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TRIMMED LIKELIHOOD ESTIMATION OF THE

PARAMETERS OF THE GENERALIZED EXTREME VALUE

DISTRIBUTIONS: A MONTE-CARLO STUDY

Neyko Neykov1, Rositsa Dimova2, Plamen Neytchev

The applicability of the Trimmed Likelihood Estimator (TLE) proposed by
Neykov and Neytchev [14] to the extreme value distributions is considered.
The effectiveness of the TLE in comparison with the classical MLE in the
presence of outliers in various scenarios is illustrated by an extended simula-
tion study. The FAST-TLE algorithm developed by Neykov and Müller [13]
is used to get the parameter estimate. The computations are carried out in
the R environment using the packages ismev originally developed by Coles
[5] and ported in R by Stephenson [16].

1. Introduction

The extreme value distributions theory has been intensively developed. The book
of Coles [5] provides a useful theoretical background. The Maximum Likelihood
is the standard technique for statistical inference in extremes. It is well known
that the MLE can be very sensitive to outliers in the data. Indeed, the simulation
study of Barão and Tawn [2] shows that in the presence of outliers, the parame-
ter estimates are significantly influenced and thus the return period. Relatively
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little attention to robustness has been paid in the context of extreme values. To
overcome this problem Dupuis and Field [7], Dupuis and Morgenthaler [8], and
Dupuis and Tawn [9] estimate robustly the parameters of various extreme value
distributions using the so called B-optimal robust M-estimators of Hampel et al.
[10]. It is concluded that these estimators are more efficient than MLE under
some model assumptions violation. Unfortunately, these estimators do not pos-
sess a high Breakdown Point (BP) and hence are not appropriate for the modeling
purposes, as with the increasing the number p of the explanatory variables their
BP decreases to zero as 1/p. (Roughly speaking, the BP is the smallest fraction
of contamination that can cause the estimator to take an arbitrarily large value.)
In practice, one needs robust estimators that possess a high BP resistant against
high percentage of surrogate (aberrant, anomalous) observations in data. For
instance, such observations arise when data are collected by different ways.

Several parametric robust alternatives of the ML estimator possessing high
BP have been developed, e.g., Choi et al. [3], Markatou et al. [11], Neykov
and Neytchev [14], and Windham [20]. To our knowledge, none of these high
BP estimators has been used for the purposes of the extreme value modeling.
Thus, the main goal of the paper is to develop a robust parametric approach for
extreme values statistical modeling based on the TLE proposed by Neykov and
Neytchev [14]. The TLE is looking for that sub-sample of k observations out of
n, the original data size, with the optimal likelihood. The trimming number of
observations can be chosen by the user in appropriate bounds to get a high BP
and optimal efficiency. Details about the properties of the TLE can be found
in Vandev and Neykov [18], Vandev and Neykov [19], Neykov and Müller [13],
Cizek [4], Müller and Neykov [12], and Dimova and Neykov [6]. Because the TLE
accommodates the classical MLE, the extreme value methodology, which is based
mainly on the MLE, can be adapted and further developed.

In this paper we consider an application of the TLE to the Generalized Ex-
treme Value (GEV) distribution, however, the generalized Pareto distribution or
the Poison point approaches for modeling of extreme values can be used instead.
A simulation study is performed to illustrate the effectiveness of the TLE in
comparison with the MLE.

2. Basic definitions and notions

In the following, the GEV distribution is introduced. It arises as the limiting
distribution of the maxima of a series of independent and identically distributed
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(i.i.d.) observations. The distribution function of the GEV is given by

G(x;µ, σ, ξ) =

{

exp
{

−
[

1 + ξ
(x−µ

σ

)]−1/ξ
}

if ξ 6= 0,

exp
{

− exp
[

−
(x−µ

σ

)]}

if ξ = 0.
(1)

where {x : 1 + ξ(x − µ)/σ > 0}, σ > 0, and µ, σ, ξ are location, scale and shape
parameters, respectively, see Coles (2001).

The Fréchet and Weibull distributions are obtained for ξ < 0 and ξ > 0,
respectively. The case of ξ = 0 is interpreted as the limit of the GEV as ξ → 0,
widely known as the Gumbel distribution. The MLE is completely regular if
ξ > −0.5, it exists but is not completely regular if −1 < ξ < −0.5 and it does
not exist if ξ < −1, according to Smith [15].

We now recall the definition of the Trimmed Likelihood Estimator. Let
x1, . . . , xn be i.i.d. observations with density function f(x, θ), depending on un-
known parameter θ and l(xi, θ) = − log f(xi, θ).

Definition 1. The Trimmed Likelihood Estimator (TLE) is defined in Neykov
and Neytchev [14] as

θ̂ := arg min
θ∈Θ

k
∑

i=1

l(xν(i), θ),(2)

where l(xν(1), θ) ≤ l(xν(2), θ) ≤ . . . ≤ l(xν(n), θ) are the ordered values of l(xi, θ)
for i = 1, . . . , n at θ, ν = (ν(1), . . . , ν(n)) is the corresponding permutation of the
indexes, which depends on θ and k is the trimming parameter.

The basic idea behind the trimming in this estimator is in removal of those
n− k observations which values would be highly unlikely to occur, had the fitted
model been true. The TLE coincides with the MLE if k = n. Due to the
representation

min
θ∈Θ

k
∑

i=1

l(xν(i), θ) = min
θ∈Θ

min
I∈Ik

∑

i∈I

l(xi, θ) = min
I∈Ik

min
θ∈Θ

∑

i∈I

l(xi, θ)

where Ik is the set of all k–subsets of the set {1, . . . , n}, it follows that all possible
(nk) partitions of the data have to be fitted by the MLE. Therefore, the TLE is
given by the partition with that MLE fit for which the negative log likelihood is
minimal.

General conditions for the existence of a solution of (2) can be found in
Dimova and Neykov [6], whereas the consistency is proved in Cizek [4]. The BP
of the TLE is studied by Vandev and Neykov [19], Atanasov and Neykov [1],
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and Müller and Neykov [12] using the d–fullness technique proposed by Vandev
[17]. According to Vandev [17], the set F = {l(xi, θ), i = 1, . . . , n} is called
d-full if for any subset of cardinality d of F , the supremum of this subset is a
subcompact function. A real valued function g (θ) is called subcompact if the
sets Lg(θ) (C) = {θ : g (θ) ≤ C} are compact for any constant C. The BP of

the TL is not less than 1
n min{n − k, k − d} if the corresponding set of negative

loglikelihoods is d–full (see, Müller and Neykov [12]). It is easy to show that in
case of Gumbel distribution d = 2. When the location parameter is a monotone
function of a linear predictor, µ = h(zT

i β), where β ∈ Rp is unknown parameter
and Z := (z>i ) is the data matrix of rank p of the explanatory variables zi ∈ Rp,
then d = p + 1. Determination of the d–fullness parameter for the Fréchet and
Weibull distributions is not considered because of the complexity of parameters’
domain.

Increasing k, the estimator will possess a BP point less than the highest
possible, but it will be more efficient at the same time.

Computation of the TLE is infeasible for large data sets because of its com-
binatorial nature. To get approximate TLE an algorithm called FAST-TLE is
developed in Neykov and Müller [13]. It reduces to the FAST-LTS or FAST-MCD
algorithms in the normal regression or multivariate Gaussian cases. The basic
idea behind the FAST-TLE algorithm consists of carrying out finitely many times
a two-step procedure: a trial step followed by a refinement step. In the trial step
a subsample of size k∗ is selected randomly from the data sample and then the
model is fitted to the subsample to get a trial MLE. The refinement step is based
on the so called concentration procedure. The cases with the k smallest negative
log likelihoods from the trial fit are found. Fitting the model to these k cases
gives an improved fit. Repeat of the improvement step yields an iterative process.
Convergence is always guaranteed after a finite number of steps since there are
only finitely many k–subsets out of (n

k) in all. The estimate with the lowest TL
objective function is retained. There is no guarantee that this value will be the
global minimizer but one can hope that it would be a close approximation to
it. The trial subsample size k∗ should be greater than or equal to p + 1 which is
needed for the existence of the MLE but the chance to get at least one outlier free
subsample is larger if k∗ = p+1. Any k within the interval [p+1, n] can be chosen
in the refinement step. A recommendable choice of k is b(n + p + 1)/2c because
then the BP of the TLE is maximized, where brc := max{n ∈ N ;n ≤ r}. We
note that, if the data set is small, all possible subsets of size k can be considered.
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3. Simulation design

We compare the performance of the MLE and the TLE through a simulation
study for a range of different situations of GEV generated data sets. The regular
data follow the model

yi ∼ GEV(µi = 1 + xi, σ = 1, ξ = 0.3), where x ∼ N(0, 7).

The outliers follow the model

yi ∼

{

U(ymax + µi, ymax + (ymax − ymin) + µi) if xi ≥ x̄,
U(ymin − (ymax − ymin) − µi, ymin − µi) if xi < x̄.

(3)

The regular observations and outliers union comprises the contaminated sample
of size n = 100. Thus, samples with levels of contamination 0%, 10%, 20%,
30% and 40% are considered. The trimming percentage n−k

n 100% is held fixed
at 0%, 5%, . . . , 45%. The MLE and TLE are computed over the regular and
contaminated data. These estimators are compared using the mean, median, root
mean square error and various quantiles criteria over 400 independent replications
of the simulation experiment at any contamination level.

All the computations were carried out in the R environment using the ismev
package originally developed by Coles (2001) [5] in S-Plus and ported in R by
Stephenson [16].

4. Simulation results

On all plots in Figures 1-4, the data sets, that constitute the regular observations,
are represented by bullets, while the outliers, if any, are represented by triangles.
The ML and TL fits are based on the contaminated samples. Exceptions are the
upper left plots where the ML fits are based only on the regular observations. The
dashed lines describe the generated model, whereas the straight lines describe
the ML and TL fits in all of these plots. Due to space limitations, only some
selected TL fits are presented. In all other plots, the empty triangles or tiny
circles describe the trimmed observations (either regular or outliers). The two
numbers in the plots’ title represent the (trimmed)log-likelihood value of the
current estimate and the (trimmed)log-likelihood value evaluated over the regular
data at this estimate.

It is a well known fact that the MLE can easily be influenced by a single
bad observation, whereas the TLE is resistant up to n−k

n 100% percentage of
outliers. To explore the behavior of the estimators the simulation experiment
was replicated more than 400 times. As a consequence, a series of estimates were
obtained and their distribution was studied.
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The plot panels on Fig. 1-4 represent some of these experiments. Generally,
the plots indicate that the MLE becomes completely useless if the percentage of
observations that do not follow the model is large, while the TLE gives better
fits. However, the quality of the TLE fits depends on the trimming percentage
n−k

n 100%. As it could be expected, the TL estimates are more stable for those

values of k that satisfy the inequality n−k
n 100% ≥ α, where α is the contamination

level. The series of box-plots in the ”Intercept”, ”Slope”, ”Scale” and ”Shape”
panels on Figure 5 give a more detailed characterization of the distribution of the
GEV parameters’ estimates conditional on the different trimming percentages.
Any of these box-plots series exhibits some specific properties that could serve
as a guide to get an idea about the optimal trimming percentage. One can see
that the box-plots variation in any panel becomes more stable by increasing the
trimming percentage. A large percentage of trimming exhibits great influence
on the scale and shape estimates. This is because the relationship between the
trimming percentage and the scale estimate is inversely proportional while it
is generally nonlinear for the shape parameter estimate. For instance, even a
single outlier can drive the MLE scale estimate to infinity. However, increasing
the trimming percentage leads to underestimating of the scale. So, trimming
with large percentages outside the location-scale distributions framework should
be done with great care. It can be seen that there is a common interval of
trimming percentages where the parameters estimates become more stable in all
these panels (”Intercept”, ”Slope”, ”Scale” and ”Shape”). Therefore, an optimal
choice of the trimming percentage could be the minimal value of that interval.

Usually, the percentage of outliers in real data is unknown. Therefore, one
can proceed by a TLE, based on a decreasing range of values for k, starting with
k = n. However, the TL estimation procedure must be repeated several times
at any particular value of k. When the parameters estimate stabilization occurs,
then following the previous recommendations on the trimming choice, not only
the unknown GEV parameters but also the outliers percentage in the data can
be estimated robustly.

5. Summary and conclusions

The simulation study demonstrates that the TLE is a useful alternative to the
MLE in the framework of extreme value modeling. The extreme values data can
be analyzed with the TLE methodology just as with the classical MLE, however,
over sub-samples. Therefore, the computation can be carried out by a standard
MLE procedure for fitting extreme value distributions to data closely following
the FAST-TLE algorithm of Neykov and Müller [13]. Such procedures are widely
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Figure 1: Experiments with zero percentage of contamination.
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Figure 2: Experiments with 10% of contamination.
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Figure 3: Experiments with 20% of contamination.
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Figure 4: Experiments with 40% of contamination.
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Figure 5: Distribution of the GEV estimates of location (intercept and slope),
scale and shape parameters based on 411 experiments.
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available in software packages such as S-PLUS, R, SAS. The TLE will lead to
greater computational effort, but having in mind the growing power of modern-
day processors and memory, one can afford it.
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