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S T U D IA  M A T H E M A T IC A  
B U L G A R IC A

H Y P O E L L IP T IC IT Y  OF A N IS O T R O P IC  PA R T IA L  
D IF F E R E N T IA L  E Q U A T IO N S

Giuseppe De Donno

A b s t r a c t . We propose an approach based on methods from microlocal 
analysis, for characterizing the hypoellipticity in C°° and Gevrey Gx classes 
of semilinear anisotropic partial differential operators with multiple charac­
teristics, in dimension n > 3. Conditions are imposed on the lower order 
terms of the linear part of the operator; we also consider C°° nonlinear 
perturbations, see Theorem 1.1 and Theorem 1.4 below.

1. Introduction
We consider a class of semilinear anisotropic equations with multiple characteris­
tics in n variables £ = (x,y) =  (x\ , . . . ,  xn/,yi, n > 3 (for related results
in the case n =  2, see De Donno-Oliaro [3]), belonging to the set O, neighborhood 
of a point zo E K.n , in the case when no assumptions of Levi-type are imposed on 
the lower order terms; then, as well known, the main properties of the operators 
depend heavily on the lower order terms of their symbol. We consider operators 
of the form:

(l.i) P(x, y, Dx, D y ) u  + G(x, у; д ^ и )  \ } \  + \3\<k* ° ’
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with m  E Z+, m > 4, and the anisotropic weight p =  (//, 1) = (pi, 1,..., 1),
n"

0 < Pi < 1, i = a  = ( a b a ra») ,  j  = (ji, <≡ ß =
= (7b∙∙∙,7n') e 0 < к* < т, j? := ∑^=i ßi j:', we shall also

say that ^  +  \;j\ is the anisotropic order of D^Dy, so the nonlinearity involves 
derivatives of anisotropic order less than k*. We give for (1.1) and (1.2) results 
of hypoellipticity and for (1.2) of Gevrey hypoellipticity too; the arguments in 
our proofs are based mainly on microlocal tools, allowing relevant simplifications 
in the study: pseudo-differential operators, wave front sets and techniques. 
\A/e consider C°° nonlinearity G, C°° coefficients in (1.2) and in the following we 
also suppose that the principal symbol of (1.2) is real and elliptic (with respect 
to the T] variables), i.e.:

(1-3) Ci\r]\m <\ ∑  o,a(z)r}a \ < Ci\ri\m,
\a\=m

for positive constants ci, Ci, and

(1.4) 5R ∑  bß(z)^ß ≠  0 for £ ≠  0, z e О,

(1.5) G(z-,t) = ∑  Cr{z)tr , Cr £ C∞ (Q), t £ ZM,
r e  z "

where, for every compact К  С О, supzeK \DaCr(z)\ < Са^кК  and moreover 
F(t) =  ∑ r Artr is entire analytic.

We recall that the nonzero hypothesis on ^  bß(z)£^ is a nondegeneracy
I-r |=mI p I

condition with invariant meaning, usually required in the study of hypoellipticity 
(and local solvability) of the linear operator (1.2) in C°° and Gx Gevrey spaces, 
see for example Liess-Rodino [10], De Donno-Rodino [4], concerning Gevrey hy­
poellipticity for 2 variables PDE’s with higher multiplicity. As standard, the 
Gevrey anisotropic space GA(0), A = (Ai,. . . ,  An), is defined by the estimates:

(1.6) sup \∂zf(z)\ < C ^ +1(ai!)Al ∙ ∙ ∙ (ап!)Лгг, for every К  CC O,
к

where Â > 1 for i =  1 , . . . ,  n. Let us also observe that if Э ^  bß(z)£^ ^  0 then
I A \=T∏I p I

the operator is quasi-elliptic; the results of hypoellipticity (and local solvability) 
are well known in this case.
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Moreover we define the anisotropic characteristic manifold

(1.7) ∑ := {(z, ( ) е П х ( Ж п \ 0 ): ∑  aa{z)na -  ∑  bß( z ) ^  = 0}.
H=m |4|=mI P I

We may regard the next results as an extension of De Donno-Oliaro [3] in which 
hypoellipticity (and local solvability) are proved in the case of 2-variables equa­
tions. Let us state the main results.

Theorem 1.1. Let us fix k* in (1.1) m — \  < k* < m in such a way that 
there exists at least one n-uple (7 *, j*) Е x Ъп" such that y- +  \j\* =  k*. 
We suppose aa(z), bß{z), c1 j[z) E C°°(0); and assume that for (z,()  E ∑ the 
following conditions hold:

9  ∑  Cy*j* { z ) ^ i f  Ф 0 for £ Ф 0, ц ≠  0;

ii) 3  X) ∑  cr j *(z)C*r]J* ≥ 0;
к* <\^\ + \з\<т | + |j|*=/c*

Hi) 3  X) bß(z)£ß -% E  cr j *(z)C*r]J* ≤ 0.
\fr\=m | ^ |  + |j|*=fc*

Assume moreover that (1.3) and (1.4) hold. Then (1.2) is C°°-hypoelliptic.

Remark 1.2. The operator P(x,y, Dx, Dy) is hypoelliptic with loss of regu­
larity of L = m — k* derivatives.

Remark 1.3. Taking analytic coefficients in Theorem 1.1 we obtain Gx-hy­
poellipticity of the operator P in (1.2) for Ai > , cf. De Donno-Rodino
[4 ] regarding the isotropic case.

In the following it will be convenient to use the Sobolev anisotropic space H sp, 
where as before p =  (pf, 1), defined by

H sp
л  TL 1̂

:=  { ( i  + ∑ \ £ i \ 2pi + Ы 2У \ ( Ъ ^ М О \ 2< к У  < ∞
J i= 1

1+∑n̂_ -1-
being the Fourier transform of f(z).  For s > -----1~ Pi , the space H sp is

an algebra, cf. the inhomogeneous Schauder estimates in Garello [6].
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T heorem  1.4. Under the above assumptions on P(x,y , Dx, Dy) and G, let 
и be a solution of (1.1) which belongs to H sploc(ft), for s > sq, where sq is a 
sufficiently large fixed real number. Then и E C°°(ft).

As examples of operators satisfying Theorem 1.1 we consider in K4:
( 1.8)

к . + ю Ьр- ( 1 ~  Ф12) (*>«?+ D? y ~ l + * ( D“ + + D ' ^ b'

where p, a, b G N, p > 46 + 2, 1 < a < 6; we have pi = a^\p ^ , p2 =
fc* = 2 bp — ^ j - , =  (2a(p -  2 -  k ) ,2 bk,2 (b -  h) ,2 h) for к = 0 , . . .  ,p -  2 ,
/i =  0 , b. In R3. of even order operator we take

(1.9) D f /  -  (1 -  ф | 2г)(Я2? + D f j - 1 + i(D2“ + D f y ~ 2 D™,

where p, a, 6, pi, p2 , are the same of the previous example, but (7  *, j*) = (2a(]9—
2 — fc), 2bk, 2 b) for A; = 0 , — 2 . About of odd order operator we consider

(1.10) Dy\p+l -  (1 - ф | 2')(ДЖ1 Ж1
2b \p—l т)2Ъ 

У1 ’

where p, a, b E N, p > 3, 1 < a < 6; we have pi = 2̂ +1  ̂ P2 =  2̂ 1 ’ = +
1 — p’ (7*5 J*) = (2a(p— 1 — &)? 2bk, 2b) for к =  0 ,. . .  ,p — 1. We may add in (1.8)-
(1.10) arbitrary nonlinear C°° perturbation of lower anisotropic order satisfying 
the hypotheses (1.5), and we obtain that (1.8)-(1.10) are C°° hypoelliptic. In 
the following picture, which resembles the Newton polygon pictures, we show in 
the case of two variables (ж,у) the geometrical meaning of the hypothesis ii) in 
Theorem 1.1. We consider the operator of order m  =  9 with d =  7:

(1.11) D l - { l - i y 2k)Dl + yhD lD l + iD lDv + ∑  aij(x,y)DlxDl,
f i+j<f

that is C°° and Gevrey hypoelliptic.
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A Dv

To every couple (Dx,Dy) = (7, j) with 9Z 4- 7j < 7 ∙ 9 , 
corresponds a mixed derivative DlxDJy in (1.11) having 

analytic coefficient ai j (x,y) .  In the hypoellipticity 
region 7(9 — ^) < 91 + 7j <7 - 9  there are three 

candidates to give anisotropic order = y - . 
We have = (6,1), ^saQi(x,y) > 0 and

9-6 + 7 := k* = 61. For (IJ) = (3,5), 
3-9 + 5-7 = 62 > F ,  З а 35(я,2/) ≡ 0. 

The anisotropic order of the other 
mixed derivatives DlxDJy is , 

less than , so we do not 
require any assumptions. 

Шо > 0, $b0 < 0.

Dr

In the next section 2. we prove Theorem 1.1 using estimates; Theorem 1.4 is 
proved in Section 3..

2. H y p oe llip tic ity  for a class o f differential polynom ials.
In this Section we begin to prove S™s estimates for a pseudo-differential model 
in n variables, n =  n' +  n", n > 3 (for related results in the case n =  2 see De 
Donno-Oliaro [3]). We recall that an operator P  is said to be hypoelliptic at (a 
neighborhood О С  W1 of) a point zq when sing supp Pu  =  sing supp и for all 
и E £ (0).3We take m  E Z+, m > 4 and the anisotropic weight p =  (//, 1) =

0 < Pi < 1, i = 1
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Let the function in ft

P( z ’ 0  = ∑  aa(z)va -  ∑  bß(z ) tß +
\a\=m

(2.1)
^r\=mI P I

+  ∑  GyjWCrj1 +  a(z,C) ,

be the symbol of the pseudo-differential operator 

P (z ,D )  = ∑  aa(z)Dy -  ∑  bß(z)D% +
\ a \ = m \ =m  I P I

+  ∑  Clj(z)D2Dl + E( z ,D) ,

dual variable of
where 2: =  (ж, у) E Ш1' x R ^ , ( = 77) = (£1,..., £n/, 7/1, ..., r/n//) E К™' x R ^  is the

^  := ßi aa : ft -s∙ E, bß, c7J∙ : ft -s∙ C, are in C°°(ft),

ß  = { ß \ , - , ß n ' ) , l  =  (7ь-ч7п') £ «  =  (ai,...,a«») , j  = (ji , . . . , j∏") e ^+"∙
We define the following sets for к E Q+, 0 < к < m:

h = (7, j) e z “ x z ; ∙ +  Ii I =  к

and let A;* be such that (m—̂ ) < A;* < m. We use the notation A;- for all A; < A;* 
and A;+ for all к > к*. The symbol cr(z,£) in (2.1) belonging in C°°(Rn x K.n) is 
such that

\DPD*a(z, 01 < c p,q(0
k- a

where we understand p = (p7,p7/), q = (q7̂ 7) £ x  ̂ := ∑ILi q ^  +

∑r=i <#; with ^  (Op =  (Op' + hi = YJi=iiX +  1&1Рг) + M is the anisotropic 
norm. Let Л be a neighborhood of the anisotropic characteristic manifold ∑, (see
(1.7)), and let Г the set ft x Л. Then we state the following:
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Theorem 2.1. Assume T&* is not empty, and moreover for (z,()  Е Г;

*) ^  ∑ |  7^| + | j * \ = k* c7 *j* ( z ) ^  r f  7̂  0 5 7̂  0

ii)Q ∑ | ^ i +|i1=fct ∑ u , +b|=fc+ > 0

(2 .2)
for every Ац

p

m )3  ∑ i^ i  cr j *(z)C*Vj *% ∑ |£ |=m ≤°>
IP'l I P' I

H  ^  ∑ |A |=m bß(z )£ß ≠  °> £ ≠  0
I P' I

ТЛеп for all p ,q E  Z™, for all К  CC О Йеге ea;is£ positive constants LPjq and 
В such that:

(2.3)  < |p (z ,C )|----------  < i P, , , 2  6 Ä , | ( | > B , ( € R " ,

with Ц =  k* — (m — 1 ), 5 =  m — k*. Observe that 5 < fi since we have assumed 
k* > (rri — i)

Remark 2.2. Hypothesis ii) implies that Э ∑ | 7* c7*j* (z)fp rf and

^ ∑ |  7 |+|J∙|_/c+ cij{z ) i lrl3 are b°th positive or both negative ( we observe that the 

sum 3 ∑ | 7 | •!_£+ c7i(^)^7r/J таУ vanish, too ).I pi I“ГIJ I

Remark 2.3. Же may obtain the estimates (2.3) forp(z ,( )  also in the case 
when the set T&* is empty, by requiring |Эсг(;г, £)| > (C)p> к > mn — \  and by 
replacing Э ^ 7* c7*j*(z)^7 r/J* with Эсг(^,С) in the hypotheses ii),iii).

We will give more details at the end of this section.

Remark 2.4. By formula (2.3) and by well known result, see for example 
Rodino-Mascarello ([12], Theorem 3.3.6), we have that the operator P(z,D), as­
sociated to the symbol p(z,() in (2 .1 ), is C°°-hypoelliptic and for analytic co­
efficients Gevrey-hypoelliptic in GA(0); A = ( A i , A n), Ai > к*^т+ 1 . The 
estimates (2.3) guarantee also the existence of a parametrix of P(z,D).
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Remark 2.5. We confine ourselves for simplicity to prove the estimates
(2.3) for |p| +  |q| =  |p'I +  |p"I + |q'| +  |q"| =  1. The case |p| +  |q| > 1 does 
not involve actual complications; cf Wakabayashi([16'], Theorem 2.6), Kajitani- 
Wakabayashi([ll], Theorem 1.9) for the analytic frame.

Proof of theorem 2.1. We estimate first the numerator of (2.3) and then we
give some lemmas to estimate the denominator.

If |p' I = 1, we get

IA.,p(z,OI (()~ /"  ≤ Li ( ( h r  + (0™ + <0?|ч1|у|) (Сf / ' ∙  + < о Г *

where I =  1, ...,n', fn < m — \ j\ and к < к*; moreover, for |p"| = 1

\DmP(z,o\( o ; s < l2 ( ( i , r  + « > ;  + < о > 1 и|) < o ;f + (c>j_i)
with h =  1, ...,n", for suitable constants Li, ∑2 - 

If |q'| =  l,

fi— (  (  rri— — rri— — I ∙ , \  fi— к— —( 1 —ß)
\DbP(zXm)rn < i s  (({{)„. " + ( « v  Ы J « > / ' +K)o "

I = 1,..., n'; and for |q"| = 1

i a , » p ( z , c ) i ( c > ;  <  i i  ( ( | ч г - 1  +  ( ö ? i 4 i b h l )  « > j  +  ( с > Г 1+“ )

where h =  1, ..,n", with suitable constants L3, L4.

Therefore, we note that к — (1 — p) > A; — ^-(1 — /i), I =  1,..., n' and fc — (1 — /i) =
к — S > к — since p +  (5 = 1. To prove (2.3), it will be then sufficient to show 
the boundedness in K.n , for \(\ > В , of the functions

(\v\m + (0 "  + (0 ^ \v \ ljl) (0 ~s
Qi(C) =

Q2(C) =
b(*>C)l

∕  m—— , m——\  11 —
<ev " м ы +  < о , " n o / 1

Qs( C) = Л ---------- гг- тт] ----Z =
b(*>C)l
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∕∩ k - 1+fi 
Qa(0 = Т Г 7 Т .\p (z , 01

First we introduce three regions:

Я1 : c(0 p, < \v\ < C ( 0 P,
(2-4) R 2 : \t}\ ≥ C { 0 p,

R 3 ■ ы  < c { i ) p,

for suitable constants с, С to be determined precisely later on, satisfying 0 <
с «  minZ£KG(z), G(z) = min{\bß(z)\}\ß \_ , and С »  maxz^KF(z)^

I p' \ m
F(z) =  max{\bß(z)\}\ ß 1 . We understand the neighborhood Л С R\.

-\=mI P
The following inequalities then hold:

(2 .5) «>:* <

and,

(0o ≤

c 5\-n\~5 , е е  R i (Л
\ v \ ~ s  , е е  r 2 ( " )
(0/  , £ G R 3 ; ( I I I )

f c ,  \ ∏ r , С G i?i
I  C2I # , £ G i ?2
l ^ > С G -R3 ;

note that (II) and (III) in (2.5) hold for all (  G Kn , but for our aim we may limit 
ourselves to consider them respectively in R 2 and in R 3 . By abuse of notation, in 
the following we shall also denote by i?i, i?2, Rs the sets ]?2, й х  Д3;
recall that Г = ft x Л.

Lem m a 2.6. Letp(z,()  be the function (2.1) and assume that i), ii), in) in
(2.2) hold. Then there are positive constants K\  < 1, B, such that:

(2.6) |p (z ,C ) |> it i ∑
\ + \j*\=k*

13 {z)C*rf (*,C) € r ∩ i ? b ICI > B.
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P ro o f. We have that

(2.7)
|p(*,C)l2 =
( \

+

∑  aa(z)r)a -  Ш ∑  bß(z)iß + Ш. ∑  CyjWCrf  +  ^o∙(^C)
\a\—m |j3.|=to fc*<| -y |+|i|<TO.

(

\  |£|+li*l=**
2

+

\
+ 9  ∑  cl j ( z ) C r f - ^  ∑  bß(z)tß + %a(z,()

k*<\y\ + \j\<m ^r\=mI P I J
By removing the terms rising from the real part of p(z, ()• we can write

∕  \2
\p(z , 0 \ > ∑  C7*i*(«)C7V *

£ | + И=**
+ ∑ W i ( z ,  0

∕
г = 1

where

∕
(2.8) Wi(^, C) =

\

1r \= m  I P I ∕

(2.9) W ^ ,C )  =  23 ∑  с7* ,ф )£ 7У * 3  J ]  c7, ( ^ V ,
|^ |  + |j»|=A;* fc*<| .̂| + |j|<<m

(2.10) w 3(^,C) = - 2 ^  J ]  v j . W f V ’s  ∑  M * ) ^ ,
| ^ |  + |j*|=fc* \}\=m
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(2 .11) W4 (z,()  = 2  3<r(*,C)3 ∑

The function (2.8) is non-negative, (2.9) and (2.10) are also non-negative by 
hypotheses (гг), (in) for all (z,()  E R\.

Concerning (2.11), it holds

∕  \ 2

∑  cr r (z)C*VJ* + W4(z,C) ≥

> (1 -  e)

J
In fact, for |(| sufficiently large

|W4(*,C)I
2 —< const--- -(« У ~ |Л М |Л « )£ <

/c* — к1771
< const— |CI>-B;

4

since к < k*. 

Then

\p(z,C)\≥K i cr j *(z)^*r?' , (z, () £ R\,  |£| > В ,

for a suitable positive constant K\.  □

Lem m a 2.7. Let p(z,() be the function (2.1). Then there are positive con­
stants K 2 < 1, B, such that:

(2 .12) \ p ( z , 0 \ ≥ K 2 \r}\m , ( z , 0  e R2, ICI > в .
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P ro o f. We write \p(z,() |2 as in (2.7); by removing the terms arising from 
the imaginary part of p(z,£), we get 
(2.13)

(

b(*,C)l2>

where

\

∑  aa(z)7ia - $ t  ∑  bßiz ) iß
\a\=m

4 \=mI P I

+ W 1 ( z , 0  + W2 (z,() + W3 ( z , a

{

(2.14) W x(z, C) =

\

J

aar]a-
(2.15)

W2 = 25R J ]  c7]( ^ V '  ∑
/c*<| | + |j |< m  \a\—m

— 2!R ^ 2  bß(z)^ß9l ∑  ai j ( z )C v 3 
I ~r | = m  fe*< |^ ∙ |  +  l i l < " i

\a\=m ^т\=тI P I

Observe first that for A > 0 sufficiently small

(  \ 2

∑  aa{z)-qa -  3? ∑  bß{z)^ß
\a\=m |4 |

> A T?2m;

V 7
(2.14) is non-negative. We denote (2.15) by Yi(;2,£) — T 2 (z, () and (2.16) by
T3(*,C)-T4(*,C). Then

b(̂ ,C)l2 > a ∑  aa(z)v°
\ a \ = m

+ r ^ o  -  t2(*,c) + t3(*,C) -  т 4(г,С).
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Arguing on Т ь Т 2,Т з ,Т 4 [n the same way as we have done in Lemma 2.6, it is 
possible to show that for all e > 0

and

∑  aa(z)r]a

2

+  т 1(г , с ) - т 2(г ,с) > {- ^ - ∑  aa(z)r]a
\a\=m \a\=m

, (z, C) E i?2,

∑  0-a(z)7]a

2
+ r3(*,C) -T 4(*,C) > ∑  aa(z)ria

2
> izi C) G R 2

\a\=m \a\=m

Thus

□
l p ( z ,O j ≥ K 2 r,m , ( z , o  e r 2, | c | > b .

Lem m a 2.8. Letp(z ,()  be the function (2.1), such that iv) in (2.2) holds. 
Then there are positive constants K% < 1, B, such that:

(2.17) Ip(*,c)i>ä3<£>;?,  ( * ,o  е  Дз, ici > в .

P ro o f . We apply again (2.13), (2.14), (2.15), (2.16) to |p(z, C)|2∙ Observe that in 
/?,*,, arguing as above, since с < <  minzeKG(z), we obtain for a suitable constant 
jj, > 0

( \
∑  aar)a - f t  ∑  b ß { z ) i ß

\ a \ = m ^r\=mI P I J
About the terms in (2.14), (2.15) and (2.16), the remarks we have done in Lemma 
2.7 hold by replacing A E | a | = m  a a ( z ) i ] a  with Ц  ( 0 2™ ■ Then we have

|p(z,C)l > K 3 < m ,  (z, C) G R 3, ICI > B.

□
R em ark  2.9. In the previous lemmas we have estimated the symbol function 

\p(z,()\ in (2.1), separately in the three regions (2.4). It is possible to obtain the 
following global result on \p(z,Q\: there exists m! E M, d > 0; В  > 0; such that

(2.18) |p(*,C)l>d<CC , in Г for Kl > B .
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In fact, by remembering that under assumptions г), гг), ш), гг;) in theorem 2.1 
the estimates (2.6), (2.12), (2.17) hold, we obtain that \p(z,()\ > const\r]\k* in 
Rl and i?2∙ Since in these regions \rj\k* =  \\r)\k* +  \\r)\k* > c(£)k, +  \\r)\k*
const ((Op' +  \v\)k* =  cons^(C)kp у we have that

\p(z,Q\ ≥d{C)kp .

In the same way we get
\p(z,Q\≥d(0?

in i?3. Because A;* < m, we /шг;е m' = A;* in (2.18).

We first consider Qi(C) separately in the regions i?i, i?2, Яз, to prove bounded­
ness.

In Ri  by (2.5),(2.6) we get easily:

i im+j- 8  _i_ \fj\m- 6  

Q i(0  ≤ const ™------ф ™ ----- < L , \ ( \ > B

since 5 > m — k*. We recall that fn +  j  < m. In the region i?2 we have that 
\p(z iC)I ≥ Ыш > Ы^*- In i?3, by using (2.5),(2.17), we have for a constant e > 0 
which we may take as small as we want by fixing В  sufficiently large:

_|_ i f ) 171; - 5

Ql(C) ≤ const--- -̂-TTTm----— < e , ICI > В
\s/p'

We have therefore proved that Qi(() is bounded. Let us estimate Q2 (() and 
Qs(C)∙ In the region i?2 we argue as before; in the regions i?i, R% we obtain 
respectively

Q2(0  < const ≡ ----------------------------------  < 6 ,

in Ri  for \(\ > i?, since /i < A;* — (m — 1), fn < m — j,

fn— — m — —+ / i  —

7k
< 0 , Pl Pl +  < 0 , Pi 

(ok;
<52(0 ≤ const--- p------------ — p ----p------------ < € ,

in Д3 for |C| > B.
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For Q3 we obtain that

I im+j-l+/x _ i_  Шга-l+/x
(2.19) Q3(C) < const ~ --------- ----------------- < L , ICI > В

since /i < A;* — m + 1 in i?i and

/£\m+j — 1+/x /£\rn—1+/x
(2.20) Q3(C) < const— £-------t—^ E--------  < e ,

\S/p'

in i ?3 for ICI > B.

I _  <£>*r(1-'‘)
For Q4, we get 1 л. |)fc»—  < e in i?i since к < к*, /л < 1. In i?3: — —  < e,

1̂1 (Op/
Id > 5

Now Lemma 2.6, Lemma 2.7, Lemma 2.8 and the estimate (2.18) complete the 
proof.

We shall use also the following variant of Theorem 1.1, where the role of T&*-terms 
is played by the pseudo-differential term o{z , £) (see Remark 2.3). Namely, we fix 
now t with 0 < t <  ̂ and assume that |Эа(^, £)| > (Q1̂ where m — ^ < к < m — £, 
considering a symbol of the form:

(2 .21)

p(z ’ 0  = ∑  0-a{z)rja -  ∑  bß{z)iß +
H=m |4|=mI P I

+  ∑  + a(z ,()  ,
m-t<\fr\ + \j\<™

T heorem  2.10. Letp(z ,(,) be the function (2.21) such that for (z, () € Г

о  i3 < r ( 2 ,o i≥ (o ! ,

**)3fa(«,C)3f ∑ l^ l+ i j ∙ i^ + C riW W  ≥ 0 ,for every k+ > m - t ,

(2 .22)
ii i)Qa(z,()3 ∑ \ A i bß(z)£ß < 0 ,

iv) ^  ∑ u  \ m bß{z )£,ß ≠  0, £ ≠  0



82 Giuseppe De Donno

Then for all p ,qG  Z+, for all К  CC ft there exist such positive constants Lp q̂ 
and В that:

\D$D5p(z,Q\(QpW  ^
(2.23) J-------c \p (z ()\ ----------  ≤ Lp , q ^ e ^ K I > ^ C e r \

with Ц =  k — (m — 1), S =  m — к. Observe that 5 < fi since we have assumed 
к > (m — \).

P ro o f. We have к in the role of к* in the proof of Theorem 2.1, by observing 
that in Ri

\p(z, o i 2 >

(  V

(2.24) * ∑  ° 7 j ( 2 ) £ V  -  3  ∑  bß{z)£ß + %a(z, C)

\  m- t<\y\+\i\<m l /H " 1 J

≥ (3<г(г,0)2 > ( 0 ?  > |i)|2‘IP

since i i \ i i i )  and i) hold; then arguing as in the proof of theorem2.1 we obtain 
our result. Of course, the power n∩! in Remark 2.9 is given by к:

(2.25) И * ,0 1  ><*«>*, ICI > B ∙

□

3. T he sem ilinear version
Let us consider now the semilinear equation

(3.1) P {x ,y ,D x,Dy)u + G (x ,y ; ∂ 2 ∂ lu ) \ ^ +^ <kt = 0 ,

where P (x ,y ,D x,D y) is the model operator considered in (1.2) having the 
symbol p(z , () in ft X W1:

(3.2) p(z,C) = ∑  aa(z)rja -  ∑  bß(z)£ß +  ∑  c ^ z ^ r f
H = m \ $ \ =т k*<\^\ + \j\<m

and such that the hypotheses of the Theorem 1.1 hold. Moreover G is of the 
type:

G{z∙t) = ∑  Cr(z)tr , Cr £ C ∞ (∩), t €  Z M,
re i¥
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where, for every compact К  С О, supzeK \DaCr(z)\ < Са^кК  and moreover 
F(t) =  ∑ r ^rtr is entire analytic.

T heorem  3.1. Under the above assumptions on P (x ,y ,D x,D y) and G, let 
и be a solution of (3.1) which belongs to Hploc(∩), for s > sq, where sq is a 
sufficiently large fixed real number. Then и E (7°°(0).

s_( ^  + |j |)
P ro o f. Observe that DxDJy и E HplocP (^)∙ Note that

actually implies + Iii < fc* — £, with £ > 0. Then

P (x ,y ,D x,D y)u = -G(x,y ,∂l∂iyu) | u i +|i|<A. G Щ £ +е(П)

we have that и E H sp^ c(ft). Using again Garello ([6], remark 2.4) we get that 
P (x ,y ,D x,Dy)u E H sp +2e(0) and in its own turn и E H sp^^ ( f t ) .  Repeating 
now the preceding argument we obtain и Е Г\ге^+Нг joc(fi), that is и E
□
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