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PROBABILISTIC APPROACH TO DESIGN OF LARGE
ANTENNA ARRAYS

Blagovest Shishkov, Hiroshi Matsumoto, Naoki Shinohara

Recent advances in space exploration have shown a great need for an-
tennas with high resolution, high gain and low sidelobe (SL) level. The
last characteristic is of paramount importance especially for the Microwave
Power Transmission (MPT) in order to achieve higher transmitting effi-
ciency. In this concern statistical methods play an important role. Various
probabilistic properties of a large antenna array with randomly, uniformly
and combined spacing of elements are studied and especially the relationship
between the required number of elements and their appropriate spacing from
one part and the desired SL level, the aperture dimension, the beamwidth
and transmitting efficiency from the other. We propose a new unified ap-
proach in searching for reducing SL level by exploiting the interaction of
deterministic and stochastic workspaces of proposed algorithms, emphasiz-
ing on the distribution of the maximums of SL level. These models indicate
any advantages with respect to sidelobes in the large area around the main
beam. A new concept of designing a large antenna array system is proposed.
Our theoretic study and simulation results clarify how to deal with the prob-
lems of sidelobes in designing a large antenna array, which seems to be an
important step toward the realization of future SPS/MPT systems.
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1. Introduction

In the 1980s and 1990s in Japan have performed large investigations on Solar
Power Satellites (SPS) and Microwave Power Transmission (MPT), related by
the abbreviations MINIX, ISY-METS, MILAX, SHARP, SPORTS and SPIRITZ
[13]. In such way, the center of MPT technologies research shifted from USA to
Japan. We will briefly consider how the problem of SL level was highlighted from
previous investigators.

In his fundamental paper [24] T. Taylor studied the mathematical relation-
ships involved in the radiation calculation of the line source from the point of view
of function theory. Antenna design technique permits the other-than-uniform
distributions of the field and in [24] has been investigated how to choose this
distribution function to give a radiation pattern with prescribed properties such
as, for example, narrow beamwidth of the main lobe and low sidelobes. In this
original paper was documented the relationships between aperture edge behavior,
far sidelobs, and array pattern zero locations. His analysis and insights led to a
most practical technique for the synthesis of low-sidelobe beams.

A number of applications require a narrow scanned beam, but not commen-
surably high antenna gain. Since the array beamwidth is related to the largest
dimension of the aperture, it is possible to remove many of the elements (or
to ”thin” an array) without significantly changing its beamwidth. For small or
moderate arrays, it can be convenient to formulate the thinning procedure as a
sidelobe minimization problem (see [26, 25, 17, 3]). In [26] the method is proposed
of reducing both the quantities of elements required for a given size aperture and
the number of different types of transmitters which would be necessary in an
array using an illumination taper. In [25] a linear array with general arbitrarily
distributed elements is discussed. A matrix relationship is found between the ele-
ments of the array and its far-zone pattern. In [17] general analytical expressions
are presented for unequally spaced arrays. These relations allow for the analysis
of the non-uniformly spaced array in terms of its equivalent uniformly spaced
array. Some equivalence is made between the amplitude and spatial variation
in the uniformly and non-uniformly spaced array. An array with monotonically
increasing inter element spacing is presented as an example of the theory. In [3]
a perturbation procedure for reducing the SL level of discrete linear arrays with
uniform amplitude excitation by using non-uniform element spacing is presented.
All these procedures [26, 25, 17, 3] do control both peak and average SL level,
but are numerically difficult to implement for large antenna arrays.

The series of papers of Y. Lo [5-9 and 1] and especially the pioneering and
fundamental paper [6] present probabilistic study of thinned antenna arrays. Lo
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[6] addresses the peak-sidelobe issue and shows that a statistical description of
these sidelobes is possible and yields useful bounds for array design. Taking into
account this background we can draw the following conclusion:

1. For conventionally designed arrays where all elements are spaced uniformly,
there exists an upper limit to the spacing if the grating lobes are not per-
mitted to appear in the visible region.

2. Non-uniformly spaced algorithms are numerically difficult to implement for
large antenna arrays.

3. Randomly spaced algorithms (the concept of “thin” arrays) are easier to
implement, but need of further study in order to determine their merits and
drawbacks.

In this paper we develop further the existing algorithms and propose new
techniques to deal with sidelobes. This method can be used to predict the pos-
sible results for various sets of element spacings. This prediction can be made
before carrying out detailed computations. The design of the array is thus re-
duced to playing a game in which the odds in favor of success are determined
to be sufficiently large before any actual evaluation of the final array design is
attempted.

2. Uniformly spaced arrays

Consider a linear array along the X axis in Cartesian coordinate system, Fig.
1. Suppose we are given N+1 equally excited antenna elements by isotropic
radiation to be placed regularly within an aperture defined by |X| ≤ a/2 . In
this case {Xn = ndx}, where dx is inter element distance usually measured in [m]
or in wavelength.

dx = pλ, p = ±1,±2, ...

Then for each vector {Xn}, Xn ∈ RN+1, there is a radiation pattern function
given by the magnitude of

P (θ) =
1

N + 1

N/2
∑

n=−N/2

exp

{

j
2π

λ
(sin θ − sinα)

}

ndx(1)

where
α−the scan angle measured from the normal to the array axis
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θ−the observation angle measured from the normal to the array axis

{xn = ndx/N} - normalized workspace

a = Ndx - the aperture, measured in [m]

Another representation will be used also

P (u) = 1
N+1

N/2
∑

n=−N/2
exp {j2π (sin θ − sinα)}ndx

= 1
N+1

N/2
∑

n=−N/2
exp (juxn)

(2)

Figure 1: The structure of an uniform linear array with N elements

where

u = aπ (sin θ − sinα) – the observation angle parameter

{xn = 2ndx/N} – normalized workspace

a = Ndx – the aperture, measured in wavelength

Let’s denote 2π
λ (sin θ − sinα)ndx = ψn, then the array factor (AF) can be

written as follows

|P (θ)|2 =

∣

∣

∣

∣

∣

∣

1

N + 1

N/2
∑

n=−N/2

ejψn

∣

∣

∣

∣

∣

∣

2

=
sin2 [(N + 1) πdx (sin θ − sinα) /λ]

(N + 1)2 sin2 [πdx (sin θ − sinα) /λ]
(3)
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A linear array with its peak at α can also have other peak values subject to
the choice of spacing dx. This ambiguity is apparent, since the summation also
has a peak whenever the exponent is some multiple of 2π or

2π

λ
(sin θ − sinα) dx = 2πp, p = ± (1, 2, ...)(4)

Such peaks are called grating lobes and are shown from the above to occur
at angles θp such that

sin θp = sinα+
pλ

dx
, p = ± (1, 2, ...)(5)

for values of p that define an angle with a real sine (|sin θp| ≤ 1). This imply
that the maximum element spacing for an array scanned to a given angle α at
frequency f is λ/2.

3. Randomly spaced array and distribution of its random pattern
function at any observation point

Consider again the linear array of Fig. 1 and suppose we are given N+1 equally
excited antenna elements by isotropic radiation to be placed at random within
an aperture defined by |X| ≤ a/2 in wavelength, in accordance with a common
probability density function (pdf) f (x).

Assume that the random positions {Xn} are independent. Then for each
sample vector {Xn}, Xn ∈ RN+1, there is a sample radiation pattern function
given by the magnitude of

P (u) = 1
N+1

N/2
∑

n=−N/2
exp {j2π (sin θ − sinα)}Xn

= 1
N+1

N/2
∑

n=−N/2
exp (juxn)

(6)

where the factor 1/N+1 is to insure that P(0)=1,
u = aπ (sin θ − sinα) – the observation angle parameter
{xn = 2Xn/a} – normalized workspace
a = Ndx – the aperture, measured in wavelength
In (6) if {Xn} is considered as positions of conventional uniform spacing

{Xn = ndx} the model is automatically transformed in the deterministic one –
see (2). We will generalize the previous investigations by considering the mixed
models when {Xn} can be considered as sum of two vectors random one and
deterministic one. Let’s begin with a pure stochastic model which will be coded
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as Random Array 1 (RA 1). This model was first investigated by Y.T. Lo [6].
We can determine the Array Factor (AF) |P (u)|2 as random function of u/π- see
Fig. 2. Owing to the change of variable from X to x in (6), it follows that

Figure 2: Radiation characteristics of RA 1 for N=1000

f (x) ≡ 0 for |x| > 1, and
1
∫

−1
f (x)dx = 1

We have to determine the distribution of |P (u)| at a given u (observation
point). By taking the mathematical expectation of (6), one obtains

E {P (u)} = (N + 1)E
{

1
N+1 exp (jux)

}

= E {exp (jux)} =
∞
∫

−∞
f (x) exp (jux)dx = ϕ (u)

(7)

where ϕ (u) is the characteristic function of x.
It is seen that the mean pattern is identical to the pattern in Fig. 3, which

would be obtained by taking f (x) as a continuous aperture excitation. Since f (x)
has a finite support [−1, 1], then ϕ (u) is an integral transcendental function of
the exponential type with exponent ≤ 1 and its asymptotic form (|u| → ∞) was
studied in [24]. In Fig. 4 is depicted the mean pattern |ϕ (u)|2. Since the relations
between the pattern function ϕ (u) and the aperture excitation, being a Fourier
transform pair, there is no difficulty in choosing a proper pdf f (x) which will
yield at least a desirable mean pattern.

Let P1 (u) and P2 (u) be the real and imaginary part of P (u), which according
to (6) is sum of independent random variables. By central limit theorem [2], the
joint distribution of P1 (u) and P2 (u) is asymptotically normal. For simplicity
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Figure 3: Mean radiation pattern of RA 1 for N=1000

let f (x) be an even function, then their joint density function at each u is given
by

f (P1, P2) =
1

2πσ1σ2
exp

{

−1

2

[

(P1 − ϕ)2

σ2
1

+
P 2

2

σ2
2

]}

(8)

where

σ2
1 (u) = E

{

[P1 (u) − ϕ (u)]2
}

=
1

2N
[1 + ϕ (2u)] − 1

N
ϕ2 (u)

σ2
2 (u) = E

{

P 2
2 (u)

}

=
1

2N
[1 − ϕ (2u)]

E {P1 (u)} = ϕ1 (u) = ϕ (u)

E {P2 (u)} = ϕ2 (u) = 0

Thus at any “u” the probability of antenna response being less than any level
r is given by

Pr {|P (u)| < r} =

∫∫

|P (u)|<r
f (P1, P2)dP1dP2(9)
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This distribution is a generalized non-central chi-squared distribution with
two degrees of freedom and concerns the entire visible range including the main
beam area.

Two general opportunities were studied for the density function f (x) of space
tapering to be chosen and correspondent type of antenna amplitude excitation
(illumination):

Probability Density Function Excitation Function

1.
f (x) = cos2 (πx/2) for |x| ≤ 1 and
f (x) = 0, otherwise.

1

2.
f (x) = 1/2 for |x| ≤ 1 and
f (x) = 0, otherwise.

cos2 (πx/2)

We can determine the mean pattern |ϕ (u)|2and variances σ2
1 (u) and σ2

2 (u)
for each of the cases. In this paper we adopt the second case.

The determination of the distribution of the SL level in the entire visible
range is equivalent to the determination of the maximum of the random function
|P (u)| for uin the above range excluding the main beam region. Since the random
pattern function P(u) is analytic with probability 1, its probabilistic behavior
can be determined by that of P(u) over only a denumerable set of u. In order
to make the result more manageable numerically we may go one step further by
studying its distribution over a finite set of u. For any u not in this set, the
distribution of P(u) could be (at least in principal) interpolated from its Taylor’s
series expansion, since the distribution function and the covariance matrix of the
derivative of P(u) are known.

Here an approximation will be made on the basis of the following argument.
If |P (u)| at a given u is less than a certain positive number r, then in its ∆u-
neighborhood |P (u+ ∆u)| will be also less than r with a probability nearly equal
to 1. This is due to a strong correlation between P (u) and P (u + ∆u)for (∆u)
less than a certain value which turns out to be equal to the beamwidth (in u) of
ϕ (u), as can be seen from the covariance function K(u,v) for large u, v.

Now let U ′ be the set of points un, where |P (u1)| , |P (u2)| , ... are the sidelobe
maxima in the entire visible range U. The distribution of |P (u)| for u in the visible
range is given by

Pr {|P (u)| < r, u : δ < |u| < 2πa} = Pr {|P (u)| < r, u ∈ U ′} + ε

≈
[

1 − exp−Nr2
][4a](10)
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where δ is the first positive zero of ϕ (u) and ε is the error term. According to the
above argument |ε| is assumed to be small, while the first term on the right hand
side of the above equation can be evaluated since {P (un)} are jointly normal.
Now for the sake of simplicity in numerical computation, one may introduce the
following two step approximation. First one may regard P (ui) and P (uj) as
independent for i 6= j and then obtain a lower estimate

= Pr
{

|P (u)| < r, u ∈ U ′} ≥
[2a]
∏

n=1

[Pr {|P (un)| < r}]2(11)

where ϕ (u) is assumed to have [2a] sidelobes for u in 0 < u < 2πa and −2πa <
u < 0, respectively.

Second, consider the case of general interest where all the sidelobe maxima
of the mean pattern |ϕ (un)| are sufficiently smaller than r (i.e. r-max |ϕ (un)|
equal to two or three times of the standard deviation σ = 1/

√
2N ). Then the

right hand side of the above equation can be approximately computed by

[Pr {|P (∞)| < r}][2a](12)

where P (∞) = limu→∞ P (u). Since E {P (∞)} = 0 and both σ2
1 (u) and σ2

2 (u)
approach 1/2N as u→ ∞, |P (∞)|2 has a chi-square distribution with two degrees
of freedom, namely

Pr {|P (∞)| < r} = 1 − e−Nr
2

(13)

In short, let the aperture dimension = 10q wavelengths; then if ε is negligible
one obtains the following approximate formula:

Pr {|P (u)| < r, u : δ < |u| < 2πa}
≈

[

1 − exp−Nr2
][4a]

=
(

1 − 10−0.4343Nr2
)[4a](14)

This expression gives the number of elements required to achieve the desired
SL level (maximum, not average) with predetermined confident probability of
success such as 0.9, 0.95 etc. It is important to note, that for moderately large
value of u, ϕ (u) ≈ 0, σ2

1 (u) ≈ σ2
2 (u) ≈ 1/2N , independent of the pdf f (x). This

conclusion implies that although the pattern behavior in the main beam region is
determined by f (x), outside of the main beam area the variances are determined
only by N, the number of elements, not the pdf f (x). Therefore, in many cases
(unless the near-in sidelobe level is of interest), it may be advantageous to us
the uniform pdf for f (x) to maintain a narrow beam. It is easy to extend this
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result on a rectangular aperture of abλ2 in the xy plane with a probability density
function f1 (x) f2 (y).

Let’s compare this stochastic model RA 1 with the deterministic model of
conventional uniform spacing UA model – Fig 4. One can make any important

Figure 4: Radiation characteristics of RA 1 (data2) and UA (data1) with uniform
excitation, N=1000

conclusion. In the entire visible range there is no grating lobes for RA 1. However
the SL level is sufficiently high for random spacing of elements in comparison
with uniform spacing – UA model. Second, from Fig. 2 we can see that the near
SL level around the main beam is also sufficiently high for RA 1. All this has
stimulated us to search for better solutions.

4. Mixed (combined) stochastic algorithm

The basic role of the algorithm for minimization of SL level play positions {Xn}
of antenna elements. This vector {Xn}, Xn ∈ RN+1, or its normalized version
{xn} creates the work space which plays a fundamental role. Generally {xn} =
{xn det} + {xnrand}. Until now we have considered the models {xnrand} and
{xn det} that are called RA 1 and UA respectively.

In the terms of MATLAB

{xnrand = rn = −1/2 + rand(1, N)(15)

{xndet = ((−N/2) : 1 : (N/2))/N}(16)
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and each of the two workspaces operates over the interval [-1/2, 1/2].

Let’s put forward the new model

RA2 : {xn} = {xndet} + {εnrand} , {εnrand} = {xnrand} /N(17)

where {εnrand} is a small random perturbation of the deterministic workspace
and N is the number of elements. To compare all these models with respect to
near and far SL level is more convenient to represent array factor

AF = |P (θ)|2(18)

or its averaged version as a function of observation angle θ.

So we can directly observe, that when N increases the beamwidth becomes
narrower and the effect of broadening the beamwidth, when apply non-uniform
amplitude tapering.

In the figures to be followed one depicts array factor |P (θ)|2 or its averaged
version into the near zone around the main beam or entire visible range when
changing any parameters. All the figures are prepared for f = 5.8 GHz and 181
observation points (Ndata= 181) for which the array factor |P (θ)|2 is calculated.
The scan angle α is adjusted to zero degree. The averaged version of the AF is
obtained by repeating algorithm one hundred time and taking the mean operator
of gathered statistics. All figures are prepared with uniform probability density
function and with or without non-uniform amplitude excitation function.

We study the number of elements required as a function of the peak SL level
(14) for various values of aperture a with a 90% probability of success.

We compare all stochastic algorithms (RA 1, RA 2,) with uniform array
algorithm (UA) with dx = a/N (average spacing) and must clearly distinguish
uniform spacing (deterministic) from non-uniform spacing with uniform pdf f (x)
(random).

In Fig. 5, one can see a comparison between the array factors of the our
algorithm RA 2 with those of Lo’s algorithm RA 1 in the near zone of the main
beam, θ ∈ [−0.2◦, 0.2◦], N = 1000 and without amplitude tapering of element’s
excitation, or all elements (with isotropic radiation) are equally excited. There
is no substantial difference between the deterministic and stochastic algorithms.

Now let’s repeat Fig. 5 by applying a non-uniform excitation function of the
kind cos2 (πx/2). In Fig. 6, one can see that in the near zone our algorithm RA
2, with non-uniform amplitude tapering, outperforms the Lo’s algorithm RA 1
and broadening of beamwidth appears [7]. Its behavior is nearly the same as UA
algorithm.
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Figure 5: Radiation characteristics of RA 1 (data1) and RA 2 (data2), N=1000
and uniform excitation

A special attention deserves the algorithm RA 2 into the zone larger than
that around the main beam θ ∈ [−15◦, 15◦], see Fig. 7 and Fig. 8. One can see
a strong reduction of SL level in this zone. By applying amplitude tapering with
cos2 (πx/2) this level becomes a little higher.

For the algorithm RA 2 and N=16000, 32000 and 64000 the average SL level
decreases bellow −50dB respectively in the range of ±6◦, ±10◦, ±15◦. It seems
that this reduction of SL level is attractive for MPT.

5. Possibilities of using stochastic algorithms in MPT

Now let’s increase number of elements N to 16000, 32000 and 64000. In Fig. 9
to Fig. 12 we fix again entire visible range and no amplitude tapering use.

One can see the influence of number of elements over peak SL level. For
N=16000 elements this level according to (14) is bellow −35dB with 90% proba-
bility of success. When increasing this number to N=32000 and 64000 the peak
SL level is bellow −37.5dB and −40dB respectively. So a large amount of ele-
ments need to decrease a little peak SL level. The average SL level for N=16000,
N=32000 and N= 64000 is respectively −42dB, −45dB and −48dB – see Fig. 12.

To be determined the transmitting efficiency will be used the area under the
average SL level and the area of main beam. When N increases, the area of main
beam decreases, but average SL level decreases too. In Fig. 13 we turn back
again to the near zone which becomes narrower and narrower when the number
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Figure 6: Radiation characteristics of RA 1 (data1) and RA 2 (data2), N=1000
and cos2 (πx/2) excitation

of element N increases. In this figure RA 1 and RA 2 are with non-uniform
amplitude tapering with cos2 (πx/2). The transmitting efficiency was evaluated
for RA 2 to be η1D = 0.4021 and η2D = 0.1617. The transmitting efficiency
for RA 1 is lower. If we reduce deterministic work space two time the main
beam enlarges and efficiency will be η1D = 0.5786 and η2D = 0.3349. Really the
efficiency is bigger taking into account the strong reduction of SL level around
the main beam and the participation of main beam area of several near sidelobes.

In the Table 1 are presented the features of the transmitting part of the system
for MPT depend on number of elements and possible reduction of workspace.

Finally in Fig. 14 we propose a structure of a large antenna array according
to our algorithm, see also [13].

Number of Number of Number of Power Diameter [m]
Antenna PCM elements in [GW]
Elements (=Sub-array) Sub-array

dav = λ dav = 2λ

16000 1600 10 1.02 827 1654

32000 3200 10 4.1 1654 3308

64000 6400 10 16.38 3308 6616

128000 12800 10 65.5 6616 13232

Table 1: Characteristics of the transmitting part of the system for MPT
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Figure 7: Radiation characteristics of the RA 2 for uniform excitation (data1)
and cos2 (πx/2) excitation (data2), N=1000

Evidently, the design of such large linear array is unpractical for the MPT
and as it has been mentioned at page 9 a square aperture has to be adopted a2λ2

with a probability density function f1 (x) f2 (y). The measures of antenna area
will be substantially reduced.
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Figure 8: Average patterns of the RA 2 for uniform excitation (data1) and
cos2 (πx/2) excitation (data2), N=1000

Figure 9: Radiation characteristics of the RA 1 (data1) and RA 2 (data2) with
uniform excitation and N=16000, average spacing dav = 2λ
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Figure 10: Radiation characteristics of the RA 1 (data1) and RA 2 (data2) with
uniform excitation and N=32000, average spacing dav = 2λ

Figure 11: Radiation characteristics of the RA 1 (data1) and RA 2 (data2) with
uniform excitation and N=64000, average spacing dav = 2λ
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Figure 12: Average patterns of the RA 2 algorithm with uniform excitation for
N=16000 (data 1), N=32000 (data 2) and N=64000 (data 3)

Figure 13: Radiation characteristics of the RA 1 (data1) and RA 2 (data2),
N=32000, average spacing dav = 2λ with non-uniform excitation ofcos2 (πx/2)
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Figure 14: Structural scheme of the transmitting part of the system for MPT

6. Concluding remarks

For all stochastic algorithms

1. The number of elements required depends mainly on the desired sidelobe
level. In general this number is less than that required from uniform spac-
ing.

2. The resolution (or the beamwidth) depends mainly on the aperture dimen-
sion and to a lesser degree on the probability density function according to
which the elements will be placed.



Probabilistic Approach to Design of Large Antenna Arrays 267

3. The directive gain is proportional to the number of elements used if the
average spacing is large.

4. When the number of elements is fixed the resolution corresponding to an
aperture can be improved considerably by spreading these elements over a
larger aperture without great risk in obtaining a much higher sidelobe level
and lower gain.

5. The interaction between deterministic and stochastic workspaces was ex-
ploited. Lo’s algorithm is pure stochastic algorithm. Actually we perturb
deterministic workspace with a little amount of random work space. As a
result, there is no more grating lobes.

6. The proposed stochastic model RA 2 compete successfully the model RA
1 in the near sidelobe zone and take advantage with respect to SL level in
the large area around the main beam.

7. According to our algorithm we propose a new concept of designing the
transmitting part of the whole system for MPT.

With proposed algorithms we develop further the problem of reducing SL
level of large antenna array systems which seems to be an important step toward
the realization of future SPS/MPT systems.
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