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MODELLING COVARIATES IN MULTIPATH CHANGE

N. Sanjari Farsipour 1

In the multipath change - point problems, it is often of interest to assess the
impact of covariates on the change point itself as well as on the parameter
before and after the change point. In this paper, we consider a simple model
for the change-point distribution, and then through hazard of change, we
include covariates in the change point distribution. Maximum likelihood
estimation is discussed.

1. Introduction

The analysis of survival data has a long history and date back to the systematic
study of time tables by Germans. Our important points of view in this field,
are a vast spectral of some kinds of applications. For example in economy and
industry (Lancaster 1990). Also in biology there are some application under topic
of analysis of history and events by bolsfeld and Rohor (1995).

We use maximum likelihood methods for parameter estimation or testing
hypothesis in a change at a sequence of independent random variable. The time
intervals between explosions in British coal mines between 1875 and 1950, in
which more than ten people were killed, have been analysed in an early paper
by Maguire, Pearson & Wynn (1952). They concluded that the data has an
exponential distribution with constant mean over time. Cox & Lewis (1966, ch.3)

1The paper was written when the author spend her sabbatical leave at the department of
Mathematics and Statistics, Mcgill university of Canada.

2000 Mathematics Subject Classification: 62N02
Key words: Covariate, maximum likelihood, modelling, multipath change - point problems.



242 N. Sanjari Farsipour

reanalysed the data with more powerful techniques and found strong evidence
that the mean did not remain constant, but that it followed a quadratic trend in
time.

This suggests a model for the mean time interval which remains constant up
to an unknown point in the sequence and then changes to a different mean which
remains constant for the rest of the sequence. The model can be formulated as
follows. Let X1, ..., Xn be the sequence of n independent time intervals between
accidents, ordered in time, and let µi = E (Xi) for i = 1, . . . , n. Consider the
model for a change in mean after the kth observation

H : µi =

{

µ i = 1, . . . , k
µ∗ i = k + 1, . . . , n

(1)

where µ and µ∗ are the unknown means before and after the unknown change -
point k. Since Page (1954) first formally studied stopping rules in the context
of quality control, there has been a surge of papers on change-point problems.
These have addressed fixed sample size and sequential procedures, frequentis and
Bayesian approaches, univariate and multivariate settings, parametric and non
parametric models and have allowed the observations to be either independent
or dependent. These papers have focussed almost exclusively on what we term
the single - path change - point problem where by interest is restricted to a
single sequence of observations. The extension to the multipath setting, in which
more than one sequence is allowed, each with a possible change point, leads to
a considerably expanded class of applications. (In partieular, see Joseph 1989,
Joseph & Wolfson 1992, 1993, Joseph, Wolfson, du Berger & Lyle 1996, Joseph,
Vandal & Wolfson 1996, Joseph, Wolfson, du Berger & Lyle 1997, and Belisle,
Joseph, MacGibbon, Wolfson & du Berger 1998.) For a recent review of the
literature on change-point problems see Chen & Gupta (2000) who emphasize
univariate and multivariate normal distributions, and see the references cited in
Asgharian (2001).

When it is desired to study the effect of covariates in change - point problems
one is inevitably led to a multipath setting, each path arising from a different set of
covariate values. Therefore, we devote our attention to this issue, which was one
of those that arose from a study in 1987 of the effects of calcium supplementation
on blood pressure.

Using a randomized clinical trial, Lyle et al. (1987) examined the effects of
calcium supplementation on the blood pressure of 75 males, both white and black,
aged 19 to 52 years. The subjects were followed for a period of 16 weeks. The
first four weeks were taken as a baseline period. During this period, weekly blood
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pressure was recorded. After this period, within each racial group, the patients
were randomly assigned to a calcium in take group (10 black men and 27 white
men) and a placebo group (11 black men and 28 white men). The subjects were
then given three calcium tablets per day, and blood pressure measurements were
taken every other week for the next 12 weeks, resulting in 6 measurements after
the tablets were taken. Lyle et al. (1987) applied standard repeated measures
methods to assess the effect of calcium intake on blood pressure in this study.

In this work first we introduce multipath change-point problems and describe
a latent Markov structure in change-point problems that is key to our modelling
approach, and then we show how change-point models may be specified through
the hazard of the change, and how covariates may be introduced through ”the
hazard of change”. The likelihood is derived and the quasi-identifiability of the
parameters is stated.

2. The Multipath Change-Point Problem and its Markovian Struc-

ture

We start with the single-path, single change-point setting. Suppose that for
a given τ = k,X1, . . . , Xτ , Xτ+1, . . . , Xm is a sequence of random variables
such that X1, . . . , Xk have joint distribution F0 and Xk+1, . . . , Xm have joint
distribution F1 6= F0. If τ < m, we say that a change has occurred at τ . If
τ = m, we say that no change has occurred. In either case, we refer to as a
change-point. When τ is unknown, inference about it (or its distribution from a
Bayesian perspective) as well as about F0 and F1 falls in the field of change-point
inference. Note that associated with each Xj we may associate an unobserved
random variable θj defined as

θj =

{

0 if Xj ∼ F0

1 if Xj ∼ F1
(2)

It is obvious that knowledge of realization of θ1, . . . , θm is equivalent to knowledge
of the change point τ . When τ is assumed to be random, as it will be in the sequel,
the sequence θ1, . . . , θm is random. Consequently, a sequence of random variables
with a random change point may be represented by a sequence of random vectors
(X1, θ1) , . . . , (Xm, . . . , θm). The randomness of τ is an introduction to random
(τi) effects model. In a multipath change-point problem, there are several paths
each having a possible change point. The observations may be described by a
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matrix

τ1
...
τn







X11 · · · X1m

...
Xn1 · · · Xnm






(3)

This is a rather general framework which covers panel data, balanced longitu-
dinal data and repeated measurements as special cases. For random change
points τ1, . . . , τn, conditional on τi = ki, Xi1, . . . , Xiki

have joint distribution,
and have joint distribution F1i 6= F0i, for i = 1, . . . ,m. The will be assumed
to be independent. We will further assume that the observations in the above
matrix are row-wise independent. Now assume that the Markovian sequence
π1, π2, . . . , 0 ≤ πk ≤ 1, is stopped at time m, which will be the case if observation
ceases at m. Asgharian (2001), consider following model for the change - point
distribution of τ

P (τ = k) =















πk+1

k
∏

l=1
(1 − π1) if k = 1, . . . ,m − 1

m
∏

l=1
(1 − π1) if k = m

(4)

with π1 = 0. Define h (k) = p (τ = k|τ ≥ k). It is important for our purposes to
note that πk+1 is equal to the hazard, h (k), k = 1, . . . ,m − 1, and that h (m),
since

h (k) =
P (τ = k)

P (τ ≥ k)
=

πk+1

k
∏

l=1
(1 − π1)

m
∏

l=1
(1 − π1)

= πk+1(5)

Modelling the change-point Distribution

For finding the form of the distribution of τ , by choosing some form for
p (τ = k), the case πk = π for k = 2, . . . ,m, was considered by Asgharian (2001)
which leads to a constant hazard function. For instance, in a clinical trial, it may
be believed that the hazard for a change in response is increasing, or perhaps,
constant. We consider the case where πk is piecewise constant, i.e. a simple

model πk =

{

γ k = 1, 2, . . . ,m − 1
η k = m

. Then the distribution of is

P (τ = k) =

{

γ (1 − γ)k k = 1, 2, . . . ,m − 1
(1 − η)m k = m

(6)
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with hazard function

h (k) =







γ(1−γ)k

2−γ−(1−γ)k−1 k = 1, 2, . . . ,m − 1
(1−η)m

1−(1−η)m−1 k = m
(7)

3. Introducing Covariates into the Model

In this section we introduce covariates in a change - point model. Up to now we
model the hazard as a function of time. Consider the model (6), and impose a lo-
gistic form on π (zi). Therefore, we shall suppose that for subject i, with covariate
vector z

′

i = (1, zi1, . . . , zir) and regression coefficient vector β
′

= (β0, . . . , βr).

γk (z) =
eαk+β

′

z

1 + eαk+β
′
z
, ηk (z) =

eδk+λ
′

z

1 + eαk+β
′
z

(8)

The components, Zij , of the vector zi may be discrete or continuous. We also
assume that the logistic model has been specified in such a way that the matrix
Mz whose rows are the zi has rank r + 1. We write the full likelihood of the
observed data, for the matrix of observations (3), [Xik]nm, where Xik is the
kth observation on the ith path, let gzi

k (xi1, . . . , xim) be the density function of
Xi = (Xi1, . . . , Xim), given that the change takes place at k. For instance, if we
assume that all the Xik are independent and identically distributed before and
after the change takes place, with density function hzi

1 and hzi
2 , respectively, then

conditional on a change of k,

gzi

k (xi1, . . . , xim) =
k

∏

l=1

hzi

k (xie)
m
∏

l=k+1

hzi

k (xie) k = 1, . . . ,m − 1

and

gzi

k (xi1, . . . , xim) =
k

∏

l=1

hzi

k (xie) .

The unconditional density function for Xi is then

fzi
(xi) =

m
∑

k=1

pzi
(τi = k) gzi

k (xi)(9)

where τi is the instant of change for the path. Thus the likelihood for a sample
of n independent path is

k
∏

l=1

fzi
(xi) =

k
∏

l=1

{

m
∑

k=1

pzi
(τi = k) gzi

k (xi)

}

.
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The expression (9) reduces to

fzi
(xi) =

m
∑

k=1

pzi
(τi = k)

k
∏

l=1

hzi

k (xie)
m
∏

l=k+1

hzi

k (xie)

under the assumption of independence of the observations within each path. Here

the product
m
∏

l=k+1
hzi

2 (xil) is defined to be equal to 1 for k = m. Now

fzi
(xi) =

m−1
∑

k=1
pzi

(τi = k)
k
∏

l=k+1
hzi

2 (xil)
m
∏

l=k+1
hzi

2 (xil) + pzi
(τi=m)

m
∏

l=1
hzi

2 (xi1)

=
m−1
∑

k=1
γ1−Im(k) (zi) {1 − γ (zi)}

k
k
∏

l=1
hzi

1 (xil)
m
∏

l=k+1
hzi

2 (xie)

+ (1 − η (zi))
m

m
∏

l=1
hzi

1 (xi1)

=
m−1
∑

k=1

{

eαk+β
′

z

1+eαk+β
′
z

}1−Im(k)

k
∏

l=1

h
zi
1

(xil)
m
∏

l=k+1

h
zi
2

(xie)

{

1+eαk+β
′
z

}k +

k
∏

l=1

h
zi
1

(xil)

{

1+eαk+β
′
z

}m

(10)

where Im (k) =

{

1 if k = m

0 otherwise
, and

m
∏

l=k+1
hzi

2 (xil) = 1, for k = m.

4. Estimation of the Model Parameters and Quasi-identifiability

of the Model

By finding the likelihood function, we can find the maximum likelihood estimators
of the parameters, and then we determine the quasi-identifiability of the model.

Definition 5.1: A collection of families of probability measures
{{pz

θ; θ ∈ Θ} , z ∈ Z} is called quasi-identifiable with respect to θ if any θ 6= θ∗ ∈
Θ, there exists z ∈ Z, such that P z

θ 6= P z
θ∗ .

Quasi-identifiability means, identifiability of the conditional density given the
covariates. It follows from (10) that the likelihood induced by the matrix of
observations (3) with independent rows is given by

L (θ) =
n

∏

i=11

fzi
(xi; θ) =

n
∏

i=11

{

m−1
∑

k=1

ξk (α, β; zi) gzi

k (xi; v) + φm (δ, λ; zi) qzi

k (xi; v)

}

(11)
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where θ = (α, β, v, δ, λ)′, v = (v1, v2)
′, and

ξk (α, β; z) = γ (α, β; z) {1 − γ (α, β; z)}k k = 1, . . . ,m − 1
φm (δ, λ; z) = (1 − η (δ, λ; z))m

γ (α, β; z) = eαk+β′z

1+eαk+β′z
, η (δ, λ; z) = eδk+λ′z

1+eαk+β′z

The vector v = (v1, v2)
′ specifies the parameters of the distributions before and

after the change, while β, λ, αk, δk are the unknown regression parameters.
Theorem 5.1: Suppose that the rank of Mz is r +1 and that hz

s for s = 1, 2
are respectively quasi - identifiable with respect to γs for s = 1, 2. Then

fz (x; θ) =
m−1
∑

k=1

ξk (α, β; zi) gzi

k (xi; v) + φm (δ, λ; zi) φzi

k (x; v)

is quasi - identifiable with respect to θ.
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