n(Rn), in view of (1.1), we can define

(1.3) Ps(f) — sup{T > 0 : such that (1.1) holds for o\ =  .. .  =  on =  s.}

and if s =  1, we obtain that every ∕  E G^n(Rn) is extended to a holomor
phic function in {z =  (^i , . . . ,  zn) E Cn ; maxj= i ri.5n \Imz j I < Ps(f)}∙ Clearly 
the definition of ps(f) does not take into account the different behaviour in the 
multidimensional case.

We introduce scales of Banach spaces G^(0;T), T  =  (Ti , .. .  ,Tn) e]1, +oo[n 
defined as follows

(1.4) := ∑  T \ m \ ∞ < + 00 ,

where | ∙ |∞ stands for the sup-norm in O. If a — (s , . . . ,  s) we write

II ÎUp := N s,(p,...,p)’ ̂  (^5p) := ^  (^5 (z9’ ∙ ∙ ∙ ’рУ)'

One readily gets that Ga(ft;T) are Banach algebras (because oj > 1 for all 
j  =  1, . . . ,  n). We stress that, broadly speaking, when T\ =  . . .  =  Tn, such type 
of spaces have been used for showing local Gevrey solvability and/or Gevrey 
well-posedness of the Cauchy problem for nonlinear evolution PDEs wih multiple 
characteristics cf. [2], [10], [5], [6], [12], [15]. In particular, [2], [10], [6] deal with 
some nonanalytic Gevrey perturbations.

For more details and geometrical features of Ga(Q) type spaces, as well as 
applications to linear PDEs with multiple characteristics cf. [3] and the references 
therein (see also [13] where a rather complete theory of microlocal inhomogeneous 
Gevrey spaces, closely related to Ga(Q), is developed).
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We illustrate the advantage of the multi-scale type norms (1.4) even for the 
usual isotropic Gevrey space G^n(Rn) when n > 1. Let ∕  E Gs (R;po) for some 
5 > 1, Po > 0. Consider a multi-rescaling action g \ ( x  1,^ 2) = / ( ^ l / A i ) / ^ / ^ ) ,  
where A =  (Ai,A2) E]0, + o o [2 . Then g \  E Gs(R2;p) for p < po min{Ai, A2}. On 
the other hand, g E G^s,s\ R2 ; (pcAi,/>0^2))- Next, consider the Cauchy problem

n
(1.5) ∂tu +  ajXj∂Xju =  0, i / (0 ,ж) =  щ ( х )  E Gs (Rn ;po), £ > 0 , ж Е К . п ,

3=1

where aj E M, j  = l , . . . , n ,  5 > 1, po > 0. The unique solution is given by 
u(t,x) =  uo(xie~ait, .. .  , x ne~ant). If we use the one parameter scale of Ba- 
nach spaces Gs(∩;p) the solution u(t,∙) of (1.5) satisfies \\u(t, ∙)lls,p(t) < + 00, 
where p(t) =  po exp(am n̂t) and amin =  min{ai , . . . ,  an} while setting T(t) = 
(po exp(ait), . . . ,  po exp(a∏t)) we get |u(t, ∙)|s < +00  for t > 0. Moreover, the
following estimate holds: ||u(t, *) IU,p(t) ≤ \u (t, *)ls f(t) ôr  ̂ > 0∙

The first goal of our paper is motivated by results on nonlinear estimates in 
the framework of the isotropic Gs classes and their applications to PDEs cf. [2],
[10]. Our first main result - see section 2 - is concerned with estimates of the 
action of composition maps in Ga(∩;T). It may be also viewed as an analogue 
in Ga classes of the Schauder type estimates for inhomogeneous Sobolev spaces 
in [9].

Secondly, we propose abstract energy estimates for nonlinearities in conser
vative forms in scales of suitable Hilbert spaces of L2(0) based Ga anisotropic 
functions, for О = W1 and О being the n-dimensional torus. As particular cases 
we recover, when o\ =  . . .  =  on =  «s, energy estimates in [7], [8], [14] for «s =  1 
(see also [11] for s > 1).

Our results will be applied for the study of solvability and regularity proper
ties of solutions of Cauchy problems for abstract systems of nonlinear evolution 
PDEs in anisotropic Gevrey spaces. This will be done in another paper.

2. Nonlinear superposition estimates

Given 0  =  (01 , . . . ,  an) E]l, + 0 0 [n we set 00 =  min{0 i , . . .  crn}. Clearly, a smooth 
function g preserves Ga(∩ : M) iff g E Ga°(B). Our goal is to investigate the 
action of (g о f )(x)  := g(f(x))  for ∕  E G^(0;T), f  real valued.

First, we show the following identity
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Lem m a 2.1. Let p E N, а  =  ( a i , . . . ,  a n) E Z+ with \а\ > 1. ТЛеп

(2 .6) X ∏ ^ ∙ ∙ ∙ ^ M * )

Pr oof .  We shall proceed by induction with respect to n. The detailed proof 
of the case n =  1 can be found in [GR], [GB]. We observe that for n > 2

where a f =  ( a i , . . . ,  a n_i), ж' =  (x i , . . . ,  £n-i)∙  The inductive assumption for 
dimension n — 1 and the Leibnitz rule for the action of ∂^, on the products of p 
functions complete the proof. □

Next we propose a refined version of Faä di Bruno type formulas

P roposition  2.2. Let a =  (cri,. . . ,  a∏) e]0, +oo[n. Then for every g E 
C°°(IR : Ш), f  E C°°(Wl : Ш), a  =  ( a i , . . . ,  a n) Е Z+ with \a\ > 1 йе  following 
identity is true

V

where =  (af , . . . ,  a^) E Z+ and
°k~ 1

Pr oof .  We have

j=i
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where

(2.11) M ^ [ f ]  = (j l∏ “ 1 ∑
a 1!...  аЛ ∂ f  f (x )  . . . ∂ g  f(x).

и >  ! / = ! , . . . J

Dividing by a'!ö’(j!)ö’° 1 in (2.11) we obtain

al + ...+a∙?=a ^—1
∑  ∏

n
11 гу1]а

which implies (2.9). □
Set \ f \ t f f  =  l^l^f — l/l∞∙ The main result on the action of nonlinear maps 

in G *(ft,f) is

T heorem  2.3. Let a E  [ l , + o o [ n and let g E  G^°(M), #(0) = 0; with сто = 
m in{ai,.. .  ,a n}. Smce </ E  G^° (M) as well, we get by (1.3) that po := рао(д') >
0. Then the following estimate holds

for T  e ]0, +oo[n; ∕  E Ga(tt; T), f  being real valued, provided p := na° 1| / | - f  < 
Po∙

P ro o f . We note that by g ( 0) =  0 we get | g о / | ∞  <  \ gr \∞ \ f \ oo ∙  I∏ view of
(2.8), (2.9), given a  E Z™, \a\ > 1, we have

(2.13)

(2.14)

~ ^ \ ∂ x W ( x ) ) \  : a r
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Therefore, summing (2.14) over а Е  Z+, 0  /  0, we get

b ' f b f  ≤ ∑  ∑ ^ T ^  ∑  ^
Ia<l^i/=i>∙∙∙>i

X ∏ ^ l ^ l -

(2.15) < ∑  la>l ° J ! ∞ N ,l f ∙S ,T ]
3=1

where

a < E Z ™ ,  | a | > j  a l + . . . + a J = a  ^ = 1

\a£\> I j

(2.16)

The final step depends on subtle combinatorial estimates. 

Lemma 2.4. Let ao = minjcri,. . . ,  cr∏}. Then

<2∙17> -  ∑  ∏ ^ l / (

∕
, гч 1 «'er) I

_ о^\и |o°a-*-+...+â " =0; £—1

for all j  E  N.

P ro o f . Fix a 1, . . . ,  E  Z™ with |c/| > 0 for  ̂ =  1 , . . . ,  j. Let к E  {1,... , n} 
and we fix ^  to be a nonnegative integer such that at least components of 
(a^ ,. . . ,  Gf£) are nonzero. Recall the combinatorial inequalities (cf. [10])
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Hence, by (2.9), we get

k l ,  -

(ol^O-1 ∕  j} X^o-l
(2.3.9) < , ,4 V  ∕ .4--г <

°k~1

(si!)^-1... (ŝ !)^-1 V5i!∙∙∙5n!

Clearly, if =  j  for at least one fc, the last inequality yields a<7∙ < 1. Let
now Sfc < j  for к — 1 ,... , j. We note that the inequalities |c/| > 1,  ̂ =  1 , . . . ,  j
imply si + .. .  + sn > j. If si +  .. .  +  sn > j, standard combinatorial arguments 
and the fact that the RHS of (2.19) increases if some S£ decreases reduce to the
case si + .. .  + sn = j. The final step consists of bounding

∕  ∙| \ 1 Jb∙∙∙Jn

∑  ≤ ∑ _ . b b )  ∑ .  -
+ . . . + a i  =a S i  “b ∙ ∙ ∙ + S n—J al ,-\-a3 = a

\ae\>l,£=l,...,j \ae\>l,£=l,...,j

where the internal summation in the RHS is over a 1,. . .« -7 with s i , . . . , s j  as 
above. The proof of (2.17) is complete. □

Next, we plug (2.17) into (2.15) and obtain

3 =1 ^  j l + - + j n = j  ^ ' 1' ' ' '

J  rpct1
∑  П ^ | / (“ ’|

a^+...-(-aJ=a —̂1
H > i/= i,∙∙∙j

<

<

У ' 1»Ш ° /1 ~  У '  (  3'- Г ^ Г Т  У '

h w  lLh«a-
Y |9<J> 0/100 ад -у V  ( й 

(2.20) < n'J° - 1| / | ?)f||3/ ||(T0,p

provided p := f  < po∙ The proof of (2.13) is complete. □
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3. Gevrey energy estimates for nonlinear conservative terms
The main goal of this section is to derive energy estimates in anisotropic Gevrey 
spaces for nonlinear terms in a conservative form of the type V ∙ (К[ф\ф) where 
typically К[ф] =  (К\[ф\,. . . ,  К п[ф]), Kj, j  =  1 , . . . , n are linear continuous oper
ators in Sobolev spaces (in some cases homogeneous Sobolev spaces). We assume 
that и =  K[v\ is divergence free, i.e.,

n
(3.1) у . в д  =  £ ^ я - > ]  =  0.

3 = 1

Such nonlinear terms appear in evolution PDEs of Navier-Stokes type, Euler type 
or Kirchhoff type (see [8], [14], [11] and the references therein).

We shall treat (simultaneously) two cases: О = W1 and О = Tn =  W1 ∕ (27rZ)n. 
The choice of the lattice (27rZn) instead of Z n is not restrictive but it allows us 
to use unified notations. More precisely, both the continuous (on W1) and the 
discrete (on Tn) Fourier transform are defined by

f ( 0 = F f ( 0 =  [  exP(-ix£) f (x )dx ,  x£ = X &  +  . . .  +  xn£n,
Jn

identifying Tn = [0,27r]n in the case О = Tn. The inverse Fourier transform is

written as T 7 \ xf  =  f  exp (гж£) /(£) = (27x)~nd^  with IK = M if О = W1
JKn

while in the case of О = Tn К  =  Z and ∕  h(£) Щ stands for (2тг)~п h(£)
J%n

c∙ ∙i i . TVtvmx f  LP(^n) ifK = R _  ̂Similarly, we set I f  (K ) =  j if к  = z  ’ 1 ≤ P ≤ ∞∙

Let а E [1, +oo[n, г E [0, +oo[n, and r > 0. We define:

(3.2) < f,9> ∏ r  =  [  ( Н |{ |Г)2Ш ^
JKn

10 1
(3.3) exp(f < D >l/a)v(x) = )«(£))

3 =  1

(3-4) < / ,  g = < exp(f < D >1/<T) f , exp(f < D >1/a g > Hr

(3.5) \\f\\ff,r-,Hr = \J < exp(r < D > 1/l?)/, exp(r < D > l / ff f  > Hr
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where S = 1 when ft =  W1 while S = 0 if ft = Tn, and in that case we consider 
functions on Tn with mean value zero, i.e. /(0) =  0. In view of (3.4), (3.5) 
we introduce in a natural way the Hilbert space Ga(f t ;r ,H r) as the set of all 
functions ∕  E G°n(ft) such that \\f\\^^∙Hr < +oo.

We are interested in estimating the commutator

С[ф\ =  < ехр(т < D >1̂ (7)К[ф\ ∙ V0), ехр(т < D >1̂ )ф  >∏r
(3.6) — < V ∙ К[ф\ ехр(т < D > ̂  )</>), exp (т < D >1/а)ф >∏r

where ф E Ga(ft; r, H r ) for some f  > r.
We set, as in section 2, сто = minjcri,. . . ,  crn} > 1.

T heorem  3.1. Suppose that r > tq := n / 2 + 1 + 1/(2сго). ТЛеп for every 
£ > 0 there exist two positive constants C\ =  Ci(e), C2 =  C2(e) such that

m \  ≤ С г т н г Щ и Ц н г Щ ^  + т H r 1М1яго+0
n

+ c 2 , т ; Я г + 1 / ( 2(7о )  ( U h  ̂ . H r +  l / ( 2 a o)  I M I ^ , f ; # r o + £

3 =  1

(3-7) + ||'u||^^;^r+1/(2cr0 ||(/)||öJ,r;i7ro+£r)-

P ro o f . Set и := К[Ф]. Note that V ∙ и =  0 iff й(£) ∙ ( ≡ 0. Set
n

(3.8) /<?(£;tO = < С > r exp ( ∑ Tj < ii  >l,(Ti),
3 =  1

(3-9) =  f a i &T)  -  foil]-, f )

By the Parseval identity, С[ф\ can be rewritten as follows

(3.10) С[ф] = i f  f  Qff(Z,rr,T)(ü(£-ri)-г])Ы^г)ф(ОФ(г])йСйг]
JR™ JR™

We have

\Qs{€,rfiT)\ ≤ <?!£ -  ??!(< £ -  ?? > r_1 + < v > r~r)
n

+  C \ i  -  rj\ ∑ T j ( <  Z -  ц >r~1 + < ц >r_1) < Щ > 1/ai fff(r/;T)
3 =  1

∏
(3.11) +  c ∑ T j \ i j  - v j \ 1/aj{< £ - я  >r + < я  >r) h ( t  ~ v;t ) fa(v, t ).

3 =  1
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Indeed, in view of the inequalities exp(|^|) < 1+|г|ехр(|я|), \t+s\P < \t\p+\s\p, 
\\t\p — |s|p| < 1t — s\p, provided 0 < p < 1, we get

I <  I <  £  > r  -  <  V > r \ f * ( V i T ) +  <  £  > T \f#(£∙,T) -  fa{r)]T)\
n

≤ ∑  ri(<  С “  »7 >r_1 + < ^ >r_1) < Vj >1/aj h i m  T)
3=1
n

+  ∑  тМз -  Vj\1/aj (<  С -  Я >r +  <  V >r)fc?(£ -  »7 ; T)U{ri; t )
3 =  1

which implies (3.11).
Set

∏
[</>]r(0 = <  £ > r |0(€)U н§,?[ФШ) = <  £ > p exp ( ∑ Tj  <  > 1/aj) \ k o \ -

3 = 1

4

In view of (3.10) and (3.11) we have \С[ф\\ < ^^&к[Ф]^ where
k= l

0 i[0] = [  [  [Ф]г(0[и]га-л)[Ф\
JKn JKn

©2[ф\ = [  [  M f ( 0 N l( f  -  ^/)[0]r(r/) Зт/,

n Г Г
0 3  [ 0]  =  ∑ T j  ∕  i V £ T# ]  ( £ ) А Й 1 / ( 2 ^ } [« ] (e  -  r ? ) iV j+ 1 /(2 ^ } [0 ] f a )  3 £  Щ ,  

ть Г Г
е 4 [ф] =  ∑ T 3 /  А Г :+ 1/(2̂ }[0]( ^ ) ^ + 1/(2̂ }[ г г ] -77)АГ^+1/(2̂ }[0](^) Щ  Щ .

Jep Jep

We need

Lem m a 3.2. Let gj : K.n i— M, j  =  1,2,3 satisfy the following property: 
there exist j  I E {1,2,3} and ц > n / 2 swc/a that

(3.12) II < ∙ 5 j J L2(K„) ~  (  [  < C > 2ß 1Ьл(С)1|2^ )  < + ∞
wk™ ∕

(3.13) 119jp \ \l  ̂(K.n ) <  + ∞  for jp e  {1,2,3} \  { j i} ,  p =  2,3.



Anisotropic Gevrey spaces 159

Then

1 \9 ъ9 2 ,9 ъ \  =  Ы£-»7)32(£)0з(»7)1<№
JKd JKd

(3-14) < Afy|| < ∙ IIlH I^IIlHI^JsIIl2

where =  ( f Kn < £ >~2p d£ )^ 2 < +oo.

Pr oof .  We observe that by /i > n/2 and the Schwartz inequality we get

(3.15) IIs jiIIli ≤ cll < ∙ 3j i IIl2 < +°°
(3.16) \\ < - >^ OjpWb2 < +°°? for = 2,3

where с = ( /K7l <  ̂ > -2  ̂ < +oo. We complete the proof of (3.14) by
applying the Schur lemma and the above estimates. □

We apply the above lemma to ©&[</>], with the choice of gj1 being the term 
with Sobolev index 1 + l(2oj), к =  1,2, 3,4, and obtain the desired estimate
(3.7). □

Acknowledgements: The authors thank Petar Popivanov for the useful 
discussions and his valuable suggestions on the subject of the paper.
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