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STATISTICAL INFERENCE FOR PROCESSES DEPENDING
ON ENVIRONMENTS AND APPLICATION IN
REGENERATIVE PROCESSES

Christine Jacob, Nadia Lalam, Nicolas Yanev

We consider a process {Z,, }nen, recursively defined by Z,, = f(F,,—1, En)
+ N, where Fp,_1 = {Zith<n—1, En = {Ck}i<n, {Cn}n is an observed ex-
ogenous process and {7, }, is a martingale difference sequence for the filtra-
tion generated by (Fi,—1, Ey) such that Var(n,|Fn—1, Fn)g(Fn-1, Epn) < 00,
a.s. for some known function {g(F,—_1, E)}n. This class of models covers a
very broad range of models such as regression models, ANOVA models, au-
toregressive processes, branching processes, regenerative processes, .... We
assume that f(F,_1,E,) depends on an unknown parameter po and that
f() motden fuo(.) may be decomposed according to f,(.) = é?(.)—I—f,ﬁ)(.),
where 0y € R?, d < oo, is asymptotically identifiable in féj)() as n — 0o
at some rate v(.) whereas fﬁ(j)()v() is asymptotically negligible. We build
the Conditional Least Squares Estimator of 6y based on the observation of a
single trajectory of { Z, Ci }1, and give conditions ensuring its strong consis-
tency. The particular case of general linear models according to g = (8o, o)
and among them, regenerative processes, are studied more particularly. In
this frame, we may also prove the consistency of the estimator of vy although
it belongs to an asymptotic negligible part of the model, and the asymptotic
law of the estimator may also be calculated.

1. Introduction

We consider the following one-dimensional nonlinear autoregressive process
{Z,}nen that may depend on a multidimensional exogenous process {C), }nen:
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Zy is given and for n > 1,
(1) Zn = [(Fp—1,En) + mns En = {Citi<n, Fam1 = {Zk}r<n—1-

We assume that f(F,_1, E,) is a measurable function of (F,_1, E,)and {n,}, is
a martingale difference sequence for the filtration generated by F,_1, E,, that
is, denoting in the same way the variables (F,_1, E,) and the o—algebra they
generate, E(n,|F,_1,F,) = 0. We also assume that there exists 02 < oo and
g9(F,—1, Ey,), a measurable and known function of (Fj,—1, E,,), such that

a.s

@E(nian—la En)g(Fn—lv Ey) < o’

We assume that f(F,_1, Fy) depends on an unknown parameter pg which may
be of infinite dimension, that {g(F,—1, En)}, does not depend on pg, and that

() notation fuo(.) may be decomposed according to f,,(.) = (gs)() + fﬁg)(.),
where fg(;)(Fk,l,Ek) depends on 6y € © C R?, d < oo, and fg(l)(Fk,l,Ek) is a

continuous function of # at 6y; 0y is the parameter to be estimated, while fl(j)()
is the nuisance part of the model.

This class of models covers a very large set of processes such as linear or
nonlinear stochastic or deterministic regression models, ANOVA models, linear
or nonlinear ARMA processes, regenerative processes and branching processes.
It is a generalization of the NARX models (nonlinear autoregressive models with
exogenous inputs) given in [15]. The model presented here may be explosive in
its first two moments, which is the case, for example, of supercritical branching
processes.

When f(gl)(F k—1, Ey) is infinitely continuously differentiable at any 6 € ©, we
build the CLSE (Conditional Least Squares Estimator) of 8y from n — h observa-
tions of a single trajectory of {Zk, Ck }k<pn:5(F,_,,Ey)#0, Where 0(Fy_1, Ey) = 1 if
the observation (Zy,Cy) is taken into account in the estimator, and is zero oth-
erwise. We study its asymptotic properties, mainly the consistency, as n — oo,
with either A or n — h maintained constant. We give general conditions for the
strong (or weak) consistency of the estimator, which are easily checked either the-
oretically or by numerical simulations. In the general case where fe(l)(Fk,l, Ey)
is a continuous function of 6 at 6y, not necessarily differentiable, we build a
DCLSE (Discrete CLSE) by minimizing the conditional sum of squares on a dis-
crete subset of ©. In both cases, the conditions for consistency are extensions of
those given in [16] in the setting of size-dependent branching processes and they
are the same for the two estimators. The first condition concerns the asymp-
totic identifiability of 6y in fe(;)(.) at some rate v(.), the second one concerns
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the asymptotic negligibility of ( l%)() - l(j)())v(), where fl%)(.) is any esti-
mation of f,(f))() And the third condition concerns the amount of information
Dn = Y4 pi1 0(Fi—1, Ep)[v(Fo—1, Ey)|"?9(Fi—1, Ex) Dy, which has to tend to
infinity, as n — oo. This last condition appears to be not only a sufficient con-
dition but also a necessary one when the first two conditions are checked. The
identifiability condition ensures that the model fe(i)(') is uniquely defined from
0o, that is fe(i)(.) is not asymptotically equivalent to fe('l )() with 60, # 6. Simul-
taneous consistency which occurs under the simultangous identifiability of the
parameters, allows to study the asymptotic distribution of the estimator. But
we will show that the simultaneous identifiability is not a necessary condition for
consistency.

We study more deeply the class of linear models Z,, = ,qun ~+ 1, where the
vector W), is a measurable function of (Fj,_1, E,,). This class of models covers au-
toregressive processes (W,, = F,,—1), ARMA processes (W,, = Fp,—1, {1k }k<n—1),
regression models (W,, = {C}}x<n, where C}, is a vector of explicative determin-
istic or stochastic variables) and ANOVA models (W,, = {C} }x<,, where Cj, is a
vector of 0 and 1).

Usual consistency criteria in linear models with g(.) = 1 and no nuisance pa-
rameter, are often based on the relative rate of growth to infinity of A, (A,) and
Amaz(An), where A, = 30, Wi W' (see for example [1], [3], [12], [13], [14],
[15]). The weakest assumptions obtained in this setting are those given in [13]:
the least squares estimator is strongly consistent if [In Apaz(An )P Amin(An)] 7t
converges a.s. to 0 for some p > 1 with A\, (Ay) converging to co. We extend
and weaken this condition. Let

D7(11) - Z Hngl)Higd(Fk*17Ek)g(kalaEk)7l = 172
k=h+1
D = ST WL WP | 1.6 (Fiy, Ex)g(Fi1, Ex).
k=h+1

Assume the asymptotic identifiability of 6y in {9(7; Wél)}n and that of 1y in
{zxg Wf)}n. If there exists a deterministic sequence {¢, }, such that

o\ 7. ~ . . . . Fr. ~ a.s.

i) limy, |60 — OnnuollL.3 in distribution(resp. limy, ¢n |00 — Oh |1, < 00),

ii) lim,, D42 D] 0: Tim, DD[DW1 2 g
Tim. P . O

111) hmn ¢nD’Sll72) [D’Sll)]il (Tesg a.s ) OO’

then lim,, é\h,n “ 0y and lim,, Dhon P(resp.a.s.) vy. For example, assume d = 2,

] P(resg. a.s.)
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(Wi = O(1), [Wia| = O(k™'/?), iid. {n,}n. Then i), i), iii) are satisfied in
probability with ¢,, = n'/? and a.s. with ¢, = n'/?[Inlnn]~/2. But the condi-
tion limy, [In Az (An)]? [Amin(An)] 1 %0 is not fulfilled here even in the limit
case p = 1, since Apaz(A4y) = O(n) and Apin(4,) = O(Inn).

When the vector W, is orthogonal, for all n, i.e. Wy, ;W,, y = 0, for all j # j',
the simultaneous identifiability means that the individual amounts of informa-
tion, {Dy,;}i=1,4 are balanced between the different components {6¢;}i=1,4. But
the only condition lim,, D,, ; 2 50 ensures the individual strong consistency of
the estimator of ;. In this frame, we study more particularly the strong consis-
tency and the asymptotic normality of the estimators of the offspring mean and
the immigration mean for the regenerative Bienaymé-Galton-Watson branching
process with immigration only allowed in the state 0.

2. Identifiability and negligibility

Assume 6 6(:), © being a compact set of R? d < co. Let § > 0 and B§ = {0 =
(01,...,04) € © |0k — Oog||z, > 0} Let ||.||n be a norm on the space of func-
tions { fxntk<n. Let v(Fi_1, E}) a measurable function of (Fj_1, E}) which may

depend on 6o, Ag,g(Fr—1,Er) = (féj)(kal,Ek) - fél)(qu,Ek))v(qu,Ek%
for some measurable function v(Fj_1, Ey), and let us introduce the following
definitions:

Definition 1. 0y is asymptotically identifiable in {fe(i)(Fk,l, E)}
for {|]||n}n if there exists {v(Fyx_1, Ex)}x depending only on Fy_1, Ex, such that,
for all 6 >0, B1:lim,_, . infyepe | Agy,0(F -1, E)||n 0 s satisfied. If more-
over, condition B2 : lim, supge ge || A60,0(F—1, E.)|[n C o is satisfied, then
v(.) is called a rate of identifiability of 0.

Notice that B1 and B2 are satisfied when the stronger conditions
Bls : lim, ., infoe e | Agy 0 (Fno1, Bn)| > 0 and
B2s : limy,_ o0 SUPge pe 1Ay 0(Fn—1, En)| ‘2" 0 are satisfied.

Definition 2. The process {r(Fj—1, Ey)}y is asymptotically negligible if
B3 :lim, oo ||P(F_1, E)||, = 0.

3. Conditional Least Squares Estimator
We aim to estimate 0 considering the unknown process { fﬁﬁ)(Fk_l,Ek)}k as a

nuisance process. If the unknown part of { f,%)(Fk,l,Ek)}k is given by a finite
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dimensional parameter vy, then vy is set to a given vector v, based on the ob-
servations until n. For example we may take v, = U}, defined by (04, Vnn) =

arg ming ,)cox N §h7n,y(0), where © x N is compact, or we may set v, = 0.
Now if the unknown part of {f,(f)) (Fy—1, Ex)}k is of infinite dimension, then we
set fﬁ?)) (Fr—1, Ex) to 0, for all k. For simplifying the notations, we will write
v instead of vy, {fl%)(Fk_l,Ek)}k for any estimation of {fl%)(Fk_l,Ek)}k, and
Foow(Fie1, Ex) = fo (Fi1, Ex) + £2) (Fi1, Ex).

In the case of fg(l)(.) infinitely differentiable at any 6, we define the CLSE
estimator 6y, ,, ,, of 6y in the following way

(2) Ohny = arg min Shnu(0)
B Shaw®) = D (Zk— fou(Free1, Br))*0(Fyor, Ex)g(Fe1, ),
k=h+1

where §(Fy_1, E)) is a Bernoulli variable, measurable function of (Fy_1,E)),
equal to 1 when Z — fg,(Fj—1, E) is taken into account in the estimator. For
example, if the environmental condition C} necessarily leads to a bad observation
of Zj, we do not take into account Z — fg ., (Fr—1, Ex).

In the general case ( fe(l) (.) continuous at 6y but not necessarily differentiable),
we define the DCLSE (Discrete CLSE) by:

em,h,n,u = arg min Sh,n,u(g)a
€O,

where ©,, is a finite countable subset of ©.

4. Strong consistency of the Conditional Least Squares Estima-
tors

Assume first that fe(l)(Fk_l,Ek) is infinitely continuously differentiable at any
0 € O©. Let v(Fx_1, E)) as in the previous section and

Abg w000 (Fr—1, Ex) = (foov0 (Fr—1, Ek) — foo (Fr—1, Ex))v(Fr—1, E).
Then Agy 0,0 (Fi—1, Ei) = Dggso(Fr—1, ).
Since Shpn,(6) defined by (2) may be written as

n

Shnw(0) = > (0 (Fae1, Br) + Aoy o (Fe1, Er))*a(Fyo1, Ex)
k=h+1

a(Fy_1,Ey) = 0(Fy_1,E)[v(Fy_1, Er) 29(Fs_1, Ey),
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the estimator 5;%“7,, also satisfies 5;%“7,, = argmingcgShn(6), where Sp, ., (0) =
gh’nyy(Q)Dgl with D, = > 1. a(Fr_1, E}). This leads to the natural norm
[ frnll2 = [ZZ:h+1 f,f’na(Fk_hEk)]D;l on the space of functions {{ fx.n}r<n}-
From now on, we use this norm. In the following proposition, we prove that if 6
is asymptotically identifiable in {f(gs)(Fk,l, Ex)}i at the rate {v(Fj_1, Ex)}x and

if {5 (Feo1, Bx) — 53 (Feo1, Ex))0(Fk-1, Ex) }ren is asymptotically negligible,
then the strong consistency of {0, .} is ensured under some weak additional
conditions.

Proposition 3. Assume fy(.) infinitely continuously differentiable at any 0,
and the following conditions B1 to B5:

. . a.s.
1) Bl1: lim,, . infgepe || Dgy 0(F -1, E))|ln > 0.

S a.s.
B2s: limp o0 SUPge pe |Agy,0(Fr1, En)| < oo.

2) B3: Tty || (/i (o1, B) = S (Fo1, E))o(Fo1, Bl "2 0;
3) B4: {Dy}, is a.s. increasing to co;
4) B5: for all § > 0 and (Fi_1, Ey), SUDge e fg(l)(Fk_l,Ek) s attained at some

sup
Fy_1,Ex

Then, {Oh.n.ytn is strongly consistent, i.e. lim, Op ., = 0.

. . 1 . . ;
(respectively infpepg fe( )(Fk,l,Ek) s attained at some Hgil’Ek).

If B3 is checked in probability instead of almost surely, then {ghm,y}n 1s weakly

. . .o~ P
consistent, i.e. limy, 0, ,, , = 0Op.

Remarks.
1. B2s may be replaced by the weaker assumptions B2 and
[ L _9 a.s.
B2w : lim, o0 >, SUPge pe Ago,g(Fk—laEk)a(Fk—l,Ek)Dk2 < oo.
k=h+1
2. When the nuisance parameter vy is of finite dimension, then B3 implies that
v is not asymptotically identifiable in f,(f))() at the rate v(.).
3. Assume that 6 is asymptotically identifiable at the rate v1(.) and vy is asymp-
totically identifiable at the rate va(.) with ve(.) > v1(.). Then we may first prove

the consistency of ghm using the fact that flgg)(.)vl(.) is asymptotically negligible,
and then we may prove the consistency of vj, ,, if ( fe(;)(-) - fé(\l) (.)v2(.) is asymp-
h,n

totically negligible, which will be checked if é\h’n converges sufficiently rapidly.
We will detail this problem in the linear case (following section).

Proof. The proof relies on the martingale difference structure of n,
([9]) and on a sufficient condition for consistency of minimum contrast esti-

mators ([20]). Let B§ = {0 € © : 329 |0; — 0o, > 6}, If for all § > 0,



115

h_mn_@o(infgeBg Shn(0) — Shnwp(o)) > 0 as. (resp. in probability), then
{é\h’ny,,}n is strongly (resp. weakly) consistent (proof in the a.s. case: assume
that {@\h,n,y}n is not a.s. consistent; then there exists a non negligible set of
trajectories w such that, for each w, there exists ¢ and an infinite subsequence
{0h ;v tn; With 0y, 5, , € BS, for all n;, implying that Sh pn, v (Ohn,0) > Shnw(00),
which is in contradiction with the definition of @\h’nivy; in the probability case, ¢
and {n;}; do not depend on w).
According to B5, there exists 6, such that

Oienlgc Sh,n,l/(a) - Sh,n,u(QO) = Sln(en) + 25271(971) + 25371(971)7
9

where S1n(0n) = 25 _p41[800,0, (Fi—1, Bx)*a(Fi—1, Bx) D, '

Son(0n) = D h—ni1 Doowoitow (Fe—1, Bi) Doy 0, (Fr—1, Ex)a(Fr—1, Ex) D,
S3n(0n) = > h—p i1 MV(Fe—1, Ex) Doy 0, (Fi1, Ex)a(F—1, Ex) Dy

We successively study each Sy, (6,), 7 € {1,2,3}.

1. Since S1,,(0n) = ||Day.0, (F -1, E)||2, then

lim $1,(6,,) > lim inf [|Ag,6(F_1, E)|2.
n n 0€B

Using B1, the right-hand side is strictly positive yielding lim,, S1,,(6,) > 0 a.s..
2. First notice that So9,(0,) = 0, if v = vy. Otherwise, according to Holder’s
inequahty, ‘SQn(Gn)’ < HAGO,VO;OO,V(F—la E) ‘ ’n‘ ’AOO,OH (F—17 E) ’ ‘n- implying

’h_ms?n(gn)’ < E ’‘AGO,Z/O;OO,Z/(J{T.—l7Ej.)Hn-E sup HAGO,O(F‘.—lvE.)Hn-
n n " 9eBs§

The right-hand side is equal to 0, due to B2 and B3, implying lim,, So,,(6,,) =" 0.
3. Consider Ss,(0,). Assume first that h is constant. Let O, a neighborhood of
O such that all the conditions valid on © are also checked on O., (B1, ..., B5,

fg(l)(.) infinitely differentiable). Let
AG;OO(Fk717Ek‘) = fG(kalyEk‘) — feo(kalaEk)

Lo(0) = Y mAog(Fro1, Ex)g(Fio1, Ex)
k=h+1

{L,(0)}, is a martingale and |S3,,(0,,)| = |Ln(6,)| D, . Using lemma 5,
lim,, S3,,(6,,) “ 0.

Assume now n— h constant and denote L1 ,,(6,,) for L, (6,) when h = 0. Then
L (0n) = L17n(0,) — L1 4(0,). Then, as above, since Ly, (6,) < supy L1 ,(6) and
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L1 1(0,) < supg L1 1(0), and using D,, > Dy, we get limy, L1 ,(6,) D, ! “ 0 and
lim,, LLh(Gn)D;l “2 0, implying lim,, S3n.(0n) 0. O

Lemma 4. Let aj, > 0, for all k, with a1 > 0, and S, = Y ;_, ar with
lim,, S, < oco. Then > ;o4 akS/l;2 < 2af1 —lim, S, 1.

Proof. We have

n n n
STt =S =D (S =S ) =D ak[Sk1Skl T =D anS;
k=2 k=2 k=2
Then the result follows from S;* = a; ' and Y p_, axS; 2 = Y, axS; 2 —a157 2.
This result, in the weaker form > 3o axS;? < 2aj*, is given in [9] (p.158) and
is based on another proof.
0

Lemma 5. Let ©., a neighborhood of © such that fe(l)(.) is infinitely con-
tinuously differentiable at any 6 € O.,. Assume also

—_— ~ a.s.
B2s : limg supgee_ [A0,00(Fr—1, Er)v(Fr—1, Ep)]? < oo.
Then lim,, L,,(0,)D; ' %

n

Proof.  First notice that Ly(6,) is generally not a martingale. Assume
first that © = [0yin, Omaez] € R. Let O, a random regular grid of size e, <
Omaz — Omin, independent of {Z,,},, and which covers ©, that is ©, = {6.;}i=1,..1,

With Guis1 — Osi = €4, Ou1 > Omaws Os1 < Opin, and 41 follows a uniform law
on (Omin — €x,0min). This implies that for any § € ©, 6,(0) — 0 is uniformly
distributed on (—¢,/2, +¢,/2), where 6,(6) is the point of O, the nearest from 6.
If © C R%, we assume this on each coordinate j, j = 1,...,d. We have

Ln(0n) = Ln(0x(0n)) + [Ln(0n) — Ln(0+(0n))].
We prove first limy, | L, (0+) Dt | € 0, for any 0. € O.; {Ln(0xi)}n is a mar-
tingale because {n}; is a martingale difference sequence and, for each k, given
Fi—1, By, Ao,;:0,(Fi—1, E)) is independent of ny,, since 6, is independent of {Z,, },.
Moreover D,, is (F,—1, E,)- measurable and increases with n, and according to
B2s and lemma 1

oo
> E(mBo..00(Fe-1, Br)g(Fi1, Bi)* | Fio1, Bx) Dy 2 <
k=h+1
~ s a.s
US;E[AQ;QQ(Fk—lvEk)U(Fk—17EkJ)]2 Z a(Fk—lyEk)D1€_2 <
) k=h+1

o0



117

Therefore the SLLNM may be applied, implying the result. Then, since ©, is
finite, lim,, | Ly, (0«(0,,))| D, < lim, maxg_.co, |Ln(0:)|D,; ' = =

Next we are going to prove that lim,, | Ly, (0,,) — L, (04(6,))|D;* 20, by using
the fact that this quantity depends on the difference 6,, — 6,(6,,) and not on the
particular value taken by 6,. Let

n

Upon(0) = meBa.(0)(Fi1, Er)g(Fi1, Bx) Dy, notaion > VE)

k=m k=m

U, (6 anAMo(Fk 1, Ep)g(Fi1, Bx) Dyt

k=m

Since Uy, n(0) = Unmn(0) — Unn(04(0)), where {Up,n(0)}n and {Upmn(04(0))}n
are martingales, then {Uy;, ,,(0)}, is a martingale, and according to Jensen’s in-
equality, this implies that {supg|Uy, ,,(0)|}» is a submartingale. Therefore using
th.2.1 from Hall and Heyde (p.14), we get

m/

AP( max sup|Uy, ,(0)] > A) < E(sup |Uy, ,,,(0)]) < E(sup | ZY,:(G) )
0 [

nm<n<m/ g

Denote 0, = argsupg |Uy,, ,,.,(0)]. Using Holder’s inequality, for any A > 0,

m/

* < 0. \D-112)1/2
M s oo (U7, (O] > ) < BD_YE @) DT

Let k € {m,...,m'}. Using the definition of 7, and Taylor’s expansion of
Agm“g*(gm,)(Fk,h Ey) at 0.(0,,) which depends only on each coordinate of 6,, —
04(0,) given Fy_1, Ey, we get

P({mx € EYN{Aq_, 0.0, ) Fr—1,Ex) € D} Fi_1, E) =
P({Zx € E+ fuo(Fe—1,E = k)} N {Aq , 9.0, ,)(Fk—1,Ex) € D} Fy—1, Eg) =

// (Ag 0.0, Fk-1,Er) € D|Zy =

€ + fuo(Fk:—lka)70m’ - 0*(97%’) — ta Fk—lka:)'
dP(Qm/ — 9*(9m’) = t‘Zk =e 4+ fuo(kalaEk%kal?Ek)-
dP(Zy = e+ fuo(Fr—1, Ey)|Fr—1, Ex)
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Since, given Fy_1, Fg, Agm“g*(gm,)(Fk,h E}) depends only on coordinates of the
difference 6, — 0,(0,,/), which follow a uniform law on (—&,/2, +&./2), then

P({mx € E}Y N {4y _, 0.0,,)(Fr—1, Ex) € D}|Fy._1, E},) =

// (Dg. 0.0, Fk-1,Ex) € D)0y — 0(0rny) =t, Fi—1, Ey).

(2 ) = t|Fg—1, Ex)dP(Z = e + fuo(Fi—1, Eg)|Fi—1, By) =
(Aem,,e*(em,)(qu,Ek € D|Fy—1, Ex)P(ny, € E|Fy—1, Ey)

that is, nx and Ay 9.9, ) (Fe— 1,Ek) are independent, given Fy_1, E}, leading to
I Ve ) Dy 2 = BISS BV (600) D\ Fi1, Er)). Consequently

AP(  max /sup U (@) > A) <

n:m<n<m

ZE NP, B2 <

Z Sup [8g.0,(6)(Fre1, E)v(Fi1, Ey)*a(Fre1, Ex) D *])? <

k=m

o(E([sup SUP[AGG*(G)(Fk 1 En)o(Fy—1, E? Y a(Fy—1, By) D} *)?

k>m k—m

According to B2s, to lemma 1, and to Ag g, 9)(-) = Da,g,(6)(-) + Aoy,0.(6) ()5
limy, supg[Ag 6, () (Fr—1, B )v(Fr—1, Ep)]? Y e py1 0(Fr—1, Ek)D,;2 is a.s. finite
implying that sup j-.,[Ag, 6. 0)(Fr—1, Be)v(Fi—1, E)* Yoy a(Fe-1, Bx) D
converges a.s. to 0, as m — oco. Consequently according to Beppo-Levi lemma,
E[Sup97k>m[A979*(9)(kal, Ek)U(kaly Ek)]2 Zkzm a(kal, Ek)Dk_2]2 tends to 0,
as m — 00. Moreover

P( sup sup|Uy,,(0)| > A) =lim P( max sup|Uy, ,(0) > ).

nm<n 0 ’ m/’ m<n<m’ g

Therefore P(sup,,.,,,<, Supg [Uyy, ,(0)] > A) tends to 0 as m — oo. This implies
that sup,,.,,,<,, supg |Uy, ,,(0)| converges to 0 in probability, and therefore there
exists a subsequence sups,,.,,,. <, Supg |Uy,. ,(6)| which converges a.s. to 0, as m; —
oo. But, for m > m;, Uy, ,(0) = Uy, ,,(0) = Uy, ,_1(0) which implies

mi,m—1
Sl;p!U;Z,n(H)\ < St;p!UrZi, (0 )|+sup| mim—1(0)]

< sup|Up n(@)l+  sup sup|Up, ()

m’:m’'>m;
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This 10plies Py, 5Py [V (0)] < 250Dy, 51Dy [T, o(6)] and therefore
the left-hand member converges a.s. to 0, as m — oo, since the right-hand
member converges to 0.

Then, it remains to show that lim,, [L,(6,) — L, (0+(6,))|D;;* “2 0. Denote

Sen = ;:11 Y;*(0n) definition Ul g 1(05). We have

n

Ln(gn)_Ln(e*(gn)) _ i Yk*(en)Dk _ Z (SZ+1n Sz,n)Dk

Dn n Dn
k=h+1 k=h+1
_ 5 zn: S;}k,n(Dk — D) . ZZ:h+1(S;+1,n - SZ,n)ak
- 1n - n
Since Siy 1 — St = Upn(0n), then
Ln(gn) - Ln(a*(gn)) _ Zzzh+1 Ul:,n(en)ak
Dy, ZZ:;M ak
implying
lim [En(On) = Ln(0-(6n))] < hmhm 1 a Y sup Uz, (0,)] + limlim sup |UF, (6,)]
n Dy, 21 ar k<N " N n Nepen "

Now using Uy, (0n) = U y_1(0r) + Uy, ,,(0), for the first term, and Uy, (0,) =
UN(0n) — Uy j—1(0n), for the second term, we have

L (0n) — L (0.(6, v
lim £ (0n) (6:(6))] < hmhm 2y ¢ [Sup Sup U n—1(0)| +sup Uy, (0)]+
n D, no Y1k k<N o
lim lim[sup [Uy,, (6)| + sup sup [Uy ;.1 (6)]]
n 0 N<k<n

Since lim, [ ax][227 ax] ! supy< v supy Ui ny—1(0)] “2 0, then

- Ln(Bn) = L@ (Bl _ o 30
lim < limlim &=-—[sup Uy ,(0)] +
1 D, i nzlak[e N (0)]

lim 1im sup |Ux ,(0)] + lim sup sup |Uy 1 (0)]]
N ’ N N<k 0 ’

< 311msupsupUNn(9)]
N pn>N ¢

which is null a.s.. O
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Consider next the case where fg(l)(.) is not necessarily differentiable. Let G,
a regular grid of R? of size ¢,,, that is G, = H?ZleJ, where Gy, j = {Tm,j}j,
Tmj+1 — Tmyj = Em. Assume lim,, e, = 0. Let ©,, = © NG, and define the
DCLSE of 6y by é\m,h’ny,, = arg mingeeo,, gh’ny,,(ﬁ).

Proposition 6. Assume fe(l)(Fk_l,Ek)v(Fk_l,Ek) continuous at Oy, uni-
formly in k, i.e. Timg,, (g, —g, Dy | (F5 1) (Fk-1, Ek)— i) (Fkv, Ei))o(Fi1, By)|
“2 0. Assume B1, B2s, B3, B4 and B5. Then lim,, lim,, @\m,hm,y 2 0y (resp.
lim,, lim,, @\m’hm’y £ 0o, if B3 is checked in probability).

Proof. The proof is similar to the previous one and relies on Wu’s
lemma ([20]) applied to ©,,: Let 6,,(6p) the point of ©,, the nearest from 6y
and let BSs = {0 € Op, 0 3201 [0; — [0m(00)];| > 6}. Then, if for all § > 0,
lim,, lim,, (infge ge ; Shn,u(0) = Shnu(0m(09)) > 0 a.s. (resp. in probability), then

~ . P). ) o
limy, O, o, a.s(rezp.P) 0m(00) (proof in the a.s. case: assume that it is not true.

Then there exists a non negligible set of trajectories w such that, for each w, there
exists ¢ and an infinite subsequence {Gm] hongw bmgm; With 9m by € Bs, for
all mj,n;, implying that Shmw(gmj’h,m’y) > Shoniw(0m;(00)), for large mj, n;,
which is in contradiction with the definition of é\mj’hynh,,; in the probability case,
d and {n;}; do not depend on w).

According to B5, there exists 6,, 5, such that

961%£ Sh n 1/(9) - Sh,n,u(gm(GO)) = Sln(gm,n) + QSZn(em,n) + 253n(9m,n)7

where S1n(0mn) = 3 [20,,(80).0m.0 (Fe—1, Er)?a(Fe_1, Ex) DY,
Zh
Son(Omn) = ) ; Ag000:0m(00) w (Fl—15 Ert) Do, (00),0m.n Fr—1, B )a(Fi—1, Ex) D,
=h+1

n
S3n(Omn) = > m0(Fr—1, Ex) Ao, 00).0mn Fr-1, Br)a(Fe_1, Ex) D"
k=h+1

As previously, we have lim,, S, (0r,.n) < 0, limy, S3y,(0m.n) “2 0, and
‘h_mh_ms?n(gm,n)’ S
m n

i Tim lim 2
Fim Timn | Agy 0, (60 [l Tin Tian || (£2) (F -1, ) — A (F 1 E)o(F o1, ).
21im sup [|Agy0(F -1, E.)||n-

" 9eBS
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which converges a.s. to 0 according to B2, B3 and lim,, 0,,(0y) = 6y and the
continuity of fe(l)(.) at g. O

5. Strong consistency in the linear model

Assume f(F,_1,E,) = MOTWH, where W), is a measurable function of (Fj,_1, E,,).

def.
Let v_l(Wk) = HWkHLp ef [Z;.lzl |Wk7j|p]1/p. We also denote ||[Wy]| for ||Wk]|Lp

Since by Holder’s inequality: |[Wy||1 < ||[Wy]|z,d"/?, for any ¢ with p~t+¢~! =1,
then B1 with p = 1 is the weakest condition among conditions B1 with p > 1.
Whereas B3 with p = 1 is the strongest one. For simplification of the notations,

assume here 0(Fj_1, Fy) = 1, for all k. Assume that we can decompose W,
according to W,, = ( TSI),W,?)), T(LZ) being the maximum subset of W,, such

that lim, D' D' = 0, where DY = S |[W\?|12g(Fy_1, Ey), i = 1,2, D, =
S Wil Pg(Fiy, By). Whriting W = W |[W,||~L, i = 1,2, this means that
{HW,?H};C is asymptotically negligible.

Notice that if Wél) and W1§2) are orthogonal, for all &, i.e. W,E?ij) =0,
for all i, j, then, for all k, there exists ¢ € {1,2} such that W, = W,gi) implying
HW](;)H =0orl, ie HW,(;)H =4 where 6z = 1if Z # 0 and is 0 otherwise.
Then

w

2k=nr1 Oy a(Flo—1, Ei)
ZZ:hH(éka + 5W£2))G<Fk717 Ey)

—(2
T2 = 16wl =

Therefore, in the orthogonal case, the negligibility of {||W,(€2)H}k means that the

mean number (or percentage) of observations of W,(f), weighted by a(.), tends a.s.
to 0. In the general case, according to the following lemma, we can equivalently

(1)

use D, or Dy’ in proposition 3.

Lemma 7. Assume lim,, DT(LQ)D;1 = 0. Then

vl

’Dn - D’SLI)‘ a.
n——————

lim D,

0.

1 2 1 2
Proof. Use Wl PIP/> = [[W" P+ [IW2IlP < (W12 + (121272
which implies D,, < Dg) + D,(LQ), leading to the result since lim,, D%Q)D,; L2,
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Let 6y, the subset of g relative to Wél) and 1, the subset of g relative to
W,(LQ). Then the CLSE (0}, V) may be written in the following way

4) O, Onn) =

0> 2ol WWI gFer, B WOWT (B, B
k=h+1 kfh+1
(> (2 - 0L W OOYWDT g(Fer, Byl Z WOWE g(Fio1, B ).
k=h+1 k=h+1

In the particular case where Wy is an orthogonal set of variables, for all k, that
is Wy, ;W ; =0, for all k, (4) is reduced to

n n
i =Y, ZWEg(Fe 1, BN Y Wiig(Fror, Ex)] ™,
k=h+1 k=h+1
(5) i=1,...,d.

This means that, in that case, we aim to prove either the individual consistency
of each fip i, or the stronger property of the consistency of é\h’n, under the
identifiability of 8, and in addition the consistency of U, ,, under the identifiability
of vy. The simultaneous consistency means that the rate of convergence is of the
same order for all the individual estimators and is a stronger property than the
individual consistency. Denote A\jin(A), the smallest eigen value of A (resp.
Amaz (A), the largest one). Let for i € {1,2}, B2® ., B4 be the conditions
B2,..., B4 relative to {W }k, and

las

51 . JUHIPES Z WOWIT g(Fp_y, E)DY] % 0

k=h+1

O
In the following proposition, we give general conditions leading to the consis-
tency of the CLSE of (g, 1) although oW @ ||WM||~1 is asymptotically negli-
gible. Let D = 530, WV IIWE2 llg (Fima, B,

Proposition 8. 1. Assume B1), B4 and B3 : lim,, DY [D,(ll)]*1 0.
Then lim,, O, == 6.
2. Assume in addition p =2, B1®, B4A®)  and B3? defined by the existence of
a deterministic sequence {¢y}n such that:
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i) lim,, ¢, |60 — §h7n7VO]|L2 exists in distribution (resp. lim, ¢y||0y — §h7n7V0]|L2 P
00).
ii) lim,, DY [¢2 DY 0.

P(resp.a.s.)

iii) Timy, 6, DSP DIV < 0.
P(resi.a.s.)

]71 P(resi. a.s.)

Then lim,, vy, p, 1.
Examples

1. Let Z, = 60y + wpa,;' + nn, where lim, a, = oo, and the {n,}, are i.i.d.
E(n,) = 0, E(n?) = 1. Then ) is asymptotically identifiable at the rate v(.) = 1,
while vpa, ! is asymptotically negligible. Let A = 0. Then Dg) = n and accord-
ing to item 1 of proposition &, é\O,n is strongly consistent. Now v is asymptoti-

cally identifiable in vga, ! at the rate a,, implying D,(LQ) =>4 a;Q. Moreover
limy, /(B0 — 0) = N(0,1), ice. ¢2 = DY = n, and DI = S0 arl.

Consequently if lim, >-}_,a,? = oo and if [3}_, a;'|n~? is bounded, con-
ditions of proposition 8 are all satisfied implying the weak consistency of vp, ,,.
In the particular case ar = k“, the only solution for having both ii) and iii)
is @« = 1/2. Moreover if the LIL (Law of the Iterated Logarithm) is valid, then
¢n = n'/?[Inlnn]~'/2 implying the strong consistency of Uh.n- The condition given
in [13] concerns [In Aoz (Y p—y WeWE)PAmin(Cpey WeWH)] 7! = [Inn)?[lnn] !
which does not tend to 0. Therefore the conditions described here are weaker.

2. Let Z, = Y2771 Y,.4, where the {Y,,;}; are ii.d. (0+102,%),0%(Zn1)),
given F,_q, with 6p > 1, 1y > 0, @ > 0. Then {Z,}, is a size-dependent
branching process belonging to the class of processes studied by Klebaner [11]
and which does not extinct with a nonnull probability. We have Z,, = (6 +
w2z, %) Zp-1 + nn. Assume first that ) = 1, « = 1 and Y,,; € {1,2}. Then
0% (Zy-1) = wZ; (1 —nZ,!)) and g(.) = 1, implying DP = n. Therefore
Uy, is strongly consistent. This case has been studied in [17]. Assume now that
0o > 1 with g(Z) = Z~'. Then Z,0,"™ converges a.s. ([11]), DY = vy Zi—1
and 50771 is strongly consistent. But the consistency of 7y, depends on the value
of a since DY) = 37, z}=2¢ DM = S, 7} When o = 1, lim, DY) < oo
a.s., and Uy, cannot be consistent, whereas when a = 1/2, the conditions of
proposition 8 are fulfilled in probability with ¢,, = 93 2

Remarks.
1. In the case v = 0, h = 0, g(.) = 1, formula (4) is reduced to the classical
formula 07 = ZTW,WIW,|™, where ZI = (Zy,..., Zn), Wali,j] = Wij,

. . ~ - T -1 a.s.
i=1,...,n,j=1,...,d, and Bl: lim, Ayin, W, Wy)D,,* > 0.
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2. Let Z, = oW, + n, with d = 1, {n,}n independent of {W,}, and
lim,, E(n?)g(Wy) 2" 0. Then é\om = Do leWkg(Wk)] 1. and therefore
Var(goyn — Oo{Wy}n) > infy E(n?)g(Wi)D,!, which does not converge to 0,
as n — oo, if lim, D, < co. Consequently in the general case, B4 is a necessary
and sufficient condition for the strong consistency in the meaning that if B4 is
not checked, then there exist some models in which the estimators are not con-
sistent. But we saw in proposition 8 that we may have the consistency even if
the simultaneous identifiability is not ensured.

Proof. '

1.Use proposition 3 and lemma 7. Denote now W@ O[w® -1,
1,2. Concerning 6y, v(Wy) = HY/V,S)H*1 and conditions of prop081t10n 3 are the
following:

B1M . hm infgeBc H(GO — )TW(I)Hn CL~>8- 0

B2s™M) : Ty, supge e (60 — 0)T W | S oo

B30 Ty (v — 7, W WO ], %2 0

B4 : lim, DV

B5M ;s > O,VWé ),supgeBg GTWél) (resp. infoepg QTW,EI)) is attained at

) .
I(,[l,lsul’ (resp. at some H(I)mf ).

Consider B1D. Let Al) S WOWIT (B, EBy). Since AY s
(1) _

some 6

a semi-definite matrix, there exists an orthogonal matrix U,, such that A

(1)

U,A, UL, A, being the diagonal matrix of the eigen values of A;’. Therefore

Ii inf _ T )12 —
im fnf, 118 = 6)" Wl

n

lim| inf (0 — 0)7AD (6, — 0)][DV) ! >

“n 0€B§ n
lim|[ inf [(6g — 0)TUALUL (60 — 6)]][DWV]
n 0€B§

6 im A (AR [DYV]

and therefore B11) is satisfied under B1(1).
Consider now B2s(). According to Hélder’s inequality with p~' + ¢~ = 1,

- —(1 - —(1
Tim sup |(6 — 0)'WY| < Tim sup ||60 — 0]]2, [V,
™ 9cBy " 0cBy

which is finite since B§ is compact and HWS)H L, =1
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Next, consider B3(1)| using again Holder’s inequality,

(6) < [lvo = Duallz, DD

(o = Zra) " WONW DTG < Hvo = Baal 2, [HIW 2, 1IW D 2,)7 1

the limit of which is 0 since 7}, ,, belongs to the compact set V.
Next concerning B5(1), it is automatically satisfied.
2. In the same way as previously, B1(2) B2®) B4®) B5(2) are satisfied. It
remains to prove B3® : Tim,, ||(6y — th TW 1)[HT/V Q)H] Y, 0. We have, in
the same way as for (6),
180 = B WOUW SN < 1160 — Oz, (D (DR

n

< Oullfo — Onnol L, [DV [$2DP] Y2 +
(7) ¢n”§h,n,uo - é\h,n’ |Lq [DS) [¢721D1(12)]71]1/2'

The first term converges in probability to 0 by Billingsley convergence results
(known also as Slutzky theorem) [2]. Concerning the second term, using the fact
that there exists C' < oo such that ||}, — || < C and using Hélder’s inequality
and (4),

Sl — Onlle, = Gull@nn—10)" S WEWITgWi) AV Iz,
k=h+1

< ¢n”<’//\hn - VO)TID(LQ)ITU A_lUTHLq
< dnllPhn — vol|, DS UM UL 1,
12 T 177/T
(8) < ¢, DM ONTU AU,

For q =2, [[1TUp A UL |3, = 1TUnAL2UT T < Ponin (AR)) 72 X055 Unli 41)? <
[)\mm(A(l)] 2d3. This leads to B3, using B1M, (7) and (8). O

Corollary 9. Assume the particular case of Wy orthogonal, for all k. Let
Dy =Y hepi1 [Wiil’g(Fi-1, Ey,). Then
1.Bl <= li_mn mil’llgigd H5|W7Z|Hn a->5~ 0 < h_mn minlgigd Dnﬂ‘[Dn]il a~>3- 0.

Under B1 and B4, lim,, 0y, .., “= 0.
2. Under B4; : D, ; increases to oo, then lim,, 0}, ,,; “ 0,

)

Remark. lim, minj<;<q Dy i[Dy]™t > 0 a.s. means that the amounts of

information relative to each component of 8y are balanced.
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Proof. Since Wy is orthogonal, for all k, Wng is diagonal, for all k,
implying the first result. The other results are direct consequence of proposition
8. O

Assume now that Wj, is of dimension d = 2 and ||.||z, = ||.||z,. Let Dy 12 =
> bt Wi Wi 29(Fi—1, Ex), Dy ji2) = D k—ps 1 IWe 1 Wi 2|g(Fi—1, Ey). Accord-
ing to Holder’s inequality, D,QM12 — Dp1Dy 2 <0, for all n. D, 12 represents the
information which is common to {Wj, 1}, and {Wj, 2}i, whereas Dy, 1 and D, o
represent the individual informations. Notice that when Wy, is orthogonal, for all
k, then D,, = Dy 1+ Dy, 2.

Proposition 10. 1. In the general case

Bl <= B1 <= lim(~D2 5 + Dy1Dp2)(D1 + Dng) 2 5 0.
n

2. Assume Wy orthogonal, for all k. Then

- ws.. Dpi _— Dy as
(9) Bl <= B1:0 < lim =% < Tim =21 <" o

n n,2 n n,2

Remark. Assume the particular case Wy orthogonal, for all k, Dy, 1 > D, o,
lim,, Dy, ; “ 0, lim, Dng;ll “% (0. Then {@\hm}Z are separately strongly
consistent but not simultanec;usly consistent. Moreover if we assume that
E(ni\Fk,l,Ek)g(Fk,l,Ek) = 02 and {W,?vig(Fk,l,Ek)}k is deterministic, then

Var(@lm’l — 00’1)[Var(§h7n72 —002)] 7t = Dn72D;&, which tends to 0. Therefore
@\h,n’l converges infinitely more rapidly than é\h’n’g.

Proof. 1. We have

Amin( Y WiW{ g(Fy1, By)) =
k=h+1

27! D1 + D2 — \/(Dn,l + Dp2)? + 4D} 15 — DnaDnp)l.

B1 is therefore satisfied if and only if

1 - \/1 +4(D2 15 = Dn1Dp2) (D + Dr o) 72
li > 0,a.s.
ln_m Dn(Dn,l + Dn,Q)_l -5
For L, = Ly, Dy, = Dp1 + Dy 2 + 2D, |19- But according to Holder’s inequality,
D < D, 1D, 2, leading to

2
n,|12|

i Pzl 1 < 0o s,
n Dp1+ Dpo n [Dnle;é]lm + {DmQD;j]lﬂ ’

IN
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Therefore B1 is checked if and only if

lim1 — /1 +4(D2,1, = Dy1Dn2)(Dy + Du2) 2 > Oas,
n

which leads to the result.
Next, since B1 implies B1, it remains to prove that B1¢ implies B1¢.

BI°:lim 37 (6~ 0) Wil g(Fior, Ei)) (D]~ 0.

n

k=h+1
Since d = 2,
> (8 — 0)"Wi|*g(Fr1, Ex) =
k=h+1

(001 — 61)?Dp1 + (602 — 02)*Dpo +2(00.1 — 61)(00.2 — 62) Dy, 1.
Assume B1° or equivalently, there exists an infinite subsequence {n;}; such that

(0,1 — 01)? Dy, 1 + (Bo,2 — 02)* Dy 2 + 2(60,1 — 01) (60,2 — 02) Diy, 12 B

I

| D,

(9071 — 91)2Dnj,1 + (90,2 — 92)2Dnj,2 + 2(9071 - 91)(9072 — 92)D711§721D711§722 as.
D,. -

J

But (61 — 01)*Dn; 1 + (Bo2 — 02)*Dn; 2 + 2(00,1 — 01) (60,2 — 92)D,11§,21D,11§,22 =
(601 — 91)D711§’21 + (602 — 92)D711§’22]2 which is null for some 6. Therefore B1¢ is
checked.

2. Result (9) is directly deduced from item 1 since Dy 12 =0. O

6. Asymptotic convergence rate of é\h,n — 6y in the linear orthog-
onal model
In this section, we assume that vg = 0 and we write 5h’n instead of é\h’ny,,.
The asymptotic law of the estimator could be obtained in the general case
under some suitable assumptions using central limit theorems for martingales and
the classical Taylor’s decomposition at the first order of 05}, ,/060 at 6y:

0%Sh.n

OSh.n
-~ 9000T B

00

(6o),

(én)(é\h,n - 90) -
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where 9~n lies between 6y and @\h,n. But the assumptions used in these theorems
(see for example theorem 7.4.28 in [7]) being difficult to check in the general
case, we study here only the linear model with W} orthogonal, W,EZ) = 0 and
§(Fy—1, Er) =1, for all k.

Since Shm(e) = ZZ:hH(Zk - GTWk)2g(Fk_1, Ek), we have

OShn n
00, (6o) = -2 Z MWi,ig(Fe—1, Ex)
k=h+1

925 1 n

60};’ (6o) = 2 Z Wi?,ig(Fk—hEk):QDn’i
‘ h=ht1

9%Shn n

aeiaej( 0) Y WiiWig(Fi1, Ey) =0

k=h+1

Then 271025}, ,][0006T]~1(0) is a diagonal matrix, independent of 6, with D,, 1,
.«+, Dy q on the diagonal, and that we denote Ap,, .
Here 0}, ,,; — 60 = D) mWh,ig(Fr—1, Ek)]D,ﬁ Therefore

(10) Ap, (Onp — 00) = —=——2"(by).

Lemma 11. E(agg;n (90)8gg]’_" (60)) = 0,Vi # j.
Proof. Write Gy for g(Fy_1, Ey). For i # j, we have

1 0Sh,

OShn
e ( 00,

20,

(60) (60)) =2 ElnmeWi,iWi ;GiGrl + > Bl Wi ;Wi ;G7-

>k k

The quadratic term obtained for I = k is null since W}, ;W ; = 0 (orthogonality
of W), for all k. Moreover, using the o-(Fj_1, E;) measurability of {Wj, Gy }r<
and {ng }x<1, we have
ElnmWi Wi ;GiGr] = E[EnmWi Wy ;GiGi]|Fi-1, Ei
= EmWi;GWGiE[m|Fi-1, E]]

which is null since En|Fj—1,E]=0. O

Proposition 12. Assume that there exists a deterministic sequence {¢n}n
such that, for i =1,...,d, i) lim, qub?f L dy; < 00,
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ii) limy, 6,2 Y31 B0 Fi—1, Br)g* (Fie1, Bx) W2, = o,

Loy 1e _ — P

iit) limy, Y5y, g P(k] = dnelg(Fo1, En)] "W, [Fi_1, Ex,) = 0,Ve > 0.
Then limy, ¢ (Ohn — 00) £ N(0,Aay2).

Condition ii) may be replaced by the stronger condition: for all € > 0,

T

n
liyrln(ﬁ;Q Z E(n’aFk_l’Ek)QQ(Fk_l’Ek)W’iil{\ﬁkg(FnA7En)Wk,i|Z¢n€}’Fk_l’Ek’)

0.
k=h+1
Proof. First, according to (10),
1 ~ 1 10Shn
11 —A Ophn—0y) =——= — (6p),
where the ith term of this vector is
1 ~ > hehi1 M WiiGr
(12) — Dy i(Onn,i — o) = FH
On On
Moreover according to lemma 11 and (11),
E(Dr,i(Onn,i — 00:)Dn,j(Onnj — 005)) = 0,1 # j.
Then, for each i = 1, ..., d, we apply the central limit theorem for martingales

(see for example theorem 7.4.28, [7]) to (12) and we obtain

lim > heni1 MW iGh d

i Pn
Finally using Slutzky theorem and the convergence in probability of ¢ 2A Dy, > We
obtain the asymptotic distribution NV'(0, A 5 ;-2) of ¢n(§h,n—90) = ¢, Ap,, (Opn—
Oo)p2 Ay . O

N(0, J?).

7. Nonparametric estimation

Let Z,, = G,TOWH + N, where 7, satisfies the assumption of model (1) and 6,0
is of finite dimension d, for all n. Then, if B1 and B4 are checked with h =
n—1, the conditional least squares estimator 82 = [Z, WX ][W,,WI]~! is strongly
consistent, i.e. lim, @\n — 00 = 0. The proof is the same one as the proof used
in the parametric case (Wu’s lemma [20]), where 6 € By is replaced by 6,, — 6,0 €

By 5(0), By 5(0) = {0 : 2?21 |05 — Ono,j| > 0}. For example, for d = 1 with



130 C. Jacob, N. Lalam, N. Yanev

Wy, = Z,_1, then é\n = ZnZg_ll. In this case, Blis automatically satisfied on the
set of nonnull observations implying that the only condition B4 “W2g(F,_1, E,)
increases a.s. to co” has to be checked. The supercritical Galton-Watson process
is such an example. In that case, W,, = Z,,_1, g(F,—1, Ey) = Zn__l1 and therefore
B4 (“Z,—1 increases a.s. to o0”) is satisfied on the nonextinction set.

8. Regenerative branching processes

Let a regenerative process (see for ex. [8], [18], [22]) defined by {&;, (X;(.),T})};,
where {{;}; is the process of waiting times between the successive working periods
Tj_1, Tj, and X(.) is the jth working process defined on the working period T;.
Let 7; = &+ T, N(t) = max{J : 23‘121 7; <t}; N(t) is the number of periods

7; until ¢; and let o(t) =t — Z;V:(

working time from Zjvz(? T; + &n(t)+1 until & Then, the regenerative process
{Z;}+ may be written as

? T; — En(w+1; o(t) s, when it is positive, the

Zy = Xnwy1(o(t), ifo(t) =0
= 0, ifo(t) <0.

When the period 7; = 7, for all j, with 7 deterministic, and independent
{&,(X;(.),Tj)};, for all j, then the different periods 7; may be considered as
replications of the same process leading for example to classical regression mod-
els with replications or ANOVA models.

We assume here processes in discrete time with

X;(l-1)
X;(1) = Up(X0—1)=0x,0-1) Y YiulD)
i=1

where the {Y};(1)}; are i.i.d. given {{X;/(.),&; };/<;j,&;}, the conditional law of
the Bernoulli variable (5]{0 may depend on {X;/(.),&}jr<;. The {I;}; are ii.d.
and independent of the past, given 6§’0 = 1. The {T}}; are the survival times of
the branching processes {X;(.)};. Therefore Z,, is recursively defined from the
past of the process by

Zn—1
Zn - 6Zn,1 Z Yn,i + In57117
=1



131

where the {Y},;}; are i.i.d. with the same conditional laws as the {Y;;({)};, and
1,61 has the same conditional law as IN(n)+15 The process {Z,}, is a
general branching process with immigration.

Let Fy,—1 = {Zy}k<n—1 and E, any subset of {(5,€}k,{C’k}k, C} being any
environmental variable at time k. Assume

(nz’Fn 1, En) = ma(F,_1, E,); Var( nl’Fn L, E )_Uﬁ( -1, En)
E(L|3), =1, Fy1, En) = X; Var(L|o), = 1,F, 1, Ey) = b,

N(n)+1°

These assumptions mean that the process may be size-dependent. It is the case for
population dynamics depending on a limited environment (nearly any biological
populations, for example infectious diseases, ... ).

Denote p(F,,_1,E,) = E(6L|F,_1,E,). When §! € E,, then p(F,_1,E,) =
6. We have

(13) E(Zn’Fn—laEn):ma(Fn—laEn)Zn 1+)\p< n— 17E )

Our aim is the estimation of the parameters of E(Z,|F,_1, E,) given by (13).
Assuming «(.), 5(.) and p(.) known, the model is linear in 6y = (m, ). Here
Wk = (Oz(Fk_l, Ek)Zk—lyp(Fk—lyEk)) We assume 6Zk716p(Fk—17Ek:) = 0, for all k:,
that is Wy is orthogonal for all k, implying D,, 1o = 0, for all n. It is the case
when p(Fy,_1, E,) = 6% with §. =0 when Z,,_1 > 0.
Letn, = Z,—F (Z |Fr—1, Ey,). Then 7, is a martingale difference and we have
(T]n|Fn L E ) =0 B( n—1, n)anl + (b2 + )\2(1 - p(anlyEn)))p(anlaEn)-
Let

/U(anlv En) = Ol_l(anly En)ergléZn_1 + p_l(anly En)5p(Fn,1,En)
g(anlaEn) = lgil(anlen)Z;fll(SZn—l +p71(Fn*17En)5p(Fn—1,En)
n
Dpi = Y o*(Fu1, En)B (Feor, B Zioy """ S,
k=h+1
n .
Dny = > p(Fi1,Ep) ey,
k=h+1

According to (5), the estimators are
> heni1 Zeo(Fr—1, Ep) B (Fy—1, Eg)oz,
Y ohehit Ze—102(Fy—1, Ey) 71 (Fr—1, Ey)0z,_,

1) N = Do)
o ZZ:thl p(kala Ek)

(14) Mhp =
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8.1. Identifiability and consistency
8.1.1. General size-dependent case
According to proposition 10, we have the following result

Proposition 13. 1. (m,\) is identifiable if and only if

(16) 0<li_m&§E&<oo,a.s.
n Vo noVn

2, If lim,, VSt =0 (resp. lim, SVt = 0), then m is identifiable alone with
an asymptotically negligible information {5,€ } concerning the immigration process,
(resp. X is identifiable alone with an asymptotically negligible information {0z, ,}
concerning the branching process).

Remark. Since Wk,lv(Fk—17Ek) = 5Zk717 WkQU(Fk_l,Ek) = 5P(Fk71’Ek)’
then, for d,p,_, 5y) = Ons SnVi ' = 16z, [lnl|07]|;! is the ratio between the
information relative to the presence of the branching process and that relative
to the presence of the immigration process. When the presence of these two
processes is balanced (16), the parameters are simultaneously identifiable.

The following corollary is a direct application of corollary 9 and proposition
13.

Corollary 14. 1. Assume B4y: S, increases a.s. to oo (resp. Bds: V,
increases a.s. to 0o). Then My, (resp. App) is strongly consistent.
2. Assume B4: S, +V,, increases a.s. to oo with

0< li_r]aS’nV[1 < MSnanl < 00, a.s..
n n

Then (ffzh’n,//\\h,n) is strongly consistent.

8.1.2. Bienaymé-Galton-Watson case with immigrations allowed in
the 0 state. Assume that the {Xy(.)}; are i.i.d. Galton-Watson processes,
independent of the waiting periods {{j}r which are assumed ii.d.. Therefore
a(.) = B(.) = 1. Assume p(Fy_1, Ey,) = 0, for all k. Then S, = Y11 Zp—1,
Vo =Y k—ni1 0, and S, > Vi, According to (14) and (15), the estimators are

n n I
Zk:h—H Zk(;Zkfl . Xh _ Zk:h—f—l Ik’ék
n ] nm n I_.
Zk:thl Zkfldzk_l Zk=h+1 6k

Notice first that when m < 1, then {Z,}, is stationary, implying that the
asymptotic information given by lim,, S,,+V/, is stationary when n—h is fixed, and

Mpn =
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therefore it cannot increase to oco. The consistency of the estimators cannot be
ensured in that case. So we will assume that h is fixed. Let s, = E(ZlTil X;() =
A1 —m)~ L

Proposition 15. If E(71) < oo, and therefore m < 1, then on the set
{lim, V, = oo}, we have lim, S,V, ! 2 s, lim, Von™t 2 [B(T)]7Y, and
(Mpns Abp) is strongly consistent.

Remarks
1. If E(¢) = oo with lim, P(& > n)[P(T1 > n)]~! = oo, then lim, P(o(n) >
0) = 0. Therefore on {lim,, S,, < oo}, the information is not sufficient for estimat-
ing m nor \. 2. If E(T}) = oo d.e. m > 1 with lim,, P(¢; > n)[P(Ty > n)]~! =0,
then lim, P(c(n) < 0) = 0, which implies that on {lim, S, = oo}, My, is
strongly consistent whereas on lim,, V,, < oo, the information concerning A is not
sufficient for its estimation.

Proof. Use the results in the general case together with results of the
renewal theory and those of regenerative processes for branching processes. First

note that lim,, V,,n=! 2" [E(77)]~! by the classical renewal theory (cf [8]). More-
over
(17> Z}g/il Uk’—l < & < Z}?;Tl Uk—l Vn +1

Va ~ Vi, Va+1 Vo

where the {Uy}r are iid. as U = Z;?:l Zp_1 with E(U1) = A1 —m)~ 4
Var(U;) < oo. Therefore according to the SLLN for i.i.d. variables and us-
ing (17), we_get lim,, S,V “2 E(Uy). This implies according to corollary 14,
that (Mnn, Anpn) is (simultaneously) strongly consistent. O

Notice that we could also use here directly the SLLN for i.i.d. variables
for obtaining the strong consistency of Xh,n, and that of my, , may be obtained

directly by using My, ~ [S,V,, ! — /):hn] [S,V.1]71 which converges a.s. to m.

8.2. Asymptotic convergence rate of 5h’n — 003 0o = (m,\)T
Proposition 16. Assume the frame m < 1 of proposition 15. Then

(18) lim /2By, — 00) £ N (0, A),

where A is a diagonal matriz with o%s; ' E(Ty), b>E(71) on the diagonal.

Proof. The result follows from proposition 12 with ¢, = n'/2. Here we

have 0, 9(Frn—1, En)Wn1 = (Zn, —mZp—1)dz, ,, tg(Fn—1, En)Wy 2 = (I — )\)(5{”
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du = . [B(T)] ™, duy = [E(T)] ™ and 0 = 0%, [B(T)] ™, of = P[B(T)]

since iii) becomes

n n
nil Z E(ni’Fk—lvEk’)g2(Fk—17Ek)W]?71 = nil Z Zk_10'2

k=ht1 k=h+1
= n718,0°
n n
n~! Z E(nz’FkﬂaEk)g2(Fk,1,Ek)W;€272 - p! Z 62(5,€
k=h+1 k=h+1
= n Vb2

We have, according to the stationarity of the process, the Lindeberg’s condition:

n

. _ P
(19) limn 'S E(Zk - mZia g, oz jmentszy) =0
k=h+1
. — " P
(20) limn~! Y Bk = N0 1,nystjzent/zy) = 0-
k=h+1

Notice that in that case, we also have

_liashﬂ( )_(Zf:nl(yl,i—m) ZlV;l(Il_)\)
2/mn 00T V% Jn : NG

and therefore the convergence of each term of this vector may also directly follow
-1 £

)

from the central limit theorem for random sums together with lim, S,n

s [E(T1)]71, lim, Vn ™t £ [E(71)]7!. Finally (18) follows from lemma 11. O
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