
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62661248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Pliska Stud. Math. Bulgar. 17 (2005), 271–294
STUDIA MATHEMATICA
BULGARICA

WEAK CONVERGENCE TO THE TANGENT PROCESS OF

THE LINEAR MULTIFRACTIONAL STABLE MOTION

Stilian Stoev, Murad S. Taqqu1

V pamet na Dimit�r L. V�ndev

The linear multifractional stable motion (LMSM), Y = {Y (t)}t∈R, is an
α-stable (0 < α < 2) stochastic process which exhibits local self-similarity.
It is constructed by using a stochastic integral representation of the linear
fractional stable motion (LFSM) process XH,α(t), where the self-similarity
exponent H is replaced by a function H(t) ∈ (0, 1) of time t.

Here, we focus on LMSM processes with continuous paths and study the
convergence

{ 1

d(λ)

(
Y (λt + t0) − Y (t0)

)}

t∈[−1,1]
=⇒ {Z(t)}t∈[−1,1], as λ ↓ 0,

where ⇒ denotes the weak convergence of probability distributions on the
space of continuous functions C[−1, 1] equipped with the uniform norm and
where d(λ) ↓ 0. We show that if the function H(t) is sufficiently regular and if
1/α < H(t0) < 1, then the above weak convergence holds with normalization
d(λ) = λH(t0) and the limit (tangent) process Z(t) is the LFSM XH(t0),α(t).
We also show that one can have degenerate tangent processes Z(t), when
the function H(t) is not sufficiently regular.

The LMSM process is closely related to the Gaussian multifractional
Brownian motion (MBM) process. We establish similar weak convergence
results for the MBM.

1This research was partially supported by the NSF Grant DMS-0102410 at Boston University.
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1. Introduction

We shall focus on the local asymptotic properties of linear multifractional stable
motion (LMSM) processes. The LMSM process, Y = {Y (t)}t∈R, is an α-stable
stochastic process which exhibits local self-similarity, has infinite variance and
skewed distributions. It was introduced in Stoev and Taqqu (2004c) by extending
the definition of the multifractional Brownian motion (MBM) process proposed
by Peltier and Lévy-Vehel (1995) (see also Benassi, Jaffard and Roux (1997),
Cohen (1999), Ayache and Lévy-Vehel (2000), and Stoev and Taqqu (2004a)).

Recall that a process X = {X(t)}t∈R is said to be self-similar with self-
similarity parameter H > 0 (H-self-similar), if for all c > 0, {X(ct)}t∈R =d

{cHX(t)}t∈R, where =d means equality of the finite-dimensional distributions.
The process X has stationary increments, if for all h ∈ R, we have {X(t + h) −
X(h)}t∈R =d {X(t) − X(0)}t∈R. The linear fractional stable motion (LFSM)
process, XH,α = {XH,α(t)}t∈R, is an α-stable process (0 < α < 2) which has
stationary increments and is H-self-similar with 0 < H < 1. It can be viewed as
the α-stable counterpart of the well-known fractional Brownian motion (FBM)
process (for a precise definition of the FBM process and its role in the probability
theory and its applications see, for example, Taqqu (2003) and the references
therein). The LFSM process XH,α = {XH,α(t)}t∈R is defined as

XH,α(t) =
∫

R

{
a+

(
(t + s)

H−1/α
+ − (s)

H−1/α
+

)

+a−
(
(t + s)

H−1/α
− − (s)

H−1/α
−

)}
Mα,β(ds),

(1.1)

where a+, a− ∈ R, |a+| + |a−| > 0 and where x+ := max{0, x}, x− := (−x)+.
Here Mα,β(ds), s ∈ R denotes an independently scattered strictly α-stable, 0 <
α < 2, random measure on R with the Lebesgue control measure ds and constant
skewness intensity β(s) ≡ β ∈ [−1, 1], s ∈ R.

Definition 1.1. The measure Mα,β(ds) is said to be an α-stable measure
with Lebesgue control measure and skewness intensity function β(s) ∈ [−1, 1], if:

1. For any collection of disjoint Borel sets A1, . . . , An ⊂ R, the random vari-
ables Mα,β(A1), . . . ,Mα,β(An) are independent and strictly α-stable, and

2. Their characteristic functions are given by

EeiθMα,β(Aj) =

{
exp{−|Aj ||θ|

α(1 − iβAj
sign(θ) tan πα

2 )} , if α 6= 1
exp{−|Aj ||θ|} , if α = 1.
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where θ ∈ R, |Aj | =
∫
Aj

ds and βAj
=

∫
Aj

β(s)ds/|Aj |, j = 1, . . . , n. (Here,

for simplicity, we suppose the distribution of Mα,β(Aj) to be symmetric in
the case α = 1.)

The stochastic integral in (1.2) can be interpreted as an integral with respect to
an infinite variance process. It is well defined because the integrand belongs to
the space Lα(ds) = {g(s) :

∫
R
|g(s)|αds < ∞}, for all t ∈ R and 0 < H < 1.

For more details on α-stable integrals and the class of LFSM processes see, for
example, Ch. 3 and 7 in Samorodnitsky and Taqqu (1994).

The linear multifractional stable motion process Y (t) is obtained from a
stochastic integral representation of the LFSM process XH,α(t) by replacing the
self-similarity parameter H with a function of time H(t), t ∈ R. More precisely,

Y (t) =

∫

R

{
a+

(
(t + s)

H(t)−1/α
+ − (s)

H(t)−1/α
+

)

+a−
(
(t + s)

H(t)−1/α
− − (s)

H(t)−1/α
−

)}
Mα,β(ds),(1.2)

where now the α-stable measure Mα,β(ds) may have an arbitrary, non–constant
skewness intensity β(s) ∈ [−1, 1], s ∈ R.

When α = 2, then the measure Mα,β(ds) becomes the Gaussian measure
M2(ds) and then the LMSM process Y (t) in (1.2) becomes the multifractional
Brownian motion process1

Y (t) =
∫

R

{
a+

(
(t + s)

H(t)−1/2
+ − (s)

H(t)−1/2
+

)

+a−
(
(t + s)

H(t)−1/2
− − (s)

H(t)−1/2
−

)}
M2(ds).

(1.3)

As shown in Stoev and Taqqu (2004c), when the function H(t) has sufficient
Hölder regularity, this multifractional Brownian motion satisfies

{ 1

d(λ)

(
Y (λt + t0) − Y (t0)

)}
t∈R

f.d.d.
−→ {Z(t)}t∈R, as λ ↓ 0,(1.4)

where d(λ) = λH(t0) and where the limit process Z = {Z(t)}t∈R is the frac-
tional Brownian motion process BH(t0) = {BH(t0)(t)}t∈R (see also Theorem 1.7
in Benassi et al. (1997)). Because of (1.4), the process Y (t) is said to be locally

1 When (a+, a−) = (1, 0), the multifractional Brownian motion in (1.3) coincides with the
“multifractional Brownian motion” of Peltier and Lévy-Vehel (1995). Typically, different values
of (a+, a−) correspond to different processes as shown in Stoev and Taqqu (2004a).
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self-similar at t0 with self-similarity exponent H(t0). The limit process in (1.4)
can be also viewed as a tangent process, at t0, to the process Y (t).

We established in Stoev and Taqqu (2004c), that many of the stochastic prop-
erties of the Gaussian multifractional Brownian motion processes (1.3) extend for
the class of α-stable LMSM processes (1.2). In particular, the LMSM process Y (t)
given in (1.2) is continuous in probability, if and only if the function H(t) ∈ (0, 1)
is continuous. Furthermore, if the function H(t) is sufficiently Hölder regular and
if the skewness intensity β(s) is continuous, then Relation (1.4) continues to hold
for the LMSM process Y . In this case, the limit (tangent) process Z coincides
with the LFSM process {XH(t0),α(t)}t∈R (see Theorem 5.1 therein).

The path properties of the LMSM processes are quite different from those
of the multifractional Brownian motion processes. If the local scaling exponent
function H(t), t ∈ R is continuous, then the multifractional Brownian motion
process has a version with continuous paths (see Corollary 5.1 in Stoev and
Taqqu (2004b), and also Proposition 3 in Peltier and Lévy-Vehel (1995) and
Theorem 2.1 in Ayache and Taqqu (2003)). On the other hand, if 0 < α < 2,
then the paths of the LMSM process can be bounded on finite intervals only if
1/α ≤ H(t) < 1, t ∈ R (Theorem 3.1 in Stoev and Taqqu (2004b)). In particular,
the LMSM processes can have continuous paths only if 1 < α < 2. However, if
the function H(t) is sufficiently Hölder regular and if 1/α < H(t) < 1, t ∈ R,
then the LMSM process Y (t) has a version with continuous paths (Theorem 3.2
in Stoev and Taqqu (2004c)).

Let 1 < α ≤ 2 and suppose that the time index t takes values in a bounded
interval, for example [−1, 1]. When the paths of X are continuous, then the pro-
cess X = {X(t)}t∈[−1,1] can be viewed as a random variable, taking values in the
normed space C[−1, 1] of continuous functions on the interval [−1, 1] equipped
with the uniform norm ‖f‖ := maxx∈[−1,1] |f(x)|, f ∈ C[−1, 1]. The random
process {X(t)}t∈[−1,1] then induces a probability distribution on the path space
C[−1, 1]. Our goal, in this paper, is to show that the finite-dimensional distri-
butions (f.d.d.) convergence in (1.4) of a LMSM process with continuous paths
to a tangent process Z(t), t ∈ [−1, 1] extends also to a weak convergence of the
corresponding distributions on the path space C[−1, 1]. This is done in Section
3. where we study two separate cases:

(i) when the function H(t) is less than its Hölder exponent, and

(ii) when H(t) is greater than its Hölder exponent but varies regularly.

In case (i) H(t) is well–behaved, the tangent process Z in (1.4) is a LFSM process
with continuous paths, and d(λ) = λH(t0). In the case (ii) the tangent process is
degenerate, that is, for example, Z(t) = tρξ, t > 0, and Z(t) = 0, t ≤ 0, where
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0 < ρ < H(t0), ξ is an α-stable random variable; in this case d(λ) = λρL(λ), for
some slowly varying function L.

The paper is organized as follows. In Section 2., we present some technical
results from Stoev and Taqqu (2004b). In Section 3., we establish the main
results of the paper, which give conditions for the weak convergence of a linear
multifractional stable motion process to the tangent process, when 1 < α < 2. In
Section 4., we consider the case α = 2 and extend the results of Section 3. to the
case of Gaussian multifractional Brownian motion process. Section 5. contains
some auxilliary lemmas.

2. Preliminaries

In this section, we state some results about the LMSM prosess Y , defined in (1.2)
and its associated α-stable field. These results are valid for all α ∈ (0, 2) and for
α = 2, when the LMSM process Y coincides with the multifractional Brownian
motion process in (1.3). Their proofs and more details can be found in Stoev and
Taqqu (2004c, 2004b).

Consider the (strictly) α-stable field X = {X(u, v), u ∈ R, v ∈ (0, 1)},

X(u, v) :=

∫

R

f(u, v, s)Mα,β(ds),

where

f(u, v, s) :=
∑

κ∈{+,−}

aκ
(
(u + s)v−1/α

κ − (s)v−1/α
κ

)

= a+
(
(u + s)

v−1/α
+ − (s)

v−1/α
+

)
+ a−

(
(u + s)

v−1/α
− − (s)

v−1/α
−

)
,

and where Mα,β(ds) is the α-stable measure in (1.2). Relation (1.2) implies that
for all t ∈ R,

Y (t) = X(t,H(t)), almost surely.(2.1)

The field X(u, v) has all partial derivatives, ∂n
v X(u, v), n ∈ N, with respect

to v ∈ (0, 1), in the sense of convergence in probability, and in fact,

∂n
v X(u, v) =

∫

R

∂n
v f(u, v, s)Mα,β(ds),(2.2)

where ∂n
v f(u, v, s) denotes the nth partial derivative, in v, of the kernel function

f(u, v, s), that is,

∂n
v f(u, v, s) =

∑

κ∈{+,−}

aκ
(

lnn(u + s)κ(u + s)v−1/α
κ − ln(s)n

κ(s)v−1/α
κ

)
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(see Lemma 2.1 in Stoev and Taqqu (2004c)). One also has the following Taylor
series-type expansion of the field X(u, v), in the variable v,

X(u, v) = X(u, v0) + (v − v0)∂vX(u, v0) + OP ((v − v0)
2), v → v0,(2.3)

where u ∈ R and v, v0 ∈ (0, 1) (Theorem 2.2 in Stoev and Taqqu (2004c)). Using
Relation (2.3) and the scaling properties of the field X(u, v) one obtains that for
all 1 < α ≤ 2 and for any compact K ⊂ R × (0, 1),

‖X(u′, v′) − X(u′′, v′′)‖α ≤ CK

(
|u′ − u′′|v

′

+ |v′ − v′′|
)
,(2.4)

for all (u′, v′), (u′′, v′′) ∈ K, where CK is some constant (Theorem 2.1 in Stoev
and Taqqu (2004b)).

Here ‖ξ‖α, 0 < α ≤ 2, denotes the scale coefficient in the characteris-
tic function of the strictlty α-stable rv ξ, that is, Eeiθξ = exp{−‖ξ‖α

α|θ|
α(1 −

iβξ sign(θ) tan πα
2 )}, where θ ∈ R and where βξ ∈ [−1, 1] denotes the skewness

coefficient of ξ. The scale coefficient ‖·‖α metrizes the convergence in probability
of jointly (strictly) α-stable random variables. Namely, let ξ and ξn, n ∈ N be
jointly α-stable, then

ξn
P

−→ ξ, n → ∞ ⇐⇒ ‖ξn − ξ‖α −→ 0, n → ∞.(2.5)

In fact, ‖ ·‖α is a norm in the linear spaces of strictly α-stable rv’s, for 1 < α ≤ 2.

In view of (2.5), the inequality (2.4) implies the continuity in probability
of the field X(u, v), with respect to (u, v) ∈ R × (0, 1). Relation (2.4) can be
interpreted as a Hölder regularity condition in the norm ‖·‖α for the field X(u, v),
with respect to the variables (u, v). By using (2.1) and (2.4), for any continuous
function H(t) ∈ (0, 1), t ∈ R, we obtain that

‖Y (t′) − Y (t′′)‖α ≤ CK

(
|t′ − t′′|H(t′) + |H(t′) − H(t′′)|

)
,(2.6)

for all t′, t′′ ∈ [a, b], where [a, b] ⊂ R is an arbitrary closed interval. Here, the set
K := {(t,H(t))}t∈[a,b] is compact because H(t) is continuous. Relation (2.6) will
be used extensively in the sequel.

We also need the following definition. Let g : R 7→ R be a continuous function.
The exponent

ρunif
g (t0) := sup

{
ρ ≥ 0 : lim

t′,t′′→t0

g(t′) − g(t′′)

|t′ − t′′|ρ
= 0

}
(2.7)

is called the uniform pointwise Hölder exponent, at t0, of the function g.
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Observe that (2.7) implies that for all 0 < ρ < ρunif
g (t0), there exists ε > 0,

such that
|g(t′) − g(t′′)| ≤ C|t′ − t′′|ρ,(2.8)

for all t′, t′′ ∈ [t0 − ε, t0 + ε], where C > 0 is some constant.

3. Weak convergence to the tangent process

Here, we consider non-Gaussian LMSM processes Y with continuous paths, de-
fined in (1.2), with α < 2. We want to establish sufficient conditions, in terms
of the function H(t), which allow us to replace the convergence of the finite-
dimensional distributions in (1.4) by the stronger convergence of the correspond-
ing probability measures induced on the path space C[−1, 1]. As indicated in
the introduction, this can be done only when the function H(t) is continuous,
1 < α < 2, and 1/α ≤ H(t) < 1, t ∈ R (see e.g. Theorem 3.1 in Stoev and Taqqu
(2004b)). Therefore, we shall supose in this section that

1 < α < 2.

The following theorem establishes the weak convergence to the tangent pro-
cess of LMSM in the case when the function H(t), t ∈ R has sufficiently large
uniform pointwise Hölder exponent. In this case, the corresponding tangent pro-
cess is the LFSM in (1.1).

Theorem 1. Let 1 < α < 2 and let Y = {Y (t)}t∈R be a LMSM process
defined as in (1.2) with continuous function H(t) ∈ (0, 1), t ∈ R. Assume that
the skewness intensity, β(s), is continuous and that

1/α < H(t0) < ρunif
H (t0),(3.1)

for some t0 ∈ R, t0 6= 0.
Then, the process Y (t) has a version Ỹ (t) with continuous paths in a neigh-

borhood of t = t0 and, as λ ↓ 0,

{ 1

λH(t0)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {XH(t0),α(t)}t∈[−1,1],(3.2)

where ⇒ denotes the weak convergence of probability distributions on the space
C[−1, 1]. Here XH(t0),α(t) = XH(t0),α,β(−t0)(t) denotes a continuous-path version
of the LFSM process defined in (1.1), with self-similarity parameter H = H(t0)
with constant skewness intensity2 β = β(−t0) ∈ [−1, 1].

2 If s is replaced by −s in (1.2), then the tangent process would become XH(t0),α,β(t0), t ∈ R.
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Remarks

1. The assumption H(t0) < ρunif
H (t0) in (3.1) includes situations where H(t) is

particularly well–behaved at t = t0; for example H(t) will be differentiable
at t0 if ρunif

H (t0) > 1.

2. Observe that Relation (3.1) implies ρunif
H (t0) > 1/α. This condition and

the condition H(t0) > 1/α guarantee that the LMSM process Y has a
version with continuous paths (Theorem 3.2 in Stoev and Taqqu (2004b)).
As shown in Theorem 3.1 therein, the condition H(t0) > 1/α is essentially
necessary for the paths of LMSM to be bounded.

Proof of Theorem 1: In view of (2.8), Relation (3.1) implies that

|H(t′) − H(t′′)| ≤ C|t′ − t′′|ρ, for all t′, t′′ ∈ (t0 − 2ε, t0 + 2ε),(3.3)

for some ε > 0 and C > 0, where

1/α < H(t0) < ρ < ρunif
H (t0).(3.4)

Relations (3.3) and (3.4) imply the assumptions of Theorem 3.2 in Stoev and
Taqqu (2004b) and hence the process Y (t) has a version Ỹ (t), with continuous
paths on the interval (t0 − 2ε, t0 + 2ε).

To prove (3.2), observe first that, as λ ↓ 0,

{Zλ(t)}t∈[−1,1] :=
{

1
λH(t0)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

f.d.d.
−→ {XH(t0),α,β(−t0)(t)}t∈[−1,1].

(3.5)

Indeed, this follows by Theorem 5.1 (a) in Stoev and Taqqu (2004c), since the
skewness intensity β(s) is continuous and since Relations (3.3) and (3.4), above,
imply the condition H(t) − H(t0) = o(|t − t0|

H(t0)), t → t0.
It remains to prove (uniform) tightness of the laws of Zλn

, n ∈ N in C[−1, 1],
for any sequence λn ↓ 0, n → 0. In view of Theorem 15.6 in Billingsley (1968),
it suffices to prove that

E|Zλ(t) − Zλ(s)|γ ≤ C|t − s|1+η, ∀ t, s ∈ [−1, 1],(3.6)

and for all sufficiently small λ > 0, with some constants γ > 0, η > 0 and C > 0.
We will now show that (3.6) holds. By Lemma 5.1 we obtain that, for all

0 < γ < α,
E|Zλ(t) − Zλ(s)|γ ≤ Cα,γ‖Zλ(t) − Zλ(s)‖γ

α.(3.7)
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Let 0 < h < H(t0) be arbitrary. We will show that, for all t, s ∈ [−1, 1] and
λ ∈ (0, δ),

‖Zλ(t) − Zλ(s)‖α =
1

λH(t0)
‖Ỹ (λt + t0) − Ỹ (λs + t0)‖α ≤ C̃|t − s|h,(3.8)

for some constants δ > 0 and C̃ > 0. Relation (2.6) implies that for all λ ∈ (0, ε]
and t, s ∈ [−1, 1],

‖Zλ(t) − Zλ(s)‖α

≤
CKε

λH(t0)

(
|λt − λs|H(λt+t0) + |H(λt + t0) − H(λs + t0)|

)
(3.9)

≤ CKε

(
λH(λt+t0)−H(t0)|t − s|H(λt+t0) + Cλρ−H(t0)|t − s|ρ

)
,(3.10)

where the set Kε := {(t,H(εt + t0))}t∈[−1,1] is compact because H is continuous
on the interval [t0 − ε, t0 + ε]. The last inequality in (3.10) follows from (3.3).

Consider the first term in (3.10) and let h < H(t0). By the continuity of H,
there exists 0 < δ ≤ ε, such that h < H(λt + t0), for all λ ∈ (0, δ) and t ∈ [−1, 1].
Observe that |t − s|/2 < 1 for all t, s ∈ [−1, 1]. Hence, for all t, s ∈ [−1, 1] and
λ ∈ (0, δ), we obtain

λH(λt+t0)−H(t0)|t − s|H(λt+t0) = 2H(λt+t0)λH(λt+t0)−H(t0)
( |t − s|

2

)H(λt+t0)

≤ 2H(λt+t0)eln(λ)(H(λt+t0)−H(t0))
( |t − s|

2

)h

≤ 2H(λt+t0)−heC| ln(λ)|λρtρ |t − s|h(3.11)

≤ Cδ|t − s|h,(3.12)

for some constant Cδ > 0. The inequality in (3.11) follows by using (3.3), and the
inequality in (3.12) follows from the fact that the function f(x) := | ln(x)|xρ, ρ >
0 is bounded on the interval (0, δ).

We now turn to the second term in (3.10). We have that Cλρ−H(t0)|t − s|ρ

equals

2ρCλρ−H(t0)
∣∣∣
t − s

2

∣∣∣
ρ
≤ 2ρCδρ−H(t0)

∣∣∣
t − s

2

∣∣∣
h

= 2ρ−hCδρ−H(t0)|t − s|h,(3.13)

for all t, s ∈ [−1, 1] and λ ∈ (0, δ), since h < H(t0) < ρ. Relations (3.11) and
(3.13) imply (3.8).
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By using (3.7) and (3.8), we get that

E|Zλ(t) − Zλ(s)|γ ≤ Cα,γC̃γ(t − s)γh ≤ Cα,γ,h(t − s)γh,(3.14)

for all t < s, t, s ∈ [−1, 1] and for all sufficiently small λ > 0. Since h > 1/α,
we can choose γ < α sufficiently close to α, so that γh > 1. This implies the
inequality (3.6), which concludes the proof of the theorem. �

The following result deals with the case of a less regular function H(t), which,
however, is regularly varying. It corresponds to the case covered in Theorem 5.1
(b) of Stoev and Taqqu (2004c), where the tangent process Z in (1.4) turns out
to be degenerate. Although we will suppose

1/α < H(t0) and 1/α < ρunif
H (t0),(3.15)

to ensure path continuity, we do not assume that H(t0) < ρunif
H (t0). We shall

suppose that H(t) is regularly varying at t0, that is,

H(t) − H(t0) = (t − t0)
ρL(t − t0), t > t0, with 0 < ρ < H(t0),(3.16)

where the function L(x), x > 0 is normalized slowly varying to the right of zero.
Normalized slowly varying functions are defined in Relation (5.3) below.

Observe that (3.16) implies

H(t0) > ρ ≥ ρunif
H (t0).(3.17)

Indeed, if ρ < ρunif
H (t0), then by (2.8), we would have that H(t) − H(t0) =

O(|t − t0|
ρ′), as t ↓ t0, with ρ < ρ′ < ρunif

H (t0). But this contradicts

H(t) − H(t0)

(t − t0)ρ
′ = (t − t0)

ρ−ρ′L(t − t0) −→ ∞, as t ↓ t0.

We used here the fact that for any slowly varying function L(x) (to the right of
0), and for any δ > 0,

xδL(x) −→ 0, and x−δL(x) −→ ∞, as x ↓ 0.

(see, e.g. Proposition 1.3.6 in Bingham, Goldie and Teugels (1987)).

Theorem 2. Let 1 < α < 2 and let Y = {Y (t)}t∈R be a LMSM process
defined as in (1.2) with continuous function H(t) ∈ (0, 1), t ∈ R. Assume that
(3.15) and (3.16) hold, for some t0 ∈ R, t0 6= 0.
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Then, the process Y (t) has a version Ỹ (t) with continuous paths in a neigh-
borhood of t = t0 and, as λ ↓ 0,

{ 1

λρL(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[0,1]

=⇒ {tρξ}t∈[0,1],(3.18)

where ⇒ denotes the weak convergence of probability distributions on the space
C[0, 1] and where ξ =d ∂vX(t0,H(t0)) is a non-trivial α-stable rv (see (2.2)).

P r o o f. As shown in the proof of Theorem 1, using (3.15) and Theorem 3.2 in
Stoev and Taqqu (2004b), we obtain that Y (t) has a version Ỹ (t) with continuous
paths on the interval [t0 − ε, t0 + ε], for some ε > 0.

By Theorem 5.1 (b) in Stoev and Taqqu (2004c), Condition (3.16) implies
that, as λ ↓ 0,

{ 1

λρL(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[0,1]

f.d.d.
−→ {tρξ}t∈[0,1],(3.19)

where ξ =d ∂vX(t0,H(t0)) is a non-trivial α-stable rv. Therefore, to prove (3.18),
it suffices to show that the processes

Zλ = {Zλ(t)}t∈[0,1] :=
{ 1

λρL(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[0,1]

have (uniformly) tight distributions on the path-space C[0, 1], for all sufficienlty
small λ > 0.

As in the proof of Theorem 1, we get that, for all λ ∈ (0, ε),

‖Zλ(t) − Zλ(s)‖α ≤

CKε

λρL(λ)

(
|λt − λs|H(λt+t0) + |H(λt + t0) − H(λs + t0)|

)
, t, s ∈ [0, 1].

(3.20)

The function f(x) := H(x+t0)−H(t0) = xρL(x), x > 0 satisfies the assumptions
of Lemma 5.2 and therefore, for any fixed 0 < δ < ρ, there exists η ∈ (0, ε), such
that for all λ ∈ (0, η),

∣∣∣H(λt+t0)−H(λs+t0)
λρL(λ)

∣∣∣ =

∣∣∣f(λt)−f(λs)
f(λ)

∣∣∣ ≤ K|t − s|ρ−δ, t, s ∈ [0, 1],

(3.21)

where K > 0 is some constant.
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The first term in the right–hand side of (3.20) is negligible compared to the
second term. Indeed, since ρ < H(t0), by using the continuity of the function
H(t) at t0, as in the proof of Theorem 1, we obtain that for all sufficiently small
λ > 0,

|λt − λs|H(λt+t0)

λρL(λ)
≤

λh−ρ

L(λ)
|t − s|h ≤ C|t − s|ρ, t, s ∈ [0, 1],(3.22)

where ρ < h < H(t0) and where C > 0 is some constant.

By using the bounds (3.21) and (3.22) in (3.20), we obtain that for all suffi-
ciently small λ > 0,

‖Zλ(t) − Zλ(s)‖α ≤ C̃|t − s|ρ−δ, t, s ∈ [0, 1],(3.23)

where C̃ is some constant. By Relations (3.23) and (3.8), for any γ ∈ (0, α),

E|Zλ(t) − Zλ(s)|γ ≤ const |t − s|γ(ρ−δ), t, s ∈ [0, 1].

Observe that (3.15) and (3.17) imply 1/α < ρ. By choosing δ > 0 arbitrarily
small and γ arbitrarily close to α, we can make the exponent γ(ρ − δ) greater
than 1 and hence obtain (3.7). This implies the tightness of the laws of Zλn

, for
any λn > 0, λn ↓ 0, as n → ∞, and completes the proof of the theorem. �

Theorem 2 establishes the one-sided weak convergence to a degenerate tangent
process. Observe that we impose conditions on H(t)−H(t0) only for t > t0. It is
interesting to determine the two-sided weak limit in (3.18). In this case, we need
to specify H(t) for t < t0 as well as for t ≥ t0. Namely,

H(t) − H(t0) =

{
c+(t − t0)

ρ+
L+(t − t0) , if t0 < t

c−|t − t0|
ρ−L−(t0 − t) , if t < t0,

(3.24)

where t0 6= 0, 0 < ρ+, ρ− < H(t0) and (c+, c−) 6= (0, 0). Here L+(x) and
L−(x), x > 0, are normalized slowly varying functions to the right of zero.

The following two results extend the one-sided limit in (3.18) to a two-sided
one. The first one deals with the situation when ρ+ 6= ρ−.

Corollary 3.1. Let 1 < α < 2 and let H(t) ∈ (0, 1), t ∈ R be a continuous
function, which satisfies (3.15) and Relation (3.24), for all t in a neighborhood of
t0 6= 0. Assume that

0 < ρ+ < ρ− < H(t0),



Weak-LMSM 283

that c+ 6= 0 and that the functions L+(x) and L−(x), x > 0 are normalized slowly
varying to the right of zero. Then the process Y (t) has a version with continuous
paths in a neighborhood of t0 and, as λ ↓ 0,

{ 1

λρ+
L+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {Z(t)}t∈[−1,1],(3.25)

where

Z(t) :=

{
c+tρ

+
ξ , if t > 0

0 , if t ≤ 0.

Here ξ =d ∂vX(t0,H(t0)) is a non-trivial α-stable rv and ⇒ denotes the weak
convergence of probability distributions on C[−1, 1].

P r o o f. By Theorem 2, we have that, as λ ↓ 0,

{ 1

λρ+L+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[0,1]

=⇒ {c+tρ
+
ξ}t∈[0,1],(3.26)

where Ỹ (t), t ∈ R is a continuous path version of the process Y (t), t ∈ R.
Similarly, by applying Theorem 2 to the process Y−(t) := Y (t0 − (t− t0)), t ∈ R,
and since ρ+ < ρ−, we get in view of Lemma 5.3 that, as λ ↓ 0,

{ 1

λρ+
L+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,0]

P
−→ 0,(3.27)

where →P denotes convergence in probability in the metric space C[−1, 0] and
where 0 denotes the zero function.

By Theorem 4.4 in Billingsley (1968), the “glued” process consisting of the
left–hand sides of (3.26) and (3.27) converges in the finite-dimensional distribu-
tions to {Z(t)}t∈[−1,1]. The tightness of the laws of this glued process for any
sequence {λn}n∈N, λn ↓ 0 follows from Lemma 5.4. This establishes the weak
convergence in (3.25). �

Remark. If we had 0 < ρ− < ρ+ < H(t0) in Corollary 3.1, then a limit result
similar to (3.25) would be valid with

Z(t) :=

{
0 , if t > 0

c−|t|ρ
−

ξ , if t ≤ 0.

Corollary 3.2. Let 1 < α < 2 and let H(t) ∈ (0, 1), t ∈ R be a continuous
function, which satisfies (3.15) and Relation (3.24), for all t in a neighborhood of
t0 6= 0. Assume that

0 < ρ ≡ ρ+ = ρ− < H(t0),
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that the functions L+(x) and L−(x), x > 0 are normalized slowly varying to the
right of zero and that L+(x)/L−(x) → 1, x ↓ 0. Then the process Y (t) has a
version with continuous paths in a neighborhood of t0 and, as λ ↓ 0,

{ 1

λρL+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {Z(t)}t∈[−1,1],(3.28)

where

Z(t) :=

{
c+tρξ , if t > 0
c−|t|ρξ , if t ≤ 0.

Here ξ =d ∂vX(t0,H(t0)) is a non-trivial α-stable rv and ⇒ denotes the weak
convergence of probability distributions on C[−1, 1].

P r o o f. Let

ξλ(t) :=
Ỹ (λt + t0) − Ỹ (t0)

λρL+(λ)
, t ∈ [−1, 0],

and

ηλ(t) :=
Ỹ (λt + t0) − Ỹ (t0)

λρL+(λ)
, t ∈ [0, 1].

Following the proof of Corollary 3.1, by using Lemma 5.4, one can establish the
uniform tightness of the distributions of

{ξλn
(t)1[−1,0](t) + ηλn

(t)1[0,1](t)}t∈[−1,1]

in the space C[−1, 1], for any λn ↓ 0, n → ∞.
We will now show that the convergence in (3.28) holds in the sense of the

finite–dimensional distributions. Theorem 5.1 (b), Relation (5.2) in Stoev and
Taqqu (2004c) imply that, as λ ↓ 0,

ηλ(t) →P c+tρξ, ∀t ∈ [0, 1], and ξλ(t) →P c−|t|ρξ, ∀t ∈ [−1, 0],

where ξ = ∂vX(t0,H(t0)). Observe that the last two limits involve the same
random variable ξ. Therefore, the process in the right–hand side of (3.28) con-
verges pointwise in probability to {Z(t)}t∈[−1,1], and hence in finite–dimensional
distributions. �

Remarks

1. Taking the limit λ ↓ 0 with respect to the continuous parameter λ > 0 in
Relations (3.2) and (3.18), is equivalent to taking limits with respect to all
subsequences λn ↓ 0, n → ∞.
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2. The regularity conditions on the function H(t) in Theorems 1 and 2 are
slightly stronger than the corresponding conditions on H(t) imposed in
Theorem 5.1 (a) and (b) of Stoev and Taqqu (2004c), where we establish
merely convergence of the finite-dimensional distributions.

3. Falconer (2003) studies the local structure for general stochastic process
with paths in the space D(R). The space D(R) consists of all continu-
ous to the right functions which have limits to the left and it is endowed
with the Skorokhod J1 topology. Tangent processes therein are defined as
the weak limits, in D(R), of the rescaled increments {c−1

n (Y (rnt + t0) −
Y (t0))}t∈R, n → ∞, where rn ↓ 0 and cn ↓ 0.

Suppose that at all t0 ∈ A ⊂ R, the tangent process {Z(t; t0)}t∈R is unique
(up to a multiplicative constant). Theorem 3.8 in Falconer (2003) states
that for almost all t0 ∈ A, the process {Z(t; t0)}t∈R will be self-similar and
it will have stationary increments.

These two properties hold for the tangent process in (3.2). However, the
tangent process appearing in Theorem 2 is only self-similar and it does not
have stationary increments, since 0 < ρ < 1. This observation shows that
there are no functions H(t), which satisfy the conditions of Theorem 2, for
almost all t0 ∈ A, where A is a Borel set of positive Lebesgue measure.

4. The Gaussian case α = 2

As indicated in the introduction, when α = 2 the measure Mα,β(ds) in (1.2)
becomes Gaussian and one recovers the Gaussian multifractional Brownian mo-
tion (MBM) process {Y (t)}t∈R. In this section, we show that Theorems 1 and 2
can be extended to the Gaussian case. In fact, the conditions 1/α < H(t0) and
1/α < ρunif

H (t0) in Relations (3.1) and (3.15) can be omitted. The following result
corresponds to Theorem 1 when α = 2.

Theorem 3. Let α = 2 and let Y = {Y (t)}t∈R be a LMSM (ie MBM) defined
in (1.3) with continuous function H(t) ∈ (0, 1), t ∈ R. Suppose that

H(t0) < ρunif
H (t0)(4.1)

for some t0 ∈ R, t0 6= 0.
Then, the process Y (t) has a version Ỹ (t) with continuous paths and, as λ ↓ 0,

{ 1

λH(t0)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {BH(t0)(t)}t∈[−1,1],(4.2)
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where ⇒ denotes weak convergence of probability measures on C[−1, 1] and where
the tangent process, BH(t0) = {BH(t0)(t)}t∈[−1,1], is a continuous-path version of
the fractional Brownian motion process with self-similarity parameter H(t0). The
process BH(t0)(t) is defined in (1.3) where H(t) replaced by the constant H(t0).

P r o o f. Since H(t), t ∈ R is continuous, the MBM process Y has a version
Ỹ with continuous paths (see, for example, Corollary 5.1 in Stoev and Taqqu
(2004b)). As in the proof of Theorem 1, above, the Condition (4.1) implies that
for any ρ, such that

H(t0) < ρ < ρunif
H (t0),

Relation (3.3) holds with some ε > 0 and C > 0. (In the Gaussian case one
does not need the assumption 1/α < H(t0) to guarantee the continuity of the
paths of the process Ỹ .) One also has that (3.5) holds, where now the right-hand
side of this relation is the fractional Brownian motion process {BH(t0)(t)}t∈[−1,1].
Therefore, to prove (4.2) it suffices to establish that the moment inequality in
(3.6) holds, for some γ > 0, η > 0 and C > 0.

For any Gaussian random variable X with mean zero and variance σ2 > 0,
we have that, for all γ > 0,

E|X|γ = Cγσγ ,

where Cγ > 0 is some constant. Thus, Relation (3.7) now holds for arbitrary
γ > 0 (not necessarily for γ ∈ (0, α)). Hence, by following the argument in the
proof of Theorem 1, above, we obtain that for any 0 < h < H(t0) and for any
γ > 0,

E|Zλ(t) − Zλ(s)|γ ≤ C|t − s|γh, t ≤ s, t, s ∈ [−1, 1],(4.3)

for all sufficiently small λ > 0, where C is some constant, which depends on γ
and h.

Since now the exponent γ in (4.3) can be chosen arbitrarily large, (4.3) implies
(3.6). This completes the proof of the theorem. �

The following result is the analog of Theorem 2 in the Gaussian case.

Theorem 4. Let α = 2 and let Y = {Y (t)}t∈R be a LMSM (ie MBM) process
defined in (1.3) with continuous function H(t) ∈ (0, 1), t ∈ R. Assume that
ρunif

H (t0) > 0, for some t0 ∈ R, t0 6= 0 and that the Condition (3.16) is satisfied.

Then, the process Y (t) has a version Ỹ (t) with continuous paths and, as λ ↓ 0,
the Relation (3.18) holds, where now ξ =d ∂vX(t0,H(t0)) is a Gaussian random
variable, defined as in (2.2) with Mα,β(ds) replaced by the Wiener measure.
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P r o o f. As in the proof of Theorem 3, the continuity of H(t) implies that
there exists a continuous-path version Ỹ of the LMSM process Y . The rest of the
proof is essentially identical to the proof of Theorem 2 above. Indeed, one has
the convergence of the finite-dimensional distributions in (3.19) (Theorem 5.1 (b)
in Stoev and Taqqu (2004c)). Condition (3.16) and Lemma 5.2 imply Relation
(3.21). Also, the inequalities ρunif

H (t0) > 0, 0 < ρ < H(t0) and the continuity of
the function H(t) imply (3.22) and consequently (3.23).

Now, as in the proof of Theorem 3, we obtain that for all t1 ≤ t ≤ t2, t1, t2 ∈
[0, 1] and for all γ > 0,

E|Zλ(t) − Zλ(s)|γ ≤ C|t − s|γ(ρ−δ),

for all sufficiently small λ > 0 and for some constant C > 0. Since γ > 0 can
be chosen arbitrarily large, the last relation implies (3.6) and hence the tightness
of the distributions of the processes Zλn

, for any sequence {λn}n∈N, λn ↓ 0, as
n → ∞. This concludes the proof of the theorem. �

The following two results are the analogs of Corollaries 3.1 and 3.2, in the Gasus-
sian case.

Corollary 4.1. Let α = 2 and let H(t) ∈ (0, 1), t ∈ R be a continuous func-
tion, with ρunif

H (t0) > 0, which satisfies Relation (3.24), for all t in a neighborhood
of t0 6= 0. Assume that

0 < ρ+ < ρ− < H(t0),

that c+ 6= 0 and that the functions L+(x) and L−(x), x > 0 are normalized slowly
varying to the right of zero. Then the process Y (t) has a version with continuous
paths in a neighborhood of t0 and, as λ ↓ 0,

{ 1

λρ+L+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {Z(t)}t∈[−1,1],(4.4)

where

Z(t) :=

{
c+tρ

+
ξ , if t > 0

0 , if t ≤ 0.

Here ξ =d ∂vX(t0,H(t0)) is a non-trivial Gaussian (2−stable) random variable
and ⇒ denotes the weak convergence of probability distributions on C[−1, 1].

Corollary 4.2. Let α = 2 and let H(t) ∈ (0, 1), t ∈ R be a continuous func-
tion, with ρunif

H (t0) > 0, which satisfies Relation (3.24), for all t in a neighborhood
of t0 6= 0. Assume that

0 < ρ ≡ ρ+ = ρ− < H(t0),
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that the functions L+(x) and L−(x), x > 0 are normalized slowly varying to the
right of zero and that L+(x)/L−(x) → 1, x ↓ 0. Then the process Y (t) has a
version with continuous paths in a neighborhood of t0 and, as λ ↓ 0,

{ 1

λρL+(λ)

(
Ỹ (λt + t0) − Ỹ (t0)

)}
t∈[−1,1]

=⇒ {Z(t)}t∈[−1,1],(4.5)

where

Z(t) :=

{
c+tρξ , if t > 0
c−|t|ρξ , if t ≤ 0.

Here ξ =d ∂vX(t0,H(t0)) is a non-trivial Gaussian (2−stable) random variable
and ⇒ denotes the weak convergence of probability distributions on C[−1, 1].

The proofs of the last two results are similar to the proofs of Corollaries 3.1
and 3.2, respectively. Observe now however, that we do not necessarily assume
that (3.15) holds, because in the Gaussian case, the LMSM process Y always
has a version with continuous path, provided that the function H(t) is continu-
ous, independently of the value of its Hölder regularity exponent (compare the
assumptions of Theorems 2 and 4).

5. Auxiliary lemmas

The following lemma is used in the proofs of Theorems 1 and 2.

Lemma 5.1. Let 1 < α < 2 and let ξ be a strictly α-stable rv with charac-
teristic function

Eeiθξ = exp{−‖ξ‖α
α|θ|

α(1 − i sign(θ)βξ tan(πα/2))}(5.1)

where θ ∈ R and βξ ∈ [−1, 1] is the skewness coefficient of ξ. Then, for all
γ ∈ (0, α),

E|ξ|γ ≤ Cα,γ‖ξ‖
γ
α,

where Cα,γ is a constant which does not depend on the skewness coefficient βξ.

P r o o f. By Property 1.2.13 in Samorodnitsky and Taqqu (1994), we have that

ξ =d ‖ξ‖α

((1 + βξ

2

)1/α
ξ1 −

(1 − βξ

2

)1/α
ξ2

)
,(5.2)

where ξ1 and ξ2 are independent, identically distributed strictly α-stable random
variable with unit scale and skewness coefficients, that is, ‖ξj‖α = 1 and ξj , j =
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1, 2 are totally skewed to the right. By using the inequality |x+y|γ ≤ 2|x|γ +2|y|γ ,
valid for all x, y ∈ R and γ ∈ (0, 2], and Relation (5.2), we get

E|ξ|γ ≤ 4‖ξ‖γ
α

(1 + |βξ |

2

)γ/α
E|ξ1|

γ ≤ 4E|ξ1|
γ‖ξ‖γ

α =: Cα,γ‖ξ‖
γ
α,

because |βξ | ≤ 1. This completes the proof of the lemma. �

The next result is used in the proof of Theorem 2. It involves the notion of
normalized slowly varying function. A function L(x), x > 0 is called normalized
slowly varying to the right of zero, if

L(x) = c exp
{∫ 1

x
ε(u)du/u

}
, x ∈ (0, 1),(5.3)

where c 6= 0 is a constant and where ε(x) → 0, as x ↓ 0 (see, Relation (1.3.4) in
Bingham, Goldie and Teugels (1987)).

A function L(x), x > 0 is called slowly varying (to the right of zero), if for
all x > 0,

L(λx)/L(λ) −→ 1, as λ ↓ 0.

Any normalized slowly varying function is also slowly varying. In fact, any (mea-
surable) slowly varying function has the representation (5.3), where the constant
c is replaced by a function c(x), x > 0 such that c(x) → c0 6= 0, as x ↓ 0 (see,
for example, Theorem 1.3.1 in Bingham et al (1987)). As shown by Bojanic and
Karamata, the class of normalized slowly varying functions coincides with the
Zygmund class of functions (see, for example, p. 24 in Bingham et al (1987)). A
function L(x) is said to belong to the Zygmund class of slowly varying functions
(to the right of zero), if for any δ > 0 the functions xδL(x) and x−δL(x) are
monotone increasing and decreasing, respectively, for all sufficiently small x > 0.

Example. The function L(x) := ln(1/x), x > 0 is normalized slowly varying to
the right of 0. Indeed, it belongs to the Zygmund class of slowly varying functions
because, for example, for any δ > 0 and fδ(x) := xδ ln(1/x), we have

d

dx
fδ(x) = xδ−1(δ ln(1/x) − 1) > 0, ∀x ∈ (0, e1/δ).

One also has that, for all x ∈ (0, 1/e),

ln(1/x) = exp{ln | ln(x)|} = exp
{∫ 1

x
ε(u)du/u

}
,
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that is, Relation (5.3) holds, with

ε(u) :=

{
1/| ln(u)| , x ∈ (0, 1/e)
0 , x ∈ [1/e, 1].

Lemma 5.2. Consider the function f(x) = xρL(x), x > 0, where 0 < ρ < 1
and where L(·) is a normalized slowly varying function to the right of zero (see
(5.3), above). Then, for any 0 < δ < ρ, there exist η > 0 and K > 0, such that,
for all λ ∈ (0, η),

∣∣∣
f(λt) − f(λs)

f(λ)

∣∣∣ ≤ K|t − s|ρ−δ, t, s ∈ [0, 1].(5.4)

P r o o f. Without loss of generality, assume that 0 < s < t ≤ 1. By using (5.3),
we get that for all 0 < s < t ≤ 1,

∣∣∣
f(λt) − f(λs)

f(λ)

∣∣∣ =
L(λt)

L(λ)

∣∣∣tρ − sρ exp
{∫ λt

λs
ε(u)du/u

}∣∣∣.(5.5)

The Potter bounds (see, for example, Theorem 1.5.6 in Bingham, Goldie and
Teugels (1987)), imply that for any A > 1, there exists η > 0, such that for all
t ∈ (0, 1] and λ ∈ (0, η),

L(λt)

L(λ)
≤ A

(
(λt/λ)δ + (λt/λ)−δ

)
≤

2A

tδ
.(5.6)

Consider now the second term in the right-hand side of (5.5):

tρ − sρ exp
{∫ λt

λs
ε(u)du/u

}
= sρ

(
(t/s)ρ − exp

{∫ λt

λs
ε(u)du/u

})
.(5.7)

Observe that

exp
{∫ λt

λs ε(u)du/u
}
≤ exp

{
sup0<u≤λ |ε(u)|

∫ λt
λs du/u

}

= (t/s)sup0<u≤λ |ε(u)| ≤ (t/s)δ .
(5.8)

The last inequality follows from the facts that t/s > 1 and ε(u) → 0, as u → 0+,
since by eventually picking a smaller η > 0, one has sup0<u≤λ |ε(u)| ≤ δ, for all
λ ∈ (0, η). Focusing on the right–hand side of (5.7), we note that Relation (5.8)
implies

(t/s)ρ − exp
{∫ λt

λs
ε(u)du/u

}
≥ (t/s)ρ − (t/s)δ > 0,
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since δ < ρ and t/s > 1. Hence the left-hand side of (5.7) is positive, for all
λ ∈ (0, η) and 0 < s < t ≤ 1.

Arguing as in (5.8), for any γ > 0, we can derive the bound

exp
{∫ λt

λs
ε(u)du/u

}
≥ (t/s)− sup0<u≤λ |ε(u)| ≥ (s/t)γ ,(5.9)

valid for all 0 < s < t ≤ 1, and λ ∈ (0, η), with small enough η > 0. Therefore,
for all λ ∈ (0, η) and 0 < s < t ≤ 1,

0 ≤ tρ − sρ exp
{∫ λt

λs
ε(u)du/u

}
≤ tρ − sρ(s/t)γ =

tρ+γ − sρ+γ

tγ

≤
(t − s)ρ+γ

tγ
=

(t − s)γ

tγ
(t − s)ρ ≤ (t − s)ρ.(5.10)

The first inequality was shown earlier. To get the third inequality, we used that
|a|ρ+γ − |b|ρ+γ ≤ |a− b|ρ+γ , valid for all a, b ∈ R and 0 < ρ+ γ ≤ 1. By using the
bounds in (5.6) and (5.10) and Relation (5.5), we obtain that for all λ ∈ (0, η)
and 0 < s < t ≤ 1,

∣∣∣
f(λt) − f(λs)

f(λ)

∣∣∣ ≤
2A

tδ
(t − s)ρ = 2A

( t − s

t

)δ
(t − s)ρ−δ.

Since (t− s)δ/tδ ≤ 1, the last inequality implies (5.4), which completes the proof
of the lemma. �

The following two lemmas are used in the proofs of Corollaries 3.1 and 3.2.

Lemma 5.3. Let ξn, n ∈ N be random elements taking values in a linear
metric space (E, ρ) and defined on a common probablity space. Suppose that the
laws of ξn, n ∈ R are uniformly tight. Then, for any d(n) → ∞,

ξn/d(n) −→P 0, as n → ∞,(5.11)

where →P denotes convergence in probability in the space (E, ρ).

P r o o f. Let B0(r) = {x ∈ E, ρ(x, 0) < r} denote a ball of radius r > 0 and
center 0. One needs to show that for all δ > 0 and ε > 0,

P{ξn/d(n) ∈ B0(δ)} ≥ 1 − ε,(5.12)

for all sufficiently large n ∈ N.
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The tightness of ξn, n ∈ N implies that for all ε > 0, there is a compact set
K ⊂ E, such that P{ξn ∈ K} ≥ 1− ε, n ∈ N. Since K is a compact in the linear
metric space (E, ρ), there exist R > 0, such that K ⊂ B0(R). Therefore,

1 − ε ≤ P{ξn ∈ K} ≤ P{ξn/d(n) ∈ B0(R/d(n))}.

The last relation implies that (5.12) holds for all sufficiently large n, because
R/d(n) → 0, n → ∞. �

Then next lemma shows that two weakly convergent processes glued together are
tight.

Lemma 5.4. Let ξn = {ξn(t)}t∈[a,c] and ηn = {ηn(t)}t∈[c,b], n ∈ N, be two
sequences of processes with continuous paths, defined on the intervals [a, c] and
[c, b] (a < c < b), respectively. Assume that ξn and ηn are defined on the same
probability space and suppose that, as n → ∞,

ξn ⇒[a,c] ξ and ηn ⇒[c,b] η,(5.13)

where ⇒[a,c] denotes the weak convergence in the space C[a, c] equipped with the
sup–norm.

If ξn(c) = ηn(c), almost surely, for all n ∈ N, then the laws of ζn :=
{ζn(t)}t∈[a,b], with

ζn(t) :=

{
ξn(t) , t ∈ [a, c]
ηn(t) , t ∈ [c, b]

are tight in the space C[a, b].

P r o o f. Observe that since ξn(c) = ηn(c), a.s. for all n ∈ N, and since
{ξn(t)}t∈[a,c] and {ηn(t)}t∈[c,b] have continuous paths, the processes {ζn(t)}t∈[a,b]

have continous paths, with probability one.
In view of Theorem 8.2 in Billingsley (1968), it is sufficient to show that, for

all ε > 0, there exist δ > 0 and n0, such that

P{ωδ(ζn; [a, b]) ≥ ε} := P

{
sup

t,s∈[a,b], |t−s|≤δ
|ζn(t) − ζn(s)| ≥ ε

}
≤ θ,(5.14)

for all n ≥ n0, n ∈ N. For all a ≤ t < c < s ≤ b, by the triangle inequality, we
have

|ζn(t) − ζn(s)| ≤ |ξn(t) − ξn(c)| + |ηn(c) − ηn(s)|,

with probability one, since ξn(c) = ηn(c), a.s. Therefore,

ωδ(ζn; [a, b]) ≤ ωδ(ξn; [a, c]) + ωδ(ηn; [c, b]),
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and hence the left–hand side of (5.14) can be bounded above as follows

P{ωδ(ζn; [a, b]) ≥ ε}
≤ P{ωδ(ξn; [a, c]) ≥ ε/2} + P{ωδ(ηn; [c, b]) ≥ ε/2}.

(5.15)

By Relation (5.13) the laws of ξn, n ∈ N and ηn, n ∈ N are uniformly tight
in C[a, c] and C[c, b], respectively. Thus, by applying Theorem 8.2 in Billingsley
(1968) to the right–hand side of (5.15), we obtain that for any ε > 0 and θ > 0,
Relation (5.14) holds, for some δ > 0 and for all sufficiently large n. �
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