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STATISTICAL INFERENCE FOR PROCESSES DEPENDING

ON ENVIRONMENTS AND APPLICATION IN

REGENERATIVE PROCESSES

Christine Jacob, Nadia Lalam, Nicolas Yanev

We consider a process {Zn}n∈N, recursively defined by Zn = f(Fn−1, En)
+ ηn, where Fn−1 = {Zk}k≤n−1, En = {Ck}k≤n, {Cn}n is an observed ex-
ogenous process and {ηn}n is a martingale difference sequence for the filtra-
tion generated by (Fn−1, En) such that V ar(ηn|Fn−1, En)g(Fn−1, En) < ∞,
a.s. for some known function {g(Fn−1, En)}n. This class of models covers a
very broad range of models such as regression models, ANOVA models, au-
toregressive processes, branching processes, regenerative processes, . . . . We
assume that f(Fn−1, En) depends on an unknown parameter µ0 and that

f(.)
notation

= fµ0
(.) may be decomposed according to fµ0

(.) = f
(1)
θ0

(.)+f
(2)
µ0

(.),

where θ0 ∈ R
d, d < ∞, is asymptotically identifiable in f

(1)
θ0

(.) as n → ∞
at some rate v(.) whereas f

(2)
µ0

(.)v(.) is asymptotically negligible. We build
the Conditional Least Squares Estimator of θ0 based on the observation of a
single trajectory of {Zk, Ck}k, and give conditions ensuring its strong consis-
tency. The particular case of general linear models according to µ0 = (θ0, ν0)
and among them, regenerative processes, are studied more particularly. In
this frame, we may also prove the consistency of the estimator of ν0 although
it belongs to an asymptotic negligible part of the model, and the asymptotic
law of the estimator may also be calculated.

1. Introduction

We consider the following one-dimensional nonlinear autoregressive process
{Zn}n∈N that may depend on a multidimensional exogenous process {Cn}n∈N:
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Z0 is given and for n ≥ 1,

Zn = f(Fn−1, En) + ηn; En = {Ck}k≤n, Fn−1 = {Zk}k≤n−1.(1)

We assume that f(Fn−1, En) is a measurable function of (Fn−1, En)and {ηn}n is
a martingale difference sequence for the filtration generated by Fn−1, En, that
is, denoting in the same way the variables (Fn−1, En) and the σ−algebra they
generate, E(ηn|Fn−1, En) = 0. We also assume that there exists σ2 < ∞ and
g(Fn−1, En), a measurable and known function of (Fn−1, En), such that

lim
n

E(η2
n|Fn−1, En)g(Fn−1, En)

a.s.
< σ2.

We assume that f(Fn−1, En) depends on an unknown parameter µ0 which may
be of infinite dimension, that {g(Fn−1, En)}n does not depend on µ0, and that

f(.)
notation

= fµ0(.) may be decomposed according to fµ0(.) = f
(1)
θ0

(.) + f
(2)
µ0 (.),

where f
(1)
θ0

(Fk−1, Ek) depends on θ0 ∈ Θ ⊂ R
d, d < ∞, and f

(1)
θ (Fk−1, Ek) is a

continuous function of θ at θ0; θ0 is the parameter to be estimated, while f
(2)
µ0 (.)

is the nuisance part of the model.
This class of models covers a very large set of processes such as linear or

nonlinear stochastic or deterministic regression models, ANOVA models, linear
or nonlinear ARMA processes, regenerative processes and branching processes.
It is a generalization of the NARX models (nonlinear autoregressive models with
exogenous inputs) given in [15]. The model presented here may be explosive in
its first two moments, which is the case, for example, of supercritical branching
processes.

When f
(1)
θ (Fk−1, Ek) is infinitely continuously differentiable at any θ ∈ Θ, we

build the CLSE (Conditional Least Squares Estimator) of θ0 from n−h observa-
tions of a single trajectory of {Zk, Ck}k≤n:δ(Fk−1,Ek)6=0, where δ(Fk−1, Ek) = 1 if
the observation (Zk, Ck) is taken into account in the estimator, and is zero oth-
erwise. We study its asymptotic properties, mainly the consistency, as n → ∞,
with either h or n − h maintained constant. We give general conditions for the
strong (or weak) consistency of the estimator, which are easily checked either the-

oretically or by numerical simulations. In the general case where f
(1)
θ (Fk−1, Ek)

is a continuous function of θ at θ0, not necessarily differentiable, we build a
DCLSE (Discrete CLSE) by minimizing the conditional sum of squares on a dis-
crete subset of Θ. In both cases, the conditions for consistency are extensions of
those given in [16] in the setting of size-dependent branching processes and they
are the same for the two estimators. The first condition concerns the asymp-

totic identifiability of θ0 in f
(1)
θ0

(.) at some rate v(.), the second one concerns
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the asymptotic negligibility of (f
(2)
µ0 (.) − f̂

(2)
µ0 (.))v(.), where f̂

(2)
µ0 (.) is any esti-

mation of f
(2)
µ0 (.). And the third condition concerns the amount of information

Dn =
∑n

k=h+1 δ(Fk−1, Ek)[v(Fk−1, Ek)]
−2g(Fk−1, Ek) Dn which has to tend to

infinity, as n → ∞. This last condition appears to be not only a sufficient con-
dition but also a necessary one when the first two conditions are checked. The

identifiability condition ensures that the model f
(1)
θ0

(.) is uniquely defined from

θ0, that is f
(1)
θ0

(.) is not asymptotically equivalent to f
(1)
θ′0

(.) with θ′0 6= θ0. Simul-

taneous consistency which occurs under the simultaneous identifiability of the
parameters, allows to study the asymptotic distribution of the estimator. But
we will show that the simultaneous identifiability is not a necessary condition for
consistency.

We study more deeply the class of linear models Zn = µT
0 Wn + ηn, where the

vector Wn is a measurable function of (Fn−1, En). This class of models covers au-
toregressive processes (Wn = Fn−1), ARMA processes (Wn = Fn−1, {ηk}k≤n−1),
regression models (Wn = {Ck}k≤n, where Ck is a vector of explicative determin-
istic or stochastic variables) and ANOVA models (Wn = {Ck}k≤n where Ck is a
vector of 0 and 1).

Usual consistency criteria in linear models with g(.) = 1 and no nuisance pa-
rameter, are often based on the relative rate of growth to infinity of λmin(An) and
λmax(An), where An =

∑n
k=h+1 WkW

T
k (see for example [1], [3], [12], [13], [14],

[15]). The weakest assumptions obtained in this setting are those given in [13]:
the least squares estimator is strongly consistent if [ln λmax(An)]ρ[λmin(An)]−1

converges a.s. to 0 for some ρ > 1 with λmin(An) converging to ∞. We extend
and weaken this condition. Let

D(i)
n =

n∑

k=h+1

||W (i)
k ||2L2

δ(Fk−1, Ek)g(Fk−1, Ek), i = 1, 2

D(1,2)
n =

n∑

k=h+1

||W (1)
k ||L2 ||W

(2)
k ||L2δ(Fk−1, Ek)g(Fk−1, Ek).

Assume the asymptotic identifiability of θ0 in {θT
0 W

(1)
n }n and that of ν0 in

{νT
0 W

(2)
n }n. If there exists a deterministic sequence {φn}n such that

i) limn φn||θ0 − θ̂h,n,ν0||L2∃ in distribution(resp. limn φn||θ0 − θ̂h,n,ν0||L2

a.s.
< ∞),

ii) limn D
(1)
n [φ2

nD
(2)
n ]−1 P (resp. a.s.)

= 0; limn D
(2)
n [D

(1)
n ]−1 a.s.

= 0,

iii) limn φnD
(1,2)
n [D

(1)
n ]−1

P (resp. a.s.)
< ∞,

then limn θ̂h,n
a.s.
= θ0 and limn ν̂h,n

P (resp. a.s.)
= ν0. For example, assume d = 2,
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|Wk,1| = O(1), |Wk,2| = O(k−1/2), i.i.d. {ηn}n. Then i), ii), iii) are satisfied in
probability with φn = n1/2 and a.s. with φn = n1/2[ln lnn]−1/2. But the condi-
tion limn[lnλmax(An)]ρ[λmin(An)]−1 a.s.

= 0 is not fulfilled here even in the limit
case ρ = 1, since λmax(An) = O(n) and λmin(An) = O(lnn).

When the vector Wn is orthogonal, for all n, i.e. Wn,jWn,j′ = 0, for all j 6= j ′,
the simultaneous identifiability means that the individual amounts of informa-
tion, {Dn,i}i=1,d are balanced between the different components {θ0,i}i=1,d. But

the only condition limn Dn,i
a.s.
= ∞ ensures the individual strong consistency of

the estimator of θ0,i. In this frame, we study more particularly the strong consis-
tency and the asymptotic normality of the estimators of the offspring mean and
the immigration mean for the regenerative Bienaymé-Galton-Watson branching
process with immigration only allowed in the state 0.

2. Identifiability and negligibility

Assume θ0 ∈
◦
Θ, Θ being a compact set of R

d, d < ∞. Let δ > 0 and Bc
δ = {θ =

(θ1, . . . , θd) ∈ Θ : ||θk − θ0k||L2 ≥ δ}. Let ||.||n be a norm on the space of func-
tions {fk,n}k≤n. Let v(Fk−1, Ek) a measurable function of (Fk−1, Ek) which may

depend on θ0, ∆θ0,θ(Fk−1, Ek) = (f
(1)
θ0

(Fk−1, Ek) − f
(1)
θ (Fk−1, Ek))v(Fk−1, Ek),

for some measurable function v(Fk−1, Ek), and let us introduce the following
definitions:

Definition 1. θ0 is asymptotically identifiable in {f (1)
θ0

(Fk−1, Ek)}k

for {||.||n}n if there exists {v(Fk−1, Ek)}k depending only on Fk−1, Ek, such that,

for all δ > 0, B1 : limn→∞ infθ∈Bc
δ
||∆θ0,θ(F.−1, E.)||n

a.s.
> 0 is satisfied. If more-

over, condition B2 : limn→∞ supθ∈Bc
δ
||∆θ0,θ(F.−1, E.)||n

a.s.
< ∞ is satisfied, then

v(.) is called a rate of identifiability of θ0.

Notice that B1 and B2 are satisfied when the stronger conditions

B1s : limn→∞ infθ∈Bc
δ
|∆θ0,θ(Fn−1, En)| a.s.

> 0 and

B2s : limn→∞ supθ∈Bc
δ
|∆θ0,θ(Fn−1, En)| a.s.

< ∞ are satisfied.

Definition 2. The process {r(Fk−1, Ek)}k is asymptotically negligible if
B3 : limn→∞ ||r(F.−1, E.)||n a.s.

= 0.

3. Conditional Least Squares Estimator

We aim to estimate θ0 considering the unknown process {f (2)
µ0 (Fk−1, Ek)}k as a

nuisance process. If the unknown part of {f (2)
µ0 (Fk−1, Ek)}k is given by a finite
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dimensional parameter ν0, then ν0 is set to a given vector νn based on the ob-
servations until n. For example we may take νn = ν̂h,n defined by (θ̂h,n, ν̂h,n) =

arg min(θ,ν)∈Θ×N S̃h,n,ν(θ), where Θ × N is compact, or we may set νn = 0.

Now if the unknown part of {f (2)
µ0 (Fk−1, Ek)}k is of infinite dimension, then we

set f
(2)
µ0 (Fk−1, Ek) to 0, for all k. For simplifying the notations, we will write

ν instead of νn, {f̂ (2)
µ0 (Fk−1, Ek)}k for any estimation of {f (2)

µ0 (Fk−1, Ek)}k, and

fθ0,ν(Fk−1, Ek) = f
(1)
θ0

(Fk−1, Ek) + f̂
(2)
µ0 (Fk−1, Ek).

In the case of f
(1)
θ (.) infinitely differentiable at any θ, we define the CLSE

estimator θ̂h,n,ν of θ0 in the following way

θ̂h,n,ν = arg min
θ∈Θ

S̃h,n,ν(θ)(2)

S̃h,n,ν(θ) =

n∑

k=h+1

(Zk − fθ,ν(Fk−1, Ek))
2δ(Fk−1, Ek)g(Fk−1, Ek),(3)

where δ(Fk−1, Ek) is a Bernoulli variable, measurable function of (Fk−1, Ek),
equal to 1 when Zk − fθ,ν(Fk−1, Ek) is taken into account in the estimator. For
example, if the environmental condition Ck necessarily leads to a bad observation
of Zk, we do not take into account Zk − fθ,ν(Fk−1, Ek).

In the general case (f
(1)
θ (.) continuous at θ0 but not necessarily differentiable),

we define the DCLSE (Discrete CLSE) by:

θ̂m,h,n,ν = arg min
θ∈Θm

S̃h,n,ν(θ),

where Θm is a finite countable subset of Θ.

4. Strong consistency of the Conditional Least Squares Estima-

tors

Assume first that f
(1)
θ (Fk−1, Ek) is infinitely continuously differentiable at any

θ ∈ Θ. Let v(Fk−1, Ek) as in the previous section and

∆θ0,ν0;θ,ν(Fk−1, Ek) = (fθ0,ν0(Fk−1, Ek) − fθ,ν(Fk−1, Ek))v(Fk−1, Ek).

Then ∆θ0,ν;θ,ν(Fk−1, Ek) = ∆θ0;θ(Fk−1, Ek).

Since S̃h,n,ν(θ) defined by (2) may be written as

S̃h,n,ν(θ) =
n∑

k=h+1

(ηkv(Fk−1, Ek) + ∆θ0,ν0;θ,ν(Fk−1, Ek))
2a(Fk−1, Ek)

a(Fk−1, Ek) = δ(Fk−1, Ek)[v(Fk−1, Ek)]
−2g(Fk−1, Ek),
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the estimator θ̂h,n,ν also satisfies θ̂h,n,ν = argminθ∈ΘSh,n,ν(θ), where Sh,n,ν(θ) =

S̃h,n,ν(θ)D−1
n with Dn =

∑n
k=h+1 a(Fk−1, Ek). This leads to the natural norm

||fk,n||2n = [
∑n

k=h+1 f2
k,na(Fk−1, Ek)]D

−1
n on the space of functions {{fk,n}k≤n}.

¿From now on, we use this norm. In the following proposition, we prove that if θ0

is asymptotically identifiable in {f (1)
θ0

(Fk−1, Ek)}k at the rate {v(Fk−1, Ek)}k and

if {(f (2)
µ0 (Fk−1, Ek)− f̂

(2)
µ0 (Fk−1, Ek))v(Fk−1, Ek)}k≤n is asymptotically negligible,

then the strong consistency of {θ̂h,n,ν}n is ensured under some weak additional
conditions.

Proposition 3. Assume fθ(.) infinitely continuously differentiable at any θ,
and the following conditions B1 to B5:

1) B1: limn→∞ infθ∈Bc
δ
||∆θ0,θ(F.−1, E.))||n

a.s.
> 0.

B2s: limn→∞ supθ∈Bc
δ
|∆θ0,θ(Fn−1, En)| a.s.

< ∞.

2) B3: limn→∞ ||(f (2)
µ0 (F.−1, E.) − f̂

(2)
µ0 (F.−1, E.))v(F.−1, E.)||n a.s.

= 0;
3) B4: {Dn}n is a.s. increasing to ∞;

4) B5: for all δ > 0 and (Fk−1, Ek), supθ∈Bc
δ
f

(1)
θ (Fk−1, Ek) is attained at some

θsup
Fk−1,Ek

(respectively infθ∈Bc
δ
f

(1)
θ (Fk−1, Ek) is attained at some θinf

Fk−1,Ek
).

Then, {θ̂h,n,ν}n is strongly consistent, i.e. limn θ̂h,n,ν
a.s.
= θ0.

If B3 is checked in probability instead of almost surely, then {θ̂h,n,ν}n is weakly

consistent, i.e. limn θ̂h,n,ν
P
= θ0.

Remarks.
1. B2s may be replaced by the weaker assumptions B2 and

B2w : limn→∞

n∑
k=h+1

supθ∈Bc
δ
∆2

θ0,θ(Fk−1, Ek)a(Fk−1, Ek)D
−2
k

a.s.
< ∞.

2. When the nuisance parameter ν0 is of finite dimension, then B3 implies that

ν0 is not asymptotically identifiable in f
(2)
µ0 (.) at the rate v(.).

3. Assume that θ0 is asymptotically identifiable at the rate v1(.) and ν0 is asymp-
totically identifiable at the rate v2(.) with v2(.) > v1(.). Then we may first prove

the consistency of θ̂h,n using the fact that f
(2)
ν0 (.)v1(.) is asymptotically negligible,

and then we may prove the consistency of ν̂h,n if (f
(1)
θ0

(.)−f
(1)

�

θh,n
(.))v2(.) is asymp-

totically negligible, which will be checked if θ̂h,n converges sufficiently rapidly.
We will detail this problem in the linear case (following section).

P r o o f. The proof relies on the martingale difference structure of ηn

([9]) and on a sufficient condition for consistency of minimum contrast esti-
mators ([20]). Let Bc

δ = {θ ∈ Θ :
∑d

j=1 |θj − θ0,j| > δ}. If for all δ > 0,
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limn→∞(infθ∈Bc
δ
Sh,n,ν(θ) − Sh,n,ν(θ0)) > 0 a.s. (resp. in probability), then

{θ̂h,n,ν}n is strongly (resp. weakly) consistent (proof in the a.s. case: assume

that {θ̂h,n,ν}n is not a.s. consistent; then there exists a non negligible set of
trajectories ω such that, for each ω, there exists δ and an infinite subsequence
{θ̂h,ni,ν}ni with θ̂h,ni,ν ∈ Bc

δ , for all ni, implying that Sh,ni,ν(θ̂h,ni,ν) > Sh,ni,ν(θ0),

which is in contradiction with the definition of θ̂h,ni,ν ; in the probability case, δ
and {ni}i do not depend on ω).

According to B5, there exists θn such that

inf
θ∈Bc

δ

Sh,n,ν(θ) − Sh,n,ν(θ0) = S1n(θn) + 2S2n(θn) + 2S3n(θn),

where S1n(θn) =
∑n

k=h+1[∆θ0,θn(Fk−1, Ek)]
2a(Fk−1, Ek)D

−1
n ,

S2n(θn) =
∑n

k=h+1 ∆θ0,ν0;θ0,ν(Fk−1, Ek)∆θ0,θn(Fk−1, Ek)a(Fk−1, Ek)D
−1
n ,

S3n(θn) =
∑n

k=h+1 ηkv(Fk−1, Ek)∆θ0,θn(Fk−1, Ek)a(Fk−1, Ek)D
−1
n .

We successively study each Sin(θn), i ∈ {1, 2, 3}.
1. Since S1n(θn) = ||∆θ0,θn(F.−1, E.)||2n, then

lim
n

S1n(θn) ≥ lim
n

inf
θ∈Bc

δ

||∆θ0,θ(F.−1, E.)||2n.

Using B1, the right-hand side is strictly positive yielding limn S1n(θn) > 0 a.s..
2. First notice that S2n(θn) = 0, if ν = ν0. Otherwise, according to Hölder’s
inequality, |S2n(θn)| ≤ ||∆θ0,ν0;θ0,ν(F.−1, E.)||n||∆θ0,θn(F.−1, E.)||n. implying

| lim
n

S2n(θn)| ≤ lim
n

||∆θ0,ν0;θ0,ν(F.−1, E.)||n. lim
n

sup
θ∈Bc

δ

||∆θ0,θ(F.−1, E.)||n.

The right-hand side is equal to 0, due to B2 and B3, implying limn S2n(θn)
a.s.
= 0.

3. Consider S3n(θn). Assume first that h is constant. Let Θε∗ a neighborhood of
Θ such that all the conditions valid on Θ are also checked on Θε∗ (B1, . . . , B5,

f
(1)
θ (.) infinitely differentiable). Let

∆̃θ;θ0(Fk−1, Ek) = fθ(Fk−1, Ek) − fθ0(Fk−1, Ek)

Ln(θ) =

n∑

k=h+1

ηk∆̃θ;θ0(Fk−1, Ek)g(Fk−1, Ek)

{Ln(θ)}n is a martingale and |S3n(θn)| = |Ln(θn)|D−1
n . Using lemma 5,

limn S3n(θn)
a.s.
= 0.

Assume now n−h constant and denote L1,n(θn) for Ln(θn) when h = 0. Then
Ln(θn) = L1,n(θn) − L1,h(θn). Then, as above, since L1,n(θn) ≤ supθ L1,n(θ) and
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L1,h(θn) ≤ supθ L1,h(θ), and using Dn ≥ Dh, we get limn L1,n(θn)D−1
n

a.s.
= 0 and

limn L1,h(θn)D−1
n

a.s.
= 0, implying limn S3n(θn)

a.s.
= 0. �

Lemma 4. Let ak ≥ 0, for all k, with a1 > 0, and Sn =
∑n

k=1 ak with
limn Sn ≤ ∞. Then

∑∞
k=1 akS

−2
k ≤ 2a−1

1 − limn S−1
n .

P r o o f. We have

S−1
1 − S−1

n =

n∑

k=2

(S−1
k−1 − S−1

k ) =

n∑

k=2

ak[Sk−1Sk]
−1 ≥

n∑

k=2

akS
−2
k .

Then the result follows from S−1
1 = a−1

1 and
∑n

k=2 akS
−2
k =

∑n
k=1 akS

−2
k −a1S

−2
1 .

This result, in the weaker form
∑∞

k=1 akS
−2
k ≤ 2a−1

1 , is given in [9] (p.158) and
is based on another proof.

�

Lemma 5. Let Θε∗ a neighborhood of Θ such that f
(1)
θ (.) is infinitely con-

tinuously differentiable at any θ ∈ Θε∗. Assume also

B2s : limk supθ∈Θε∗
[∆̃θ,θ0(Fk−1, Ek)v(Fk−1, Ek)]

2
a.s.
< ∞.

Then limn Ln(θn)D−1
n

a.s
= 0.

P r o o f. First notice that Ln(θn) is generally not a martingale. Assume
first that Θ = [θmin, θmax] ⊂ R. Let Θ∗ a random regular grid of size ε∗ ≤
θmax−θmin, independent of {Zn}n and which covers Θ, that is Θ∗ = {θ∗i}i=1,...,I ,

with θ∗i+1 − θ∗i = ε∗, θ∗I
a.s.
≥ θmax, θ∗1

a.s.
≤ θmin, and θ∗1 follows a uniform law

on (θmin − ε∗, θmin). This implies that for any θ ∈ Θ, θ∗(θ) − θ is uniformly
distributed on (−ε∗/2,+ε∗/2), where θ∗(θ) is the point of Θ∗ the nearest from θ.
If Θ ⊂ R

d, we assume this on each coordinate j, j = 1, . . . , d. We have

Ln(θn) = Ln(θ∗(θn)) + [Ln(θn) − Ln(θ∗(θn))].

We prove first limn |Ln(θ∗i)D
−1
n | a.s.

= 0, for any θ∗i ∈ Θ∗; {Ln(θ∗i)}n is a mar-
tingale because {ηk}k is a martingale difference sequence and, for each k, given
Fk−1, Ek, ∆θ∗i;θ0(Fk−1, Ek) is independent of ηk, since θ∗i is independent of {Zn}n.
Moreover Dn is (Fn−1, En)- measurable and increases with n, and according to
B2s and lemma 1

∞∑

k=h+1

E([ηk∆̃θ∗i;θ0(Fk−1, Ek)g(Fk−1, Ek)]2|Fk−1, Ek)D
−2
k ≤

σ sup
k,θ

[∆̃θ;θ0(Fk−1, Ek)v(Fk−1, Ek)]
2

∞∑

k=h+1

a(Fk−1, Ek)D
−2
k

a.s.
<

∞
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Therefore the SLLNM may be applied, implying the result. Then, since Θ∗ is
finite, limn |Ln(θ∗(θn))|D−1

n ≤ limn maxθ∗i∈Θ∗
|Ln(θ∗i)|D−1

n
a.s.
= 0.

Next we are going to prove that limn |Ln(θn)−Ln(θ∗(θn))|D−1
n

a.s.
= 0, by using

the fact that this quantity depends on the difference θn − θ∗(θn) and not on the
particular value taken by θn. Let

U∗
m,n(θ) =

n∑

k=m

ηk∆̃θ;θ∗(θ)(Fk−1, Ek)g(Fk−1, Ek)D
−1
k

notation
=

n∑

k=m

Y ∗
k (θ)

Um,n(θ) =

n∑

k=m

ηk∆̃θ;θ0(Fk−1, Ek)g(Fk−1, Ek)D
−1
k .

Since U ∗
m,n(θ) = Um,n(θ) − Um,n(θ∗(θ)), where {Um,n(θ)}n and {Um,n(θ∗(θ))}n

are martingales, then {U ∗
m,n(θ)}n is a martingale, and according to Jensen’s in-

equality, this implies that {supθ |U∗
m,n(θ)|}n is a submartingale. Therefore using

th.2.1 from Hall and Heyde (p.14), we get

λP ( max
n:m≤n≤m′

sup
θ

|U∗
m,n(θ)| > λ) ≤ E(sup

θ
|U∗

m,m′(θ)|) ≤ E(sup
θ

|
m′∑

m

Y ∗
k (θ)|)

Denote θm′ = arg supθ |U∗
m,m′(θ)|. Using Hölder’s inequality, for any λ > 0,

λP ( max
n:m≤n≤m′

sup
θ

|U∗
m,n(θ)| > λ) ≤ E[

m′∑

m

Y ∗
k (θm′)D−1

k ]2)1/2.

Let k ∈ {m, . . . ,m′}. Using the definition of ηk and Taylor’s expansion of
∆θm′ ,θ∗(θm′ )(Fk−1, Ek) at θ∗(θm′) which depends only on each coordinate of θm′ −
θ∗(θm′) given Fk−1, Ek, we get

P ({ηk ∈ E} ∩ {∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D}|Fk−1, Ek) =

P ({Zk ∈ E + fµ0(Fk−1, E − k)} ∩ {∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D}|Fk−1, Ek) =
∫

e

∫

t

P (∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D|Zk =

e + fµ0(Fk−1, Ek), θm′ − θ∗(θm′) = t, Fk−1, Ek).

dP (θm′ − θ∗(θm′) = t|Zk = e + fµ0(Fk−1, Ek), Fk−1, Ek).

dP (Zk = e + fµ0(Fk−1, Ek)|Fk−1, Ek)
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Since, given Fk−1, Ek, ∆θm′ ,θ∗(θm′ )(Fk−1, Ek) depends only on coordinates of the
difference θm′ − θ∗(θm′), which follow a uniform law on (−ε∗/2,+ε∗/2), then

P ({ηk ∈ E} ∩ {∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D}|Fk−1, Ek) =
∫

e

∫

t
P (∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D|θm′ − θ∗(θm′) = t, Fk−1, Ek).

dP (θm′ − θ∗(θm′) = t|Fk−1, Ek)dP (Zk = e + fµ0(Fk−1, Ek)|Fk−1, Ek) =

P (∆θm′ ,θ∗(θm′ )(Fk−1, Ek) ∈ D|Fk−1, Ek)P (ηk ∈ E|Fk−1, Ek)

that is, ηk and ∆θm′ ,θ∗(θm′ )(Fk−1, Ek) are independent, given Fk−1, Ek, leading to

E[
∑m′

m Y ∗
k (θm′)D−1

k ]2 = E[
∑m′

m E(Y ∗2
k (θm′)D−2

k |Fk−1, Ek)]. Consequently

λP ( max
n:m≤n≤m′

sup
θ

|U∗
m,n(θ)| > λ) ≤

E[

m′∑

m

E(Y ∗2
k (θm′)D−2

k |Fk−1, Ek)])
1/2 ≤

σ(E[

∞∑

k=m

sup
θ

[∆θ,θ∗(θ)(Fk−1, Ek)v(Fk−1, Ek)]
2a(Fk−1, Ek)D

−2
k ])1/2 ≤

σ(E([sup
k>m

sup
θ

[∆θ,θ∗(θ)(Fk−1, Ek)v(Fk−1, Ek)]
2

∞∑

k=m

a(Fk−1, Ek)D
−2
k ]))1/2

According to B2s, to lemma 1, and to ∆θ,θ∗(θ)(.) = ∆θ,θ0(θ)(.) + ∆θ0,θ∗(θ)(.),

limk supθ[∆θ,θ∗(θ)(Fk−1, Ek)v(Fk−1, Ek)]2
∑∞

k=h+1 a(Fk−1, Ek)D
−2
k is a.s. finite

implying that supθ,k>m[∆θs,θ∗(θ)(Fk−1, Ek)v(Fk−1, Ek)]
2
∑

k≥m a(Fk−1, Ek)D
−2
k

converges a.s. to 0, as m → ∞. Consequently according to Beppo-Levi lemma,
E[supθ,k>m[∆θ,θ∗(θ)(Fk−1, Ek)v(Fk−1, Ek)]2

∑
k≥m a(Fk−1, Ek)D

−2
k ]2 tends to 0,

as m → ∞. Moreover

P ( sup
n:m≤n

sup
θ

|U∗
m,n(θ)| > λ) = lim

m′

P ( max
m≤n≤m′

sup
θ

|U∗
m,n(θ)| > λ).

Therefore P (supn:m≤n supθ |U∗
m,n(θ)| > λ) tends to 0 as m → ∞. This implies

that supn:m≤n supθ |U∗
m,n(θ)| converges to 0 in probability, and therefore there

exists a subsequence supn:mi≤n supθ |U∗
mi,n(θ)| which converges a.s. to 0, as mi →

∞. But, for m > mi, U∗
m,n(θ) = U∗

mi,n(θ) − U∗
mi,m−1(θ) which implies

sup
θ

|U∗
m,n(θ)| ≤ sup

θ
|U∗

mi,n(θ)| + sup
θ

|U∗
mi,m−1(θ)|

≤ sup
θ

|U∗
mi,n(θ)| + sup

m′:m′≥mi

sup
θ

|U∗
mi,m′(θ)|
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This implies supn:n≥m supθ |U∗
m,n(θ)| ≤ 2 supn:n≥mi

supθ |U∗
mi,n(θ)| and therefore

the left-hand member converges a.s. to 0, as m → ∞, since the right-hand
member converges to 0.

Then, it remains to show that limn |Ln(θn) − Ln(θ∗(θn))|D−1
n

a.s.
= 0. Denote

S∗
k,n =

∑k−1
l=1 Y ∗

l (θn)
definition

= U∗
1,k−1(θn). We have

Ln(θn) − Ln(θ∗(θn))

Dn
=

n∑

k=h+1

Y ∗
k (θn)Dk

Dn
=

n∑

k=h+1

(S∗
k+1,n − S∗

k,n)Dk

Dn

= S∗
n+1,n −

n∑

k=h+1

S∗
k,n(Dk − Dk−1)

Dn
=

∑n
k=h+1(S

∗
n+1,n − S∗

k,n)ak∑n
k=h+1 ak

Since S∗
n+1,n − S∗

k,n = U∗
k,n(θn), then

Ln(θn) − Ln(θ∗(θn))

Dn
=

∑n
k=h+1 U∗

k,n(θn)ak∑n
k=h+1 ak

implying

lim
n

|Ln(θn) − Ln(θ∗(θn))|
Dn

≤ lim
N

lim
n

∑N
1 ak∑n
1 ak

sup
k<N

|U∗
k,n(θn)| + lim

N
lim
n

sup
N≤k≤n

|U∗
k,n(θn)|

Now using U ∗
k,n(θn) = U∗

k,N−1(θn) + U∗
N,n(θn), for the first term, and U ∗

k,n(θn) =
U∗

N,n(θn) − U∗
N,k−1(θn), for the second term, we have

lim
n

|Ln(θn) − Ln(θ∗(θn))|
Dn

≤ lim
N

lim
n

∑N
1 ak∑n
1 ak

[ sup
k<N

sup
θ

|U∗
k,N−1(θ)| + sup

θ
U∗

N,n(θ)]+

lim
N

lim
n

[sup
θ

|U∗
N,n(θ)| + sup

N≤k≤n
sup

θ
|U∗

N,k−1(θ)|]

Since limn[
∑N

1 ak][
∑n

1 ak]
−1 supk<N supθ |U∗

k,N−1(θ)| a.s.
= 0, then

lim
n

|Ln(θn) − Ln(θ∗(θn))|
Dn

≤ lim
N

lim
n

∑N
1 ak∑n
1 ak

[sup
θ

U∗
N,n(θ)] +

lim
N

lim
n

sup
θ

|U∗
N,n(θ)| + lim

N
sup
N≤k

sup
θ

|U∗
N,k−1(θ)|]

≤ 3 lim
N

sup
n>N

sup
θ

U∗
N,n(θ)]

which is null a.s.. �
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Consider next the case where f
(1)
θ (.) is not necessarily differentiable. Let Gm

a regular grid of R
d of size εm, that is Gm = Πd

j=1Gm,j , where Gm,j = {xm,j}j ,
xm,j+1 − xm,j = εm. Assume limm εm = 0. Let Θm = Θ ∩ Gm and define the

DCLSE of θ0 by θ̂m,h,n,ν = arg minθ∈Θm S̃h,n,ν(θ).

Proposition 6. Assume f
(1)
θ (Fk−1, Ek)v(Fk−1, Ek) continuous at θ0, uni-

formly in k, i.e. limθm(θ0)→θ0
supk |(f (1)

θm(θ0)(Fk−1, Ek)−f
(1)
θ0

(Fk−1, Ek))v(Fk−1, Ek)|
a.s.
= 0. Assume B1, B2s, B3, B4 and B5. Then limm limn θ̂m,h,n,ν

a.s
= θ0 (resp.

limm limn θ̂m,h,n,ν
P
= θ0, if B3 is checked in probability).

P r o o f. The proof is similar to the previous one and relies on Wu’s
lemma ([20]) applied to Θm: Let θm(θ0) the point of Θm the nearest from θ0

and let Bc
mδ = {θ ∈ Θm :

∑d
j=1 |θj − [θm(θ0)]j | > δ}. Then, if for all δ > 0,

limm limn(infθ∈Bc
mδ

Sh,n,ν(θ)−Sh,n,ν(θm(θ0)) > 0 a.s. (resp. in probability), then

limn θ̂m,h,n,ν
a.s(resp.P ).

= θm(θ0) (proof in the a.s. case: assume that it is not true.
Then there exists a non negligible set of trajectories ω such that, for each ω, there
exists δ and an infinite subsequence {θ̂mj ,h,ni,ν}mj ,ni with θ̂mj ,h,ni,ν ∈ Bc

mδ , for

all mj, ni, implying that Sh,ni,ν(θ̂mj ,h,ni,ν) > Sh,ni,ν(θmj (θ0)), for large mj , ni,

which is in contradiction with the definition of θ̂mj ,h,ni,ν ; in the probability case,
δ and {ni}i do not depend on ω).

According to B5, there exists θm,n such that

inf
θ∈Bc

mδ

Sh,n,ν(θ) − Sh,n,ν(θm(θ0)) = S1n(θm,n) + 2S2n(θm,n) + 2S3n(θm,n),

where S1n(θm,n) =
n∑

k=h+1

[∆θm(θ0),θm,n
(Fk−1, Ek)]

2a(Fk−1, Ek)D
−1
n ,

S2n(θm,n) =
n∑

k=h+1

∆θ0,ν0;θm(θ0),ν(Fk−1, Ek)∆θm(θ0),θm,n
(Fk−1, Ek)a(Fk−1, Ek)D

−1
n ,

S3n(θm,n) =
n∑

k=h+1

ηkv(Fk−1, Ek)∆θm(θ0),θm,n
(Fk−1, Ek)a(Fk−1, Ek)D−1

n .

As previously, we have limn S1n(θm,n)
a.s.
> 0, limn S3n(θm,n)

a.s.
= 0, and

| lim
m

lim
n

S2n(θm,n)| ≤

[lim
m

lim
n

||∆θ0,θm(θ0)||n+ lim
m

lim
n

||(f (2)
µ0

(F.−1, E.)−f̂
(2)
µ0 (F.−1, E.))v(F.−1, E.)||n].

2 lim
n

sup
θ∈Bc

δ

||∆θ0,θ(F.−1, E.)||n.
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which converges a.s. to 0 according to B2, B3 and limm θm(θ0) = θ0 and the

continuity of f
(1)
θ (.) at θ0. �

5. Strong consistency in the linear model

Assume f(Fn−1, En) = µT
0 Wn, where Wn is a measurable function of (Fn−1, En).

Let v−1(Wk) = ||Wk||Lp

def.
= [

∑d
j=1 |Wk,j|p]1/p. We also denote ||Wk|| for ||Wk||Lp .

Since by Hölder’s inequality: ||Wk||1 ≤ ||Wk||Lpd
1/q, for any q with p−1+q−1 = 1,

then B1 with p = 1 is the weakest condition among conditions B1 with p ≥ 1.
Whereas B3 with p = 1 is the strongest one. For simplification of the notations,
assume here δ(Fk−1, Ek) = 1, for all k. Assume that we can decompose Wn

according to Wn = (W
(1)
n ,W

(2)
n ), W

(2)
n being the maximum subset of Wn such

that limn D
(2)
n D−1

n = 0, where D
(i)
n =

∑n
k=1 ||W

(i)
k ||2g(Fk−1, Ek), i = 1, 2, Dn =

∑n
k=1 ||Wk||2g(Fk−1, Ek). Writing W

(i)
k = W

(i)
k ||Wk||−1, i = 1, 2, this means that

{||W (2)
k ||}k is asymptotically negligible.

Notice that if W
(1)
k and W

(2)
k are orthogonal, for all k, i.e. W

(1)
k,i W

(2)
k,j = 0,

for all i, j, then, for all k, there exists i ∈ {1, 2} such that Wk = W
(i)
k implying

||W (i)
k || = 0 or 1, i.e. ||W (i)

k || = δ
||W

(i)
k ||

, where δZ = 1 if Z 6= 0 and is 0 otherwise.

Then

|| ||W (2)
. || ||n = ||δ||W (2)

. ||||n =

∑n
k=h+1 δ

W
(2)
k

a(Fk−1, Ek)
∑n

k=h+1(δW
(1)
k

+ δ
W

(2)
k

)a(Fk−1, Ek)
.

Therefore, in the orthogonal case, the negligibility of {||W (2)
k ||}k means that the

mean number (or percentage) of observations of W
(2)
k , weighted by a(.), tends a.s.

to 0. In the general case, according to the following lemma, we can equivalently

use Dn or D
(1)
n in proposition 3.

Lemma 7. Assume limn D
(2)
n D−1

n = 0. Then

limn
|Dn − D

(1)
n |

Dn

a.s.
= 0.

P r o o f. Use [||Wk||2]p/2 = ||W (1)
k ||p + ||W (2)

k ||p ≤ (||W (1)
k ||2 + ||W (2)

k ||2)p/2

which implies Dn ≤ D
(1)
n + D

(2)
n , leading to the result since limn D

(2)
n D−1

n
a.s.
= 0.



122 C. Jacob, N. Lalam, N. Yanev

Let θ0, the subset of µ0 relative to W
(1)
n and ν0, the subset of µ0 relative to

W
(2)
n . Then the CLSE (θ̂h,n, ν̂h,n) may be written in the following way

(θ̂h,n, ν̂h,n) =(4)

([

n∑

k=h+1

(Zk − ν̂T
h,nW

(2)
k )W

(1)T
k g(Fk−1, Ek)][

n∑

k=h+1

W
(1)
k W

(1)T
k g(Fk−1, Ek)]

−1,

[

n∑

k=h+1

(Zk − θ̂T
h,nW

(1)
k )W

(2)T
k g(Fk−1, Ek)][

n∑

k=h+1

W
(2)
k W

(2)T
k g(Fk−1, Ek)]−1).

In the particular case where Wk is an orthogonal set of variables, for all k, that
is Wk,iWk,j = 0, for all k, (4) is reduced to

µ̂h,n,i = [
n∑

k=h+1

ZkW
T
k,ig(Fk−1, Ek)][

n∑

k=h+1

W 2
k,ig(Fk−1, Ek)]

−1,

i = 1, . . . , d.(5)

This means that, in that case, we aim to prove either the individual consistency
of each µ̂h,n,i, or the stronger property of the consistency of θ̂h,n, under the
identifiability of θ0, and in addition the consistency of ν̂h,n under the identifiability
of ν0. The simultaneous consistency means that the rate of convergence is of the
same order for all the individual estimators and is a stronger property than the
individual consistency. Denote λmin(A), the smallest eigen value of A (resp.
λmax(A), the largest one). Let, for i ∈ {1, 2}, B2(i), . . . , B4(i), be the conditions

B2,. . . , B4 relative to {W (i)
k }k, and

B̃1(i) : lim
n

[λmin(

n∑

k=h+1

W
(i)
k W

(i)T
k g(Fk−1, Ek))][D

(i)
n ]−1 a.s.

> 0

�

In the following proposition, we give general conditions leading to the consis-
tency of the CLSE of (θ0, ν0) although ν0W

(2)
. ||W (1)

. ||−1 is asymptotically negli-

gible. Let D
(1,2)
n =

∑n
k=h+1 ||W

(1)
k ||||W (2)

k ||g(Fk−1, Ek).

Proposition 8. 1. Assume B̃1(1), B4(1) and B̃3(1) : limn D
(2)
n [D

(1)
n ]−1 a.s.

= 0.
Then limn θ̂h,n

a.s.
= θ0.

2. Assume in addition p = 2, B̃1(2), B4(2), and B̃3(2) defined by the existence of
a deterministic sequence {φn}n such that:
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i) limn φn||θ0 − θ̂h,n,ν0||L2 exists in distribution (resp. limn φn||θ0 − θ̂h,n,ν0||L2

a.s.
<

∞).

ii) limn D
(1)
n [φ2

nD
(2)
n ]−1 P (resp. a.s.)

= 0.

iii) limn φnD
(1,2)
n [D

(1)
n ]−1

P (resp. a.s.)
< ∞.

Then limn ν̂h,n
P (resp. a.s.)

= ν0.

Examples
1. Let Zn = θ0 + ν0a

−1
n + ηn, where limn an = ∞, and the {ηn}n are i.i.d.

E(ηn) = 0, E(η2
n) = 1. Then θ0 is asymptotically identifiable at the rate v(.) = 1,

while ν0a
−1
n is asymptotically negligible. Let h = 0. Then D

(1)
n = n and accord-

ing to item 1 of proposition 8, θ̂0,n is strongly consistent. Now ν0 is asymptoti-

cally identifiable in ν0a
−1
n at the rate an, implying D

(2)
n =

∑n
k=1 a−2

k . Moreover

limn
√

n(θ̂0,n,ν0 − θ0)
d
= N (0, 1), i.e. φ2

n = D
(1)
n = n, and D

(1,2)
n =

∑n
k=1 a−1

k .
Consequently if limn

∑n
k=1 a−2

k = ∞ and if [
∑n

k=1 a−1
k ]n−1/2 is bounded, con-

ditions of proposition 8 are all satisfied implying the weak consistency of ν̂h,n.
In the particular case ak = kα, the only solution for having both ii) and iii)
is α = 1/2. Moreover if the LIL (Law of the Iterated Logarithm) is valid, then
φn = n1/2[ln lnn]−1/2 implying the strong consistency of ν̂h,n. The condition given
in [13] concerns [lnλmax(

∑n
k=1 WkW

T
k )]ρ[λmin(

∑n
k=1 WkW

T
k )]−1 = [ln n]ρ[lnn]−1

which does not tend to 0. Therefore the conditions described here are weaker.

2. Let Zn =
∑Zn−1

i=1 Yn,i, where the {Yn,i}i are i.i.d. (θ0 +ν0Z
−α
n−1), σ

2(Zn−1)),
given Fn−1, with θ0 ≥ 1, ν0 > 0, α > 0. Then {Zn}n is a size-dependent
branching process belonging to the class of processes studied by Klebaner [11]
and which does not extinct with a nonnull probability. We have Zn = (θ0 +
ν0Z

−α
n−1)Zn−1 + ηn. Assume first that θ0 = 1, α = 1 and Yn,i ∈ {1, 2}. Then

σ2(Zn−1) = ν0Z
−1
n−1(1 − ν0Z

−1
n−1) and g(.) = 1, implying D

(2)
n = n. Therefore

ν̂0,n is strongly consistent. This case has been studied in [17]. Assume now that

θ0 > 1 with g(Z) = Z−1. Then Znθ−n
0 converges a.s. ([11]), D

(1)
n =

∑n
k=1 Zk−1

and θ̂0,n is strongly consistent. But the consistency of ν̂0,n depends on the value

of α since D
(2)
n =

∑
k Z1−2α

k−1 , D
(1,2)
n =

∑
k Z1−α

k−1 . When α = 1, limn D
(2)
n < ∞

a.s., and ν̂0,n cannot be consistent, whereas when α = 1/2, the conditions of

proposition 8 are fulfilled in probability with φn = θ
n/2
0 .

Remarks.
1. In the case ν = 0, h = 0, g(.) = 1, formula (4) is reduced to the classical
formula θ̂T

n = ZT
n Wn[WT

n Wn]−1, where ZT
n = (Z1, . . . , Zn), Wn[i, j] = Wi,j,

i = 1, . . . , n, j = 1, . . . , d, and B̃1: limn λmin(WT
n Wn)D−1

n

a.s.
> 0.
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2. Let Zn = θ0Wn + ηn with d = 1, {ηn}n independent of {Wn}n and

limn E(η2
k)g(Wk)

a.s.
> 0. Then θ̂0,n = [

∑n
k=1 ZkWkg(Wk)]D

−1
n , and therefore

V ar(θ̂0,n − θ0|{Wn}n) ≥ infk E(η2
k)g(Wk)D−1

n , which does not converge to 0,
as n → ∞, if limn Dn < ∞. Consequently in the general case, B4 is a necessary
and sufficient condition for the strong consistency in the meaning that if B4 is
not checked, then there exist some models in which the estimators are not con-
sistent. But we saw in proposition 8 that we may have the consistency even if
the simultaneous identifiability is not ensured.

P r o o f.
1.Use proposition 3 and lemma 7. Denote now W

(i)
. = W (i)

. [||W (i)
. ||]−1, i =

1, 2. Concerning θ0, v(Wk) = ||W (1)
k ||−1 and conditions of proposition 3 are the

following:

B1(1) : limn infθ∈Bc
δ
||(θ0 − θ)TW

(1)
. ||n

a.s.
> 0

B2s(1) : limn supθ∈Bc
δ
|(θ0 − θ)T W

(1)
n | a.s.

< ∞
B3(1) : limn ||(ν0 − ν̂h,n)T W (2)

. [||W (1)
. ||]−1||n a.s.

= 0

B4(1) : limn D
(1)
n

a.s.
= ∞

B5(1) : ∀δ > 0,∀W
(1)
k , supθ∈Bc

δ
θTW

(1)
k (resp. infθ∈Bc

δ
θTW

(1)
k ) is attained at

some θ
(1)sup
Wk

(resp. at some θ
(1)inf
Wk

).

Consider B1(1). Let A
(1)
n =

∑n
k=h+1 W

(1)
k W

(1)T
k g(Fk−1, Ek). Since A

(1)
n is

a semi-definite matrix, there exists an orthogonal matrix Un such that A
(1)
n =

UnΛnUT
n , Λn being the diagonal matrix of the eigen values of A

(1)
n . Therefore

lim
n

inf
θ∈Bc

δ

||(θ0 − θ)T W
(1)
. ||2n =

lim
n

[ inf
θ∈Bc

δ

(θ0 − θ)T A(1)
n (θ0 − θ)][D(1)

n ]−1 ≥

lim
n

[ inf
θ∈Bc

δ

[(θ0 − θ)TUnΛnUT
n (θ0 − θ)]][D(1)

n ]−1 ≥

δ lim
n

[λmin(A(1)
n )][D(1)

n ]−1

and therefore B1(1) is satisfied under B̃1(1).
Consider now B2s(1). According to Hölder’s inequality with p−1 + q−1 = 1,

lim
n

sup
θ∈Bc

δ

|(θ0 − θ)T W
(1)
n | ≤ lim

n
sup
θ∈Bc

δ

||θ0 − θ||Lq ||W
(1)
n ||Lp

which is finite since Bc
δ is compact and ||W (1)

n ||Lp = 1.
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Next, consider B3(1), using again Hölder’s inequality,

||(ν0 − ν̂h,n)T W (2)
. [||W (1)

. ||Lp ]
−1||2n ≤ ||ν0 − ν̂h,n||2Lq

|| ||W (2)
. ||Lp [||W (1)

. ||Lp ]
−1 ||2n

≤ ||ν0 − ν̂h,n||2Lq
[D(2)

n ][D(1)
n ]−1(6)

the limit of which is 0 since ν̂h,n belongs to the compact set N .
Next concerning B5(1), it is automatically satisfied.

2. In the same way as previously, B1(2), B2(2), B4(2), B5(2) are satisfied. It
remains to prove B3(2) : limn ||(θ0 − θ̂h,n)T W (1)

. [||W (2)
. ||]−1||n a.s.

= 0. We have, in
the same way as for (6),

||(θ0 − θ̂h,n)T W (1)
. [||W (2)

. ||]−1||n ≤ ||θ0 − θ̂h,n||Lq [D
(1)
n [D(2)

n ]−1]1/2

≤ φn||θ0 − θ̂h,n,ν0||Lq [D
(1)
n [φ2

nD(2)
n ]−1]1/2 +

φn||θ̂h,n,ν0 − θ̂h,n||Lq [D
(1)
n [φ2

nD(2)
n ]−1]1/2.(7)

The first term converges in probability to 0 by Billingsley convergence results
(known also as Slutzky theorem) [2]. Concerning the second term, using the fact
that there exists C < ∞ such that ||ν̂h,n − ν0|| ≤ C and using Hölder’s inequality
and (4),

φn||θ̂h,n,ν0 − θ̂h,n||Lq = φn||(ν̂h,n − ν0)
T

n∑

k=h+1

W
(2)
k W

(1)T
k g(Wk)[A(1)

n ]−1||Lq

≤ φn||(ν̂h,n − ν0)
T 1D(1,2)

n 1T UnΛ−1
n UT

n ||Lq

≤ φn||ν̂h,n − ν0||LqD
(1,2)
n ||1T UnΛ−1

n UT
n ||Lq

≤ φnD(1,2)
n C||1T UnΛ−1

n UT
n ||Lq .(8)

For q = 2, ||1T UnΛ−1
n UT

n ||2Lq
= 1T UnΛ−2

n UT
n 1 ≤ [λmin(A

(1)
n ]−2

∑
j(

∑
i Un[i, j])2 ≤

[λmin(A
(1)
n ]−2d3. This leads to B̃3(2), using B̃1(1), (7) and (8). �

Corollary 9. Assume the particular case of Wk orthogonal, for all k. Let
Dn,i =

∑n
k=h+1 |Wk,i|2g(Fk−1, Ek). Then

1.B1 ⇐⇒ limn min1≤i≤d ||δ|W.,i|||n
a.s.
> 0 ⇐⇒: limn min1≤i≤d Dn,i[Dn]−1

a.s.
> 0.

Under B1 and B4, limn θ̂h,n,ν
a.s.
= θ0.

2. Under B4i : Dn,i increases to ∞, then limn θ̂h,n,ν,i
a.s.
= θ0,i.

Remark. limn min1≤i≤d Dn,i[Dn]−1 > 0 a.s. means that the amounts of
information relative to each component of θ0 are balanced.
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P r o o f. Since Wk is orthogonal, for all k, WkW
T
k is diagonal, for all k,

implying the first result. The other results are direct consequence of proposition
8. �

Assume now that Wk is of dimension d = 2 and ||.||Lp = ||.||L1 . Let Dn,12 =∑n
k=h+1 Wk,1Wk,2g(Fk−1, Ek), Dn,|12| =

∑n
k=h+1 |Wk,1Wk,2|g(Fk−1, Ek). Accord-

ing to Hölder’s inequality, D2
n,12 − Dn,1Dn,2 ≤ 0, for all n. Dn,12 represents the

information which is common to {Wk,1}k and {Wk,2}k, whereas Dn,1 and Dn,2

represent the individual informations. Notice that when Wk is orthogonal, for all
k, then Dn = Dn,1 + Dn,2.

Proposition 10. 1. In the general case

B1 ⇐⇒ B̃1 ⇐⇒ lim
n

(−D2
n,12 + Dn,1Dn,2)(Dn,1 + Dn,2)

−2 a.s.
> 0.

2. Assume Wk orthogonal, for all k. Then

B1 ⇐⇒ B̃1 : 0
a.s.
< lim

n

Dn,1

Dn,2
≤ lim

n

Dn,1

Dn,2

a.s.
< ∞.(9)

Remark. Assume the particular case Wk orthogonal, for all k, Dn,1 > Dn,2,

limn Dn,i
a.s.
= ∞, limn Dn,2D

−1
n,1

a.s.
= 0. Then {θ̂h,n,i}i are separately strongly

consistent but not simultaneously consistent. Moreover if we assume that
E(η2

k|Fk−1, Ek)g(Fk−1, Ek) = σ2 and {W 2
k,ig(Fk−1, Ek)}k is deterministic, then

V ar(θ̂h,n,1 − θ0,1)[V ar(θ̂h,n,2 − θ0,2)]
−1 = Dn,2D

−1
n,1, which tends to 0. Therefore

θ̂h,n,1 converges infinitely more rapidly than θ̂h,n,2.
P r o o f. 1. We have

λmin(

n∑

k=h+1

WkW
T
k g(Fk−1, Ek)) =

2−1[Dn,1 + Dn,2 −
√

(Dn,1 + Dn,2)2 + 4(D2
n,12 − Dn,1Dn,2)].

B̃1 is therefore satisfied if and only if

lim
n

1 −
√

1 + 4(D2
n,12 − Dn,1Dn,2)(Dn,1 + Dn,2)−2

Dn(Dn,1 + Dn,2)−1
> 0, a.s.

For Lp = L1, Dn = Dn,1 + Dn,2 + 2Dn,|12|. But according to Hölder’s inequality,
D2

n,|12| ≤ Dn,1Dn,2, leading to

lim
n

|Dn,|12||
Dn,1 + Dn,2

≤ lim
n

1

[Dn,1D
−1
n,2]

1/2 + [Dn,2D
−1
n,1]

1/2
< ∞, a.s.
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Therefore B̃1 is checked if and only if

lim
n

1 −
√

1 + 4(D2
n,12 − Dn,1Dn,2)(Dn,1 + Dn,2)−2 > 0a.s.

which leads to the result.

Next, since B̃1 implies B1, it remains to prove that B̃1c implies B1c.

B1c : lim
n

n∑

k=h+1

[(θ0 − θ)TWk]
2g(Fk−1, Ek))[Dn]−1 a.s.

= 0.

Since d = 2,

n∑

k=h+1

[(θ0 − θ)T Wk]
2g(Fk−1, Ek) =

(θ0,1 − θ1)
2Dn,1 + (θ0,2 − θ2)

2Dn,2 + 2(θ0,1 − θ1)(θ0,2 − θ2)Dn,12.

Assume B̃1c or equivalently, there exists an infinite subsequence {nj}j such that

lim
nj

[
(θ0,1 − θ1)

2Dnj ,1 + (θ0,2 − θ2)
2Dnj ,2 + 2(θ0,1 − θ1)(θ0,2 − θ2)Dnj ,12

Dnj

−

(θ0,1 − θ1)
2Dnj ,1 + (θ0,2 − θ2)

2Dnj ,2 + 2(θ0,1 − θ1)(θ0,2 − θ2)D
1/2
nj ,1D

1/2
nj ,2

Dnj

]
a.s.
= 0.

But (θ0,1 − θ1)
2Dnj ,1 + (θ0,2 − θ2)

2Dnj ,2 + 2(θ0,1 − θ1)(θ0,2 − θ2)D
1/2
nj ,1D

1/2
nj ,2 =

[(θ0,1 − θ1)D
1/2
nj ,1 + (θ0,2 − θ2)D

1/2
nj ,2]

2 which is null for some θ. Therefore B1c is
checked.

2. Result (9) is directly deduced from item 1 since Dn,12 = 0. �

6. Asymptotic convergence rate of θ̂h,n − θ0 in the linear orthog-

onal model

In this section, we assume that ν0 = 0 and we write θ̂h,n instead of θ̂h,n,ν.
The asymptotic law of the estimator could be obtained in the general case

under some suitable assumptions using central limit theorems for martingales and
the classical Taylor’s decomposition at the first order of ∂Sh,n/∂θ at θ0:

−∂2Sh,n

∂θ∂θT
(θ̃n)(θ̂h,n − θ0) = −∂Sh,n

∂θ
(θ0),



128 C. Jacob, N. Lalam, N. Yanev

where θ̃n lies between θ0 and θ̂h,n. But the assumptions used in these theorems
(see for example theorem 7.4.28 in [7]) being difficult to check in the general

case, we study here only the linear model with Wk orthogonal, W
(2)
k = 0 and

δ(Fk−1, Ek) = 1, for all k.
Since Sh,n(θ) =

∑n
k=h+1(Zk − θTWk)

2g(Fk−1, Ek), we have

∂Sh,n

∂θi
(θ0) = −2

n∑

k=h+1

ηkWk,ig(Fk−1, Ek)

∂2Sh,n

∂θ2
i

(θ0) = 2

n∑

k=h+1

W 2
k,ig(Fk−1, Ek) = 2Dn,i

∂2Sh,n

∂θi∂θj
(θ0) = 2

n∑

k=h+1

Wk,iWk,jg(Fk−1, Ek) = 0

Then 2−1[∂2Sh,n][∂θ∂θT ]−1(θ) is a diagonal matrix, independent of θ, with Dn,1,
. . . , Dn,d on the diagonal, and that we denote ΛDn,. .

Here θ̂h,n,i − θ0 = [
∑

k ηkWk,ig(Fk−1, Ek)]D
−1
n,i . Therefore

ΛDn,.(θ̂h,n − θ0) = −1

2

∂Sh,n

∂θ
(θ0).(10)

Lemma 11. E(
∂Sh,n

∂θi
(θ0)

∂Sh,n

∂θj
(θ0)) = 0,∀i 6= j.

P r o o f. Write Gk for g(Fk−1, Ek). For i 6= j, we have

1

4
E(

∂Sh,n

∂θi
(θ0)

∂Sh,n

∂θj
(θ0)) = 2

∑

l>k

E[ηlηkWl,iWk,jGlGk] +
∑

k

E[η2
kWk,iWk,jG

2
k].

The quadratic term obtained for l = k is null since Wk,iWk,j = 0 (orthogonality
of Wk), for all k. Moreover, using the σ-(Fl−1, El) measurability of {Wk, Gk}k≤l

and {ηk}k<l, we have

E[ηlηkWl,iWk,jGlGk] = E[E[ηlηkWl,iWk,jGlGk]|Fl−1, El]

= E[ηkWk,jGkWl,iGlE[ηl|Fl−1, El]]

which is null since E[ηl|Fl−1, El] = 0. �

Proposition 12. Assume that there exists a deterministic sequence {φn}n

such that, for i = 1, . . . , d, i) limn Dn,iφ
−2
n

P
= d∗,i < ∞,
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ii) limn φ−2
n

∑n
k=h+1 E(η2

k|Fk−1, Ek)g
2(Fk−1, Ek)W

2
k,i

a.s.
= σ2

i ,

iii) limn
∑n

k=h+1 P (|ηk| ≥ φnε[g(Fn−1, En)]−1W−1
k,i |Fk−1, Ek)

P
= 0,∀ε > 0.

Then limn φn(θ̂h,n − θ0)
d
= N (0,Λσ2

. d−2
∗,.

).

Condition ii) may be replaced by the stronger condition: for all ε > 0,

lim
n

φ−2
n

n∑

k=h+1

E(η2
k|Fk−1, Ek)g

2(Fk−1, Ek)W
2
k,i1{|ηkg(Fn−1,En)Wk,i|≥φnε}|Fk−1, Ek)

P
=0.

P r o o f. First, according to (10),

1

φn
ΛDn,.(θ̂h,n − θ0) = − 1

φn

1

2

∂Sh,n

∂θ
(θ0),(11)

where the ith term of this vector is

1

φn
Dn,i(θ̂h,n,i − θ0,i) =

∑n
k=h+1 ηkWk,iGk

φn
.(12)

Moreover according to lemma 11 and (11),

E(Dn,i(θ̂h,n,i − θ0,i)Dn,j(θ̂h,n,j − θ0,j)) = 0, i 6= j.

Then, for each i = 1, . . . , d, we apply the central limit theorem for martingales
(see for example theorem 7.4.28, [7]) to (12) and we obtain

lim
n

∑n
k=h+1 ηkWk,iGk

φn

d
= N (0, σ2

i ).

Finally using Slutzky theorem and the convergence in probability of φ−2
n ΛDn,. , we

obtain the asymptotic distribution N (0,Λσ2
. d−2

∗,.
) of φn(θ̂h,n−θ0) = φ−1

n ΛDn,.(θ̂h,n−
θ0)φ

2
nΛ−1

Dn,.
. �

7. Nonparametric estimation

Let Zn = θT
n0Wn + ηn, where ηn satisfies the assumption of model (1) and θn0

is of finite dimension d, for all n. Then, if B̃1 and B4 are checked with h =
n−1, the conditional least squares estimator θ̂T

n = [ZnW T
n ][WnW T

n ]−1 is strongly
consistent, i.e. limn θ̂n − θn0

a.s.
= 0. The proof is the same one as the proof used

in the parametric case (Wu’s lemma [20]), where θ ∈ Bc
δ is replaced by θn− θn0 ∈

Bc
n,δ(0), Bc

n,δ(0) = {θ′ :
∑d

j=1 |θ′j − θn0,j| ≥ δ}. For example, for d = 1 with
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Wn = Zn−1, then θ̂n = ZnZ−1
n−1. In this case, B̃1 is automatically satisfied on the

set of nonnull observations implying that the only condition B4 “W 2
ng(Fn−1, En)

increases a.s. to ∞” has to be checked. The supercritical Galton-Watson process
is such an example. In that case, Wn = Zn−1, g(Fn−1, En) = Z−1

n−1 and therefore
B4 (“Zn−1 increases a.s. to ∞”) is satisfied on the nonextinction set.

8. Regenerative branching processes

Let a regenerative process (see for ex. [8], [18], [22]) defined by {ξj , (Xj(.), Tj)}j ,
where {ξj}j is the process of waiting times between the successive working periods
Tj−1, Tj, and Xj(.) is the jth working process defined on the working period Tj .

Let Tj = ξj + Tj, N(t) = max{J :
∑J

j=1 Tj ≤ t}; N(t) is the number of periods

Tj until t; and let σ(t) = t − ∑N(t)
j=1 Tj − ξN(t)+1; σ(t) is, when it is positive, the

working time from
∑N(t)

j=1 Tj + ξN(t)+1 until t. Then, the regenerative process
{Zt}t may be written as

Zt = XN(t)+1(σ(t)), if σ(t) ≥ 0

= 0, if σ(t) < 0.

When the period Tj = T , for all j, with T deterministic, and independent
{ξj , (Xj(.), Tj)}j , for all j, then the different periods Tj may be considered as
replications of the same process leading for example to classical regression mod-
els with replications or ANOVA models.

We assume here processes in discrete time with

Xj(l) = Ul+1(Xj(l − 1)) = δXj(l−1)

Xj(l−1)∑

i=1

Yj,i(l)

Xj(0) = Ijδ
I
j,0,

where the {Yj,i(l)}i are i.i.d. given {{Xj′(.), ξj′}j′<j , ξj}, the conditional law of
the Bernoulli variable δI

j,0 may depend on {Xj′(.), ξj′}j′<j. The {Ij}j are i.i.d.

and independent of the past, given δI
j,0 = 1. The {Tj}j are the survival times of

the branching processes {Xj(.)}j . Therefore Zn is recursively defined from the
past of the process by

Zn = δZn−1

Zn−1∑

i=1

Yn,i + InδI
n,
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where the {Yn,i}i are i.i.d. with the same conditional laws as the {Yj,i(l)}i, and
InδI

n has the same conditional law as IN(n)+1δ
I
N(n)+1. The process {Zn}n is a

general branching process with immigration.
Let Fn−1 = {Zk}k≤n−1 and En any subset of {δI

k}k, {Ck}k, Ck being any
environmental variable at time k. Assume

E(Yn,i|Fn−1, En) = mα(Fn−1, En); V ar(Yn,i|Fn−1, En) = σ2β(Fn−1, En)

E(In|δI
n = 1, Fn−1, En) = λ; V ar(In|δI

n = 1, Fn−1, En) = b2.

These assumptions mean that the process may be size-dependent. It is the case for
population dynamics depending on a limited environment (nearly any biological
populations, for example infectious diseases, . . . ).

Denote p(Fn−1, En) = E(δI
n|Fn−1, En). When δI

n ∈ En, then p(Fn−1, En) =
δI
n. We have

E(Zn|Fn−1, En) = mα(Fn−1, En)Zn−1 + λp(Fn−1, En).(13)

Our aim is the estimation of the parameters of E(Zn|Fn−1, En) given by (13).
Assuming α(.), β(.) and p(.) known, the model is linear in θ0 = (m,λ). Here
Wk = (α(Fk−1, Ek)Zk−1, p(Fk−1, Ek)). We assume δZk−1

δp(Fk−1,Ek) = 0, for all k,
that is Wk is orthogonal, for all k, implying Dn,12 = 0, for all n. It is the case
when p(Fn−1, En) = δI

n with δI
n = 0 when Zn−1 > 0.

Let ηn = Zn−E(Zn|Fn−1, En). Then ηn is a martingale difference and we have
E(η2

n|Fn−1, En) = σ2β(Fn−1, En)Zn−1 + (b2 + λ2(1 − p(Fn−1, En)))p(Fn−1, En).
Let

v(Fn−1, En) = α−1(Fn−1, En)Z−1
n−1δZn−1 + p−1(Fn−1, En)δp(Fn−1 ,En)

g(Fn−1, En) = β−1(Fn−1, En)Z−1
n−1δZn−1 + p−1(Fn−1, En)δp(Fn−1,En)

Dn,1 =
n∑

k=h+1

α2(Fn−1, En)β−1(Fk−1, Ek)Zk−1
notation

= Sn

Dn,2 =
n∑

k=h+1

p(Fk−1, Ek)
notation

= Vn

According to (5), the estimators are

m̂h,n =

∑n
k=h+1 Zkα(Fk−1, Ek)β

−1(Fk−1, Ek)δZk−1∑n
k=h+1 Zk−1α2(Fk−1, Ek)β−1(Fk−1, Ek)δZk−1

(14)

λ̂h,n =

∑n
k=h+1 Zkδp(Fk−1,Ek)∑n
k=h+1 p(Fk−1, Ek)

.(15)
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8.1. Identifiability and consistency

8.1.1. General size-dependent case
According to proposition 10, we have the following result

Proposition 13. 1. (m,λ) is identifiable if and only if

0 < lim
n

Sn

Vn
≤ lim

n

Sn

Vn
< ∞, a.s.(16)

2, If limn VnS−1
n

a.s.
= 0 (resp. limn SnV −1

n
a.s.
= 0), then m is identifiable alone with

an asymptotically negligible information {δI
k} concerning the immigration process,

(resp. λ is identifiable alone with an asymptotically negligible information {δZk−1
}

concerning the branching process).

Remark. Since Wk,1v(Fk−1, Ek) = δZk−1
, Wk,2v(Fk−1, Ek) = δp(Fk−1,Ek),

then, for δp(Fk−1,Ek) = δI
k, SnV −1

n = ||δZ.−1 ||n||δI
. ||−1

n is the ratio between the
information relative to the presence of the branching process and that relative
to the presence of the immigration process. When the presence of these two
processes is balanced (16), the parameters are simultaneously identifiable.

The following corollary is a direct application of corollary 9 and proposition
13.

Corollary 14. 1. Assume B41: Sn increases a.s. to ∞ (resp. B42: Vn

increases a.s. to ∞). Then m̂h,n (resp. λ̂h,n) is strongly consistent.
2. Assume B4: Sn + Vn increases a.s. to ∞ with

0 < lim
n

SnV −1
n ≤ lim

n
SnV −1

n < ∞, a.s..

Then (m̂h,n, λ̂h,n) is strongly consistent.

8.1.2. Bienaymé-Galton-Watson case with immigrations allowed in
the 0 state. Assume that the {Xk(.)}k are i.i.d. Galton-Watson processes,
independent of the waiting periods {ξk}k which are assumed i.i.d.. Therefore
α(.) = β(.) = 1. Assume p(Fk−1, Ek) = δI

k, for all k. Then Sn =
∑n

k=h+1 Zk−1,
Vn =

∑n
k=h+1 δI

k, and Sn ≥ Vn. According to (14) and (15), the estimators are

m̂h,n =

∑n
k=h+1 ZkδZk−1∑n

k=h+1 Zk−1δZk−1

; λ̂h,n =

∑n
k=h+1 Ikδ

I
k∑n

k=h+1 δI
k

.

Notice first that when m < 1, then {Zn}n is stationary, implying that the
asymptotic information given by limn Sn+Vn is stationary when n−h is fixed, and
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therefore it cannot increase to ∞. The consistency of the estimators cannot be

ensured in that case. So we will assume that h is fixed. Let s∗ = E(
∑Tj

l=1 Xj(l)) =
λ(1 − m)−1.

Proposition 15. If E(T1) < ∞, and therefore m < 1, then on the set
{limn Vn = ∞}, we have limn SnV −1

n
a.s.
= s∗, limn Vnn−1 a.s.

= [E(T1)]
−1, and

(m̂h,n, λ̂h,n) is strongly consistent.

Remarks
1. If E(ξ1) = ∞ with limn P (ξ1 > n)[P (T1 > n)]−1 = ∞, then limn P (σ(n) ≥
0) = 0. Therefore on {limn Sn < ∞}, the information is not sufficient for estimat-
ing m nor λ. 2. If E(T1) = ∞ i.e. m ≥ 1 with limn P (ξ1 > n)[P (T1 > n)]−1 = 0,
then limn P (σ(n) ≤ 0) = 0, which implies that on {limn Sn = ∞}, m̂h,n is
strongly consistent whereas on limn Vn < ∞, the information concerning λ is not
sufficient for its estimation.

P r o o f. Use the results in the general case together with results of the
renewal theory and those of regenerative processes for branching processes. First
note that limn Vnn−1 a.s.

= [E(T1)]
−1 by the classical renewal theory (cf [8]). More-

over
∑Vn

k=1 Uk−1

Vn
≤ Sn

Vn
≤

∑Vn+1
k=1 Uk−1

Vn + 1

Vn + 1

Vn
,(17)

where the {Uk}k are i.i.d. as U1 =
∑T1

k=1 Zk−1 with E(U1) = λ(1 − m)−1,
V ar(U1) < ∞. Therefore according to the SLLN for i.i.d. variables and us-
ing (17), we get limn SnV −1

n
a.s.
= E(U1). This implies according to corollary 14,

that (m̂h,n, λ̂h,n) is (simultaneously) strongly consistent. �

Notice that we could also use here directly the SLLN for i.i.d. variables
for obtaining the strong consistency of λ̂h,n, and that of m̂h,n may be obtained

directly by using m̂h,n ' [SnV −1
n − λ̂h,n][SnV −1

n ]−1 which converges a.s. to m.

8.2. Asymptotic convergence rate of θ̂h,n − θ0; θ0 = (m,λ)T

Proposition 16. Assume the frame m < 1 of proposition 15. Then

lim
n

√
n(θ̂h,n − θ0)

d
= N (0,Λ),(18)

where Λ is a diagonal matrix with σ2s−1
∗ E(T1), b2E(T1) on the diagonal.

P r o o f. The result follows from proposition 12 with φn = n1/2. Here we
have ηng(Fn−1, En)Wn,1 = (Zn −mZn−1)δZn−1 , ηng(Fn−1, En)Wn,2 = (In −λ)δI

n,
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d∗,1 = s∗[E(T1)]
−1, d∗,2 = [E(T1)]

−1 and σ2
1 = σ2s∗[E(T1)]

−1, σ2
2 = b2[E(T1)]

−1

since iii) becomes

n−1
n∑

k=h+1

E(η2
k|Fk−1, Ek)g

2(Fk−1, Ek)W
2
k,1 = n−1

n∑

k=h+1

Zk−1σ
2

= n−1Snσ2

n−1
n∑

k=h+1

E(η2
k|Fk−1, Ek)g

2(Fk−1, Ek)W
2
k,2 = n−1

n∑

k=h+1

b2δI
k

= n−1Vnb2.

We have, according to the stationarity of the process, the Lindeberg’s condition:

lim
n

n−1
n∑

k=h+1

E([Zk − mZk−1]
21{|Zk−mZk−1|≥εn1/2})

P
= 0(19)

lim
n

n−1
n∑

k=h+1

E((Ik − λ)2δI
k1{|(Ik−λ)δI

k |≥εn1/2})
P
= 0.(20)

Notice that in that case, we also have

−1

2

1√
n

∂Sh,n

∂θT
(θ0) = (

∑Sn
l=1(Yl,i − m)√

n
,

∑Vn
l=1(Il − λ)√

n
)

and therefore the convergence of each term of this vector may also directly follow

from the central limit theorem for random sums together with limn Snn−1 P
=

s∗[E(T1)]
−1, limn Vnn−1 P

= [E(T1)]
−1. Finally (18) follows from lemma 11. �
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