Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
PLISKA STUDIA MATHEMATICA BULGARICA

ПЛИСКА

БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИ

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

STATISTICAL INFERENCE FOR PROCESSES DEPENDING ON ENVIRONMENTS AND APPLICATION IN REGENERATIVE PROCESSES

Christine Jacob, Nadia Lalam, Nicolas Yanev

We consider a process $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$, recursively defined by $Z_{n}=f\left(F_{n-1}, E_{n}\right)$ $+\eta_{n}$, where $F_{n-1}=\left\{Z_{k}\right\}_{k \leq n-1}, E_{n}=\left\{C_{k}\right\}_{k \leq n},\left\{C_{n}\right\}_{n}$ is an observed exogenous process and $\left\{\eta_{n}\right\}_{n}$ is a martingale difference sequence for the filtration generated by $\left(F_{n-1}, E_{n}\right)$ such that $\operatorname{Var}\left(\eta_{n} \mid F_{n-1}, E_{n}\right) g\left(F_{n-1}, E_{n}\right)<\infty$, a.s. for some known function $\left\{g\left(F_{n-1}, E_{n}\right)\right\}_{n}$. This class of models covers a very broad range of models such as regression models, ANOVA models, autoregressive processes, branching processes, regenerative processes, We assume that $f\left(F_{n-1}, E_{n}\right)$ depends on an unknown parameter μ_{0} and that $f(.)^{\text {notation }}=f_{\mu_{0}}($.$) may be decomposed according to f_{\mu_{0}}()=.f_{\theta_{0}}^{(1)}()+.f_{\mu_{0}}^{(2)}($.$) ,$ where $\theta_{0} \in \mathbb{R}^{d}, d<\infty$, is asymptotically identifiable in $f_{\theta_{0}}^{(1)}($.$) as n \rightarrow \infty$ at some rate $v($.$) whereas f_{\mu_{0}}^{(2)}() v.($.$) is asymptotically negligible. We build$ the Conditional Least Squares Estimator of θ_{0} based on the observation of a single trajectory of $\left\{Z_{k}, C_{k}\right\}_{k}$, and give conditions ensuring its strong consistency. The particular case of general linear models according to $\mu_{0}=\left(\theta_{0}, \nu_{0}\right)$ and among them, regenerative processes, are studied more particularly. In this frame, we may also prove the consistency of the estimator of ν_{0} although it belongs to an asymptotic negligible part of the model, and the asymptotic law of the estimator may also be calculated.

1. Introduction

We consider the following one-dimensional nonlinear autoregressive process $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$ that may depend on a multidimensional exogenous process $\left\{C_{n}\right\}_{n \in \mathbb{N}}$:
Z_{0} is given and for $n \geq 1$,

$$
\begin{equation*}
Z_{n}=f\left(F_{n-1}, E_{n}\right)+\eta_{n} ; E_{n}=\left\{C_{k}\right\}_{k \leq n}, F_{n-1}=\left\{Z_{k}\right\}_{k \leq n-1} \tag{1}
\end{equation*}
$$

We assume that $f\left(F_{n-1}, E_{n}\right)$ is a measurable function of $\left(F_{n-1}, E_{n}\right)$ and $\left\{\eta_{n}\right\}_{n}$ is a martingale difference sequence for the filtration generated by F_{n-1}, E_{n}, that is, denoting in the same way the variables $\left(F_{n-1}, E_{n}\right)$ and the σ-algebra they generate, $E\left(\eta_{n} \mid F_{n-1}, E_{n}\right)=0$. We also assume that there exists $\sigma^{2}<\infty$ and $g\left(F_{n-1}, E_{n}\right)$, a measurable and known function of $\left(F_{n-1}, E_{n}\right)$, such that

$$
\varlimsup_{n} E\left(\eta_{n}^{2} \mid F_{n-1}, E_{n}\right) g\left(F_{n-1}, E_{n}\right) \stackrel{\text { a.s. }}{<} \sigma^{2} .
$$

We assume that $f\left(F_{n-1}, E_{n}\right)$ depends on an unknown parameter μ_{0} which may be of infinite dimension, that $\left\{g\left(F_{n-1}, E_{n}\right)\right\}_{n}$ does not depend on μ_{0}, and that $f(.) \stackrel{\text { notation }}{=} f_{\mu_{0}}($.$) may be decomposed according to f_{\mu_{0}}()=.f_{\theta_{0}}^{(1)}()+.f_{\mu_{0}}^{(2)}($.$) ,$ where $f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)$ depends on $\theta_{0} \in \Theta \subset \mathbb{R}^{d}, d<\infty$, and $f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is a continuous function of θ at $\theta_{0} ; \theta_{0}$ is the parameter to be estimated, while $f_{\mu_{0}}^{(2)}($. is the nuisance part of the model.

This class of models covers a very large set of processes such as linear or nonlinear stochastic or deterministic regression models, ANOVA models, linear or nonlinear ARMA processes, regenerative processes and branching processes. It is a generalization of the NARX models (nonlinear autoregressive models with exogenous inputs) given in [15]. The model presented here may be explosive in its first two moments, which is the case, for example, of supercritical branching processes.

When $f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is infinitely continuously differentiable at any $\theta \in \Theta$, we build the CLSE (Conditional Least Squares Estimator) of θ_{0} from $n-h$ observations of a single trajectory of $\left\{Z_{k}, C_{k}\right\}_{k \leq n: \delta\left(F_{k-1}, E_{k}\right) \neq 0}$, where $\delta\left(F_{k-1}, E_{k}\right)=1$ if the observation $\left(Z_{k}, C_{k}\right)$ is taken into account in the estimator, and is zero otherwise. We study its asymptotic properties, mainly the consistency, as $n \rightarrow \infty$, with either h or $n-h$ maintained constant. We give general conditions for the strong (or weak) consistency of the estimator, which are easily checked either theoretically or by numerical simulations. In the general case where $f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is a continuous function of θ at θ_{0}, not necessarily differentiable, we build a DCLSE (Discrete CLSE) by minimizing the conditional sum of squares on a discrete subset of Θ. In both cases, the conditions for consistency are extensions of those given in [16] in the setting of size-dependent branching processes and they are the same for the two estimators. The first condition concerns the asymptotic identifiability of θ_{0} in $f_{\theta_{0}}^{(1)}($.$) at some rate v($.$) , the second one concerns$
the asymptotic negligibility of $\left(f_{\mu_{0}}^{(2)}()-.\widehat{f_{\mu_{0}}^{(2)}}().\right) v($.$) , where \widehat{f_{\mu_{0}}^{(2)}}($.$) is any esti-$ mation of $f_{\mu_{0}}^{(2)}$ (.). And the third condition concerns the amount of information $D_{n}=\sum_{k=h+1}^{n} \delta\left(F_{k-1}, E_{k}\right)\left[v\left(F_{k-1}, E_{k}\right)\right]^{-2} g\left(F_{k-1}, E_{k}\right) D_{n}$ which has to tend to infinity, as $n \rightarrow \infty$. This last condition appears to be not only a sufficient condition but also a necessary one when the first two conditions are checked. The identifiability condition ensures that the model $f_{\theta_{0}}^{(1)}($.$) is uniquely defined from$ θ_{0}, that is $f_{\theta_{0}}^{(1)}($.$) is not asymptotically equivalent to f_{\theta_{0}^{\prime}}^{(1)}($.$) with \theta_{0}^{\prime} \neq \theta_{0}$. Simultaneous consistency which occurs under the simultaneous identifiability of the parameters, allows to study the asymptotic distribution of the estimator. But we will show that the simultaneous identifiability is not a necessary condition for consistency.

We study more deeply the class of linear models $Z_{n}=\mu_{0}^{T} W_{n}+\eta_{n}$, where the vector W_{n} is a measurable function of $\left(F_{n-1}, E_{n}\right)$. This class of models covers autoregressive processes $\left(W_{n}=F_{n-1}\right)$, ARMA processes $\left(W_{n}=F_{n-1},\left\{\eta_{k}\right\}_{k \leq n-1}\right)$, regression models $\left(W_{n}=\left\{C_{k}\right\}_{k \leq n}\right.$, where C_{k} is a vector of explicative deterministic or stochastic variables) and ANOVA models ($W_{n}=\left\{C_{k}\right\}_{k \leq n}$ where C_{k} is a vector of 0 and 1).

Usual consistency criteria in linear models with $g()=$.1 and no nuisance parameter, are often based on the relative rate of growth to infinity of $\lambda_{\min }\left(A_{n}\right)$ and $\lambda_{\max }\left(A_{n}\right)$, where $A_{n}=\sum_{k=h+1}^{n} W_{k} W_{k}^{T}$ (see for example [1], [3], [12], [13], [14], [15]). The weakest assumptions obtained in this setting are those given in [13]: the least squares estimator is strongly consistent if $\left[\ln \lambda_{\max }\left(A_{n}\right)\right]^{\rho}\left[\lambda_{\min }\left(A_{n}\right)\right]^{-1}$ converges a.s. to 0 for some $\rho>1$ with $\lambda_{\min }\left(A_{n}\right)$ converging to ∞. We extend and weaken this condition. Let

$$
\begin{aligned}
D_{n}^{(i)} & =\sum_{k=h+1}^{n}\left\|W_{k}^{(i)}\right\|_{L_{2}}^{2} \delta\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right), i=1,2 \\
D_{n}^{(1,2)} & =\sum_{k=h+1}^{n}\left\|W_{k}^{(1)}\right\|_{L_{2}}\left\|W_{k}^{(2)}\right\|_{L_{2}} \delta\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right) .
\end{aligned}
$$

Assume the asymptotic identifiability of θ_{0} in $\left\{\theta_{0}^{T} W_{n}^{(1)}\right\}_{n}$ and that of ν_{0} in $\left\{\nu_{0}^{T} W_{n}^{(2)}\right\}_{n}$. If there exists a deterministic sequence $\left\{\phi_{n}\right\}_{n}$ such that
i) $\lim _{n} \phi_{n}\left\|\theta_{0}-\widehat{\theta}_{h, n, \nu_{0}}\right\|_{L_{2}} \exists$ in distribution(resp. $\left.\varlimsup_{n} \phi_{n}\left\|\theta_{0}-\widehat{\theta}_{h, n, \nu_{0}}\right\|_{L_{2}} \stackrel{\text { a.s. }}{<} \infty\right)$,
ii) $\lim _{n} D_{n}^{(1)}\left[\phi_{n}^{2} D_{n}^{(2)}\right]^{-1} \stackrel{P(\text { resp.a.s. })}{=} 0 ; \lim _{n} D_{n}^{(2)}\left[D_{n}^{(1)}\right]^{-1} \stackrel{\text { a.s. }}{=} 0$,
iii) $\varlimsup_{n} \phi_{n} D_{n}^{(1,2)}\left[D_{n}^{(1)}\right]^{-1} \stackrel{P(\text { resp.a.s. })}{<} \infty$, then $\lim _{n} \widehat{\theta}_{h, n} \stackrel{\text { a.s. }}{=} \theta_{0}$ and $\lim _{n} \widehat{\nu}_{h, n} \stackrel{P(\text { resp.a.s. })}{=} \nu_{0}$. For example, assume $d=2$,
$\left|W_{k, 1}\right|=O(1),\left|W_{k, 2}\right|=O\left(k^{-1 / 2}\right)$, i.i.d. $\left\{\eta_{n}\right\}_{n}$. Then i), ii), iii) are satisfied in probability with $\phi_{n}=n^{1 / 2}$ and a.s. with $\phi_{n}=n^{1 / 2}[\ln \ln n]^{-1 / 2}$. But the condition $\lim _{n}\left[\ln \lambda_{\max }\left(A_{n}\right)\right]^{\rho}\left[\lambda_{\min }\left(A_{n}\right)\right]^{-1} \stackrel{\text { a.s. }}{=} 0$ is not fulfilled here even in the limit case $\rho=1$, since $\lambda_{\max }\left(A_{n}\right)=O(n)$ and $\lambda_{\min }\left(A_{n}\right)=O(\ln n)$.

When the vector W_{n} is orthogonal, for all n, i.e. $W_{n, j} W_{n, j^{\prime}}=0$, for all $j \neq j^{\prime}$, the simultaneous identifiability means that the individual amounts of information, $\left\{D_{n, i}\right\}_{i=1, d}$ are balanced between the different components $\left\{\theta_{0, i}\right\}_{i=1, d}$. But the only condition $\lim _{n} D_{n, i} \stackrel{a . s .}{=} \infty$ ensures the individual strong consistency of the estimator of $\theta_{0, i}$. In this frame, we study more particularly the strong consistency and the asymptotic normality of the estimators of the offspring mean and the immigration mean for the regenerative Bienaymé-Galton-Watson branching process with immigration only allowed in the state 0 .

2. Identifiability and negligibility

Assume $\theta_{0} \in \stackrel{\circ}{\Theta}, \Theta$ being a compact set of $\mathbb{R}^{d}, d<\infty$. Let $\delta>0$ and $B_{\delta}^{c}=\{\theta=$ $\left.\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta:\left\|\theta_{k}-\theta_{0 k}\right\|_{L_{2}} \geq \delta\right\}$. Let $\|.\|_{n}$ be a norm on the space of functions $\left\{f_{k, n}\right\}_{k \leq n}$. Let $v\left(F_{k-1}, E_{k}\right)$ a measurable function of $\left(F_{k-1}, E_{k}\right)$ which may depend on $\theta_{0}, \Delta_{\theta_{0}, \theta}\left(F_{k-1}, E_{k}\right)=\left(f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)-f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)\right) v\left(F_{k-1}, E_{k}\right)$, for some measurable function $v\left(F_{k-1}, E_{k}\right)$, and let us introduce the following definitions:

Definition 1. θ_{0} is asymptotically identifiable in $\left\{f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ for $\left\{\|\cdot\|_{n}\right\}_{n}$ if there exists $\left\{v\left(F_{k-1}, E_{k}\right)\right\}_{k}$ depending only on F_{k-1}, E_{k}, such that, for all $\delta>0, B 1: \underline{\lim }_{n \rightarrow \infty} \inf _{\theta \in B_{\delta}^{c}}\left\|\Delta_{\theta_{0}, \theta}\left(F_{.-1}, E\right)\right\|_{n} \stackrel{\text { a.s. }}{>} 0$ is satisfied. If moreover, condition $B 2: \varlimsup_{n \rightarrow \infty} \sup _{\theta \in B_{\delta}^{c}}\left\|\Delta_{\theta_{0}, \theta}\left(F_{.-1}, E_{.}\right)\right\|_{n} \stackrel{\text { a.s. }}{<} \infty$ is satisfied, then $v($.$) is called a rate of identifiability of \theta_{0}$.

Notice that $B 1$ and $B 2$ are satisfied when the stronger conditions
$B 1 s: \underline{\lim }_{n \rightarrow \infty} \inf _{\theta \in B_{\delta}^{c}}\left|\Delta_{\theta_{0}, \theta}\left(F_{n-1}, E_{n}\right)\right| \stackrel{\text { a.s. }}{>} 0$ and $B 2 s: \varlimsup_{n \rightarrow \infty} \sup _{\theta \in B_{\delta}^{c}}\left|\Delta_{\theta_{0}, \theta}\left(F_{n-1}, E_{n}\right)\right| \stackrel{\text { a.s. }}{<} \infty$ are satisfied.

Definition 2. The process $\left\{r\left(F_{k-1}, E_{k}\right)\right\}_{k}$ is asymptotically negligible if $B 3: \overline{\lim }_{n \rightarrow \infty}\left\|r\left(F_{.-1}, E\right)\right\|_{n} \stackrel{\text { a.s. }}{=} 0$.

3. Conditional Least Squares Estimator

We aim to estimate θ_{0} considering the unknown process $\left\{f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ as a nuisance process. If the unknown part of $\left\{f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ is given by a finite
dimensional parameter ν_{0}, then ν_{0} is set to a given vector ν_{n} based on the observations until n. For example we may take $\nu_{n}=\widehat{\nu}_{h, n}$ defined by $\left(\widehat{\theta}_{h, n}, \widehat{\nu}_{h, n}\right)=$ $\arg \min _{(\theta, \nu) \in \Theta \times N} \widetilde{S}_{h, n, \nu}(\theta)$, where $\Theta \times N$ is compact, or we may set $\nu_{n}=0$. Now if the unknown part of $\left\{f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ is of infinite dimension, then we set $f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)$ to 0 , for all k. For simplifying the notations, we will write ν instead of $\nu_{n},\left\{\widehat{f_{\mu_{0}}^{(2)}}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ for any estimation of $\left\{f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$, and $f_{\theta_{0}, \nu}\left(F_{k-1}, E_{k}\right)=f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)+\widehat{f_{\mu_{0}}^{(2)}}\left(F_{k-1}, E_{k}\right)$.

In the case of $f_{\theta}^{(1)}($.$) infinitely differentiable at any \theta$, we define the CLSE estimator $\widehat{\theta}_{h, n, \nu}$ of θ_{0} in the following way

$$
\begin{align*}
\widehat{\theta}_{h, n, \nu} & =\arg \min _{\theta \in \Theta} \widetilde{S}_{h, n, \nu}(\theta) \tag{2}\\
\widetilde{S}_{h, n, \nu}(\theta) & =\sum_{k=h+1}^{n}\left(Z_{k}-f_{\theta, \nu}\left(F_{k-1}, E_{k}\right)\right)^{2} \delta\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right)
\end{align*}
$$

where $\delta\left(F_{k-1}, E_{k}\right)$ is a Bernoulli variable, measurable function of $\left(F_{k-1}, E_{k}\right)$, equal to 1 when $Z_{k}-f_{\theta, \nu}\left(F_{k-1}, E_{k}\right)$ is taken into account in the estimator. For example, if the environmental condition C_{k} necessarily leads to a bad observation of Z_{k}, we do not take into account $Z_{k}-f_{\theta, \nu}\left(F_{k-1}, E_{k}\right)$.

In the general case $\left(f_{\theta}^{(1)}(\right.$.$) continuous at \theta_{0}$ but not necessarily differentiable), we define the DCLSE (Discrete CLSE) by:

$$
\widehat{\theta}_{m, h, n, \nu}=\arg \min _{\theta \in \Theta_{m}} \widetilde{S}_{h, n, \nu}(\theta)
$$

where Θ_{m} is a finite countable subset of Θ.

4. Strong consistency of the Conditional Least Squares Estimators

Assume first that $f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is infinitely continuously differentiable at any $\theta \in \Theta$. Let $v\left(F_{k-1}, E_{k}\right)$ as in the previous section and

$$
\Delta_{\theta_{0}, \nu_{0} ; \theta, \nu}\left(F_{k-1}, E_{k}\right)=\left(f_{\theta_{0}, \nu_{0}}\left(F_{k-1}, E_{k}\right)-f_{\theta, \nu}\left(F_{k-1}, E_{k}\right)\right) v\left(F_{k-1}, E_{k}\right)
$$

Then $\Delta_{\theta_{0}, \nu ; \theta, \nu}\left(F_{k-1}, E_{k}\right)=\Delta_{\theta_{0} ; \theta}\left(F_{k-1}, E_{k}\right)$.
Since $\widetilde{S}_{h, n, \nu}(\theta)$ defined by (2) may be written as

$$
\begin{aligned}
\widetilde{S}_{h, n, \nu}(\theta) & =\sum_{k=h+1}^{n}\left(\eta_{k} v\left(F_{k-1}, E_{k}\right)+\Delta_{\theta_{0}, \nu_{0} ; \theta, \nu}\left(F_{k-1}, E_{k}\right)\right)^{2} a\left(F_{k-1}, E_{k}\right) \\
a\left(F_{k-1}, E_{k}\right) & =\delta\left(F_{k-1}, E_{k}\right)\left[v\left(F_{k-1}, E_{k}\right)\right]^{-2} g\left(F_{k-1}, E_{k}\right),
\end{aligned}
$$

the estimator $\widehat{\theta}_{h, n, \nu}$ also satisfies $\widehat{\theta}_{h, n, \nu}=\operatorname{argmin}_{\theta \in \Theta} S_{h, n, \nu}(\theta)$, where $S_{h, n, \nu}(\theta)=$ $\widetilde{S}_{h, n, \nu}(\theta) D_{n}^{-1}$ with $D_{n}=\sum_{k=h+1}^{n} a\left(F_{k-1}, E_{k}\right)$. This leads to the natural norm $\left\|f_{k, n}\right\|_{n}^{2}=\left[\sum_{k=h+1}^{n} f_{k, n}^{2} a\left(F_{k-1}, E_{k}\right)\right] D_{n}^{-1}$ on the space of functions $\left\{\left\{f_{k, n}\right\}_{k \leq n}\right\}$. ¿From now on, we use this norm. In the following proposition, we prove that if θ_{0} is asymptotically identifiable in $\left\{f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)\right\}_{k}$ at the rate $\left\{v\left(F_{k-1}, E_{k}\right)\right\}_{k}$ and if $\left\{\left(f_{\mu_{0}}^{(2)}\left(F_{k-1}, E_{k}\right)-\widehat{f_{\mu_{0}}^{(2)}}\left(F_{k-1}, E_{k}\right)\right) v\left(F_{k-1}, E_{k}\right)\right\}_{k \leq n}$ is asymptotically negligible, then the strong consistency of $\left\{\widehat{\theta}_{h, n, \nu}\right\}_{n}$ is ensured under some weak additional conditions.

Proposition 3. Assume $f_{\theta}($.$) infinitely continuously differentiable at any \theta$, and the following conditions $B 1$ to $B 5$:

1) $\left.B 1: \varliminf_{n \rightarrow \infty} \inf _{\theta \in B_{\delta}^{c}} \| \Delta_{\theta_{0}, \theta}\left(F_{.-1}, E.\right)\right) \|_{n} \stackrel{\text { a.s. }}{>} 0$.
$B 2 s: \varlimsup_{n \rightarrow \infty} \sup _{\theta \in B_{\delta}^{c}}\left|\Delta_{\theta_{0}, \theta}\left(F_{n-1}, E_{n}\right)\right| \stackrel{\text { a.s. }}{<} \infty$.
2) $B 3: \varlimsup_{n \rightarrow \infty}\left\|\left(f_{\mu_{0}}^{(2)}\left(F_{.-1}, E_{.}\right)-\widehat{f_{\mu_{0}}^{(2)}}\left(F_{.-1}, E_{\text {. }}\right)\right) v\left(F_{.-1}, E_{.}\right)\right\|_{n} \stackrel{\text { a.s. }}{=} 0$;
3) $B 4:\left\{D_{n}\right\}_{n}$ is a.s. increasing to ∞;
4) $B 5$: for all $\delta>0$ and $\left(F_{k-1}, E_{k}\right), \sup _{\theta \in B_{\delta}^{c}} f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is attained at some $\theta_{F_{k-1}, E_{k}}^{\text {sup }}$ (respectively $\inf _{\theta \in B_{\delta}^{c}} f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right)$ is attained at some $\left.\theta_{F_{k-1}, E_{k}}^{i n f}\right)$. Then, $\left\{\widehat{\theta}_{h, n, \nu}\right\}_{n}$ is strongly consistent, i.e. $\lim _{n} \widehat{\theta}_{h, n, \nu} \stackrel{\text { a.s. }}{=} \theta_{0}$.

If $B 3$ is checked in probability instead of almost surely, then $\left\{\widehat{\theta}_{h, n, \nu}\right\}_{n}$ is weakly consistent, i.e. $\lim _{n} \widehat{\theta}_{h, n, \nu} \stackrel{P}{=} \theta_{0}$.

Remarks.

1. $B 2 s$ may be replaced by the weaker assumptions $B 2$ and $B 2 w: \varlimsup_{n \rightarrow \infty} \sum_{k=h+1}^{n} \sup _{\theta \in B_{\delta}^{c}} \Delta_{\theta_{0}, \theta}^{2}\left(F_{k-1}, E_{k}\right) a\left(F_{k-1}, E_{k}\right) D_{k}^{-2} \stackrel{\text { a.s. }}{<} \infty$.
2. When the nuisance parameter ν_{0} is of finite dimension, then $B 3$ implies that ν_{0} is not asymptotically identifiable in $f_{\mu_{0}}^{(2)}($.$) at the rate v($.$) .$
3. Assume that θ_{0} is asymptotically identifiable at the rate $v_{1}($.$) and \nu_{0}$ is asymptotically identifiable at the rate $v_{2}($.$) with v_{2}()>.v_{1}($.$) . Then we may first prove$ the consistency of $\widehat{\theta}_{h, n}$ using the fact that $f_{\nu_{0}}^{(2)}(.) v_{1}($.$) is asymptotically negligible,$ and then we may prove the consistency of $\widehat{\nu}_{h, n}$ if $\left(f_{\theta_{0}}^{(1)}()-.f_{\widehat{\theta}_{h, n}}^{(1)}().\right) v_{2}($.$) is asymp-$ totically negligible, which will be checked if $\widehat{\theta}_{h, n}$ converges sufficiently rapidly. We will detail this problem in the linear case (following section).

Proof. The proof relies on the martingale difference structure of η_{n} ([9]) and on a sufficient condition for consistency of minimum contrast estimators ([20]). Let $B_{\delta}^{c}=\left\{\theta \in \Theta: \sum_{j=1}^{d}\left|\theta_{j}-\theta_{0, j}\right|>\delta\right\}$. If for all $\delta>0$,
$\varliminf_{n \rightarrow \infty}\left(\inf _{\theta \in B_{\delta}^{c}} S_{h, n, \nu}(\theta)-S_{h, n, \nu}\left(\theta_{0}\right)\right)>0$ a.s. (resp. in probability), then $\left\{\widehat{\theta}_{h, n, \nu}\right\}_{n}$ is strongly (resp. weakly) consistent (proof in the a.s. case: assume that $\left\{\widehat{\theta}_{h, n, \nu}\right\}_{n}$ is not a.s. consistent; then there exists a non negligible set of trajectories ω such that, for each ω, there exists δ and an infinite subsequence $\left\{\widehat{\theta}_{h, n_{i}, \nu}\right\}_{n_{i}}$ with $\widehat{\theta}_{h, n_{i}, \nu} \in B_{\delta}^{c}$, for all n_{i}, implying that $S_{h, n_{i}, \nu}\left(\widehat{\theta}_{h, n_{i}, \nu}\right)>S_{h, n_{i}, \nu}\left(\theta_{0}\right)$, which is in contradiction with the definition of $\widehat{\theta}_{h, n_{i}, \nu}$; in the probability case, δ and $\left\{n_{i}\right\}_{i}$ do not depend on ω).

According to $B 5$, there exists θ_{n} such that

$$
\inf _{\theta \in B_{\delta}^{c}} S_{h, n, \nu}(\theta)-S_{h, n, \nu}\left(\theta_{0}\right)=S_{1 n}\left(\theta_{n}\right)+2 S_{2 n}\left(\theta_{n}\right)+2 S_{3 n}\left(\theta_{n}\right)
$$

where $S_{1 n}\left(\theta_{n}\right)=\sum_{k=h+1}^{n}\left[\Delta_{\theta_{0}, \theta_{n}}\left(F_{k-1}, E_{k}\right)\right]^{2} a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$,
$S_{2 n}\left(\theta_{n}\right)=\sum_{k=h+1}^{n} \Delta_{\theta_{0}, \nu_{0} ; \theta_{0}, \nu}\left(F_{k-1}, E_{k}\right) \Delta_{\theta_{0}, \theta_{n}}\left(F_{k-1}, E_{k}\right) a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$,
$S_{3 n}\left(\theta_{n}\right)=\sum_{k=h+1}^{n} \eta_{k} v\left(F_{k-1}, E_{k}\right) \Delta_{\theta_{0}, \theta_{n}}\left(F_{k-1}, E_{k}\right) a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$.
We successively study each $S_{i n}\left(\theta_{n}\right), i \in\{1,2,3\}$.

1. Since $S_{1 n}\left(\theta_{n}\right)=\left\|\Delta_{\theta_{0}, \theta_{n}}\left(F_{.-1}, E_{\text {. }}\right)\right\|_{n}^{2}$, then

$$
\frac{\lim }{n} S_{1 n}\left(\theta_{n}\right) \geq \frac{\lim }{n} \inf _{\theta \in B_{\delta}^{c}}\left\|\Delta_{\theta_{0}, \theta}\left(F_{.-1}, E\right)\right\|_{n}^{2}
$$

Using $B 1$, the right-hand side is strictly positive yielding $\underline{\lim }_{n} S_{1 n}\left(\theta_{n}\right)>0$ a.s..
2. First notice that $S_{2 n}\left(\theta_{n}\right)=0$, if $\nu=\nu_{0}$. Otherwise, according to Hölder's inequality, $\left|S_{2 n}\left(\theta_{n}\right)\right| \leq\left\|\Delta_{\theta_{0}, \nu_{0} ; \theta_{0}, \nu}\left(F_{.-1}, E_{.}\right)\right\|_{n}\left\|\Delta_{\theta_{0}, \theta_{n}}\left(F_{.-1}, E_{.}\right)\right\|_{n}$. implying

$$
\left|\frac{\lim _{n}}{n} S_{2 n}\left(\theta_{n}\right)\right| \leq \varlimsup_{n}\left\|\Delta_{\theta_{0}, \nu_{0} ; \theta_{0}, \nu}\left(F_{.-1}, E\right)\right\|_{n} . \varlimsup_{n} \sup _{\theta \in B_{\delta}^{c}}\left\|\Delta_{\theta_{0}, \theta}\left(F_{.-1}, E .\right)\right\|_{n}
$$

The right-hand side is equal to 0 , due to $B 2$ and $B 3$, implying $\lim _{n} S_{2 n}\left(\theta_{n}\right) \stackrel{\text { a.s. }}{=} 0$. 3. Consider $S_{3 n}\left(\theta_{n}\right)$. Assume first that h is constant. Let $\Theta_{\varepsilon_{*}}$ a neighborhood of Θ such that all the conditions valid on Θ are also checked on $\Theta_{\varepsilon_{*}}(B 1, \ldots, B 5$, $f_{\theta}^{(1)}($.$) infinitely differentiable). Let$

$$
\begin{aligned}
\tilde{\Delta}_{\theta ; \theta_{0}}\left(F_{k-1}, E_{k}\right) & =f_{\theta}\left(F_{k-1}, E_{k}\right)-f_{\theta_{0}}\left(F_{k-1}, E_{k}\right) \\
L_{n}(\theta) & =\sum_{k=h+1}^{n} \eta_{k} \tilde{\Delta}_{\theta ; \theta_{0}}\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right)
\end{aligned}
$$

$\left\{L_{n}(\theta)\right\}_{n}$ is a martingale and $\left|S_{3 n}\left(\theta_{n}\right)\right|=\left|L_{n}\left(\theta_{n}\right)\right| D_{n}^{-1}$. Using lemma 5, $\lim _{n} S_{3 n}\left(\theta_{n}\right) \stackrel{\text { a.s. }}{=} 0$.

Assume now $n-h$ constant and denote $L_{1, n}\left(\theta_{n}\right)$ for $L_{n}\left(\theta_{n}\right)$ when $h=0$. Then $L_{n}\left(\theta_{n}\right)=L_{1, n}\left(\theta_{n}\right)-L_{1, h}\left(\theta_{n}\right)$. Then, as above, since $L_{1, n}\left(\theta_{n}\right) \leq \sup _{\theta} L_{1, n}(\theta)$ and
$L_{1, h}\left(\theta_{n}\right) \leq \sup _{\theta} L_{1, h}(\theta)$, and using $D_{n} \geq D_{h}$, we get $\lim _{n} L_{1, n}\left(\theta_{n}\right) D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$ and $\lim _{n} L_{1, h}\left(\theta_{n}\right) D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$, implying $\lim _{n} S_{3 n}\left(\theta_{n}\right) \stackrel{\text { a.s. }}{=} 0$.

Lemma 4. Let $a_{k} \geq 0$, for all k, with $a_{1}>0$, and $S_{n}=\sum_{k=1}^{n} a_{k}$ with $\lim _{n} S_{n} \leq \infty$. Then $\sum_{k=1}^{\infty} a_{k} S_{k}^{-2} \leq 2 a_{1}^{-1}-\lim _{n} S_{n}^{-1}$.

Proof. We have

$$
S_{1}^{-1}-S_{n}^{-1}=\sum_{k=2}^{n}\left(S_{k-1}^{-1}-S_{k}^{-1}\right)=\sum_{k=2}^{n} a_{k}\left[S_{k-1} S_{k}\right]^{-1} \geq \sum_{k=2}^{n} a_{k} S_{k}^{-2}
$$

Then the result follows from $S_{1}^{-1}=a_{1}^{-1}$ and $\sum_{k=2}^{n} a_{k} S_{k}^{-2}=\sum_{k=1}^{n} a_{k} S_{k}^{-2}-a_{1} S_{1}^{-2}$. This result, in the weaker form $\sum_{k=1}^{\infty} a_{k} S_{k}^{-2} \leq 2 a_{1}^{-1}$, is given in [9] (p.158) and is based on another proof.

Lemma 5. Let $\Theta_{\varepsilon_{*}}$ a neighborhood of Θ such that $f_{\theta}^{(1)}($.$) is infinitely con-$ tinuously differentiable at any $\theta \in \Theta_{\varepsilon_{*}}$. Assume also
$B 2 s: \varlimsup_{k} \sup _{\theta \in \Theta_{\varepsilon_{*}}}\left[\tilde{\Delta}_{\theta, \theta_{0}}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \stackrel{\text { a.s. }}{<} \infty$.
Then $\lim _{n} L_{n}\left(\theta_{n}\right) D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$.
Proof. First notice that $L_{n}\left(\theta_{n}\right)$ is generally not a martingale. Assume first that $\Theta=\left[\theta_{\min }, \theta_{\text {max }}\right] \subset \mathbb{R}$. Let Θ_{*} a random regular grid of size $\varepsilon_{*} \leq$ $\theta_{\max }-\theta_{\text {min }}$, independent of $\left\{Z_{n}\right\}_{n}$ and which covers Θ, that is $\Theta_{*}=\left\{\theta_{* i}\right\}_{i=1, \ldots, I}$, with $\theta_{* i+1}-\theta_{* i}=\varepsilon_{*}, \theta_{* I} \stackrel{\text { a.s. }}{\geq} \theta_{\max }, \theta_{* 1} \stackrel{\text { a.s. }}{\leq} \theta_{\min }$, and $\theta_{* 1}$ follows a uniform law on $\left(\theta_{\min }-\varepsilon_{*}, \theta_{\text {min }}\right)$. This implies that for any $\theta \in \Theta, \theta_{*}(\theta)-\theta$ is uniformly distributed on $\left(-\varepsilon_{*} / 2,+\varepsilon_{*} / 2\right)$, where $\theta_{*}(\theta)$ is the point of Θ_{*} the nearest from θ. If $\Theta \subset \mathbb{R}^{d}$, we assume this on each coordinate $j, j=1, \ldots, d$. We have

$$
L_{n}\left(\theta_{n}\right)=L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)+\left[L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right]
$$

We prove first $\lim _{n}\left|L_{n}\left(\theta_{* i}\right) D_{n}^{-1}\right| \stackrel{\text { a.s. }}{=} 0$, for any $\theta_{* i} \in \Theta_{*} ;\left\{L_{n}\left(\theta_{* i}\right)\right\}_{n}$ is a martingale because $\left\{\eta_{k}\right\}_{k}$ is a martingale difference sequence and, for each k, given $F_{k-1}, E_{k}, \Delta_{\theta_{* i} ; \theta_{0}}\left(F_{k-1}, E_{k}\right)$ is independent of η_{k}, since $\theta_{* i}$ is independent of $\left\{Z_{n}\right\}_{n}$. Moreover D_{n} is $\left(F_{n-1}, E_{n}\right)$ - measurable and increases with n, and according to $B 2 s$ and lemma 1

$$
\begin{aligned}
& \sum_{k=h+1}^{\infty} E\left(\left[\eta_{k} \tilde{\Delta}_{\theta_{* i} ; \theta_{0}}\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right)\right]^{2} \mid F_{k-1}, E_{k}\right) D_{k}^{-2} \leq \\
& \sigma \sup _{k, \theta}\left[\tilde{\Delta}_{\theta ; \theta_{0}}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \sum_{k=h+1}^{\infty} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2} \stackrel{a . s .}{<} \\
& \infty
\end{aligned}
$$

Therefore the SLLNM may be applied, implying the result. Then, since Θ_{*} is finite, $\lim _{n}\left|L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right| D_{n}^{-1} \leq \lim _{n} \max _{\theta_{* i} \in \Theta_{*}}\left|L_{n}\left(\theta_{* i}\right)\right| D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$.

Next we are going to prove that $\lim _{n}\left|L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right| D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$, by using the fact that this quantity depends on the difference $\theta_{n}-\theta_{*}\left(\theta_{n}\right)$ and not on the particular value taken by θ_{n}. Let

$$
\begin{array}{r}
U_{m, n}^{*}(\theta)=\sum_{k=m}^{n} \eta_{k} \tilde{\Delta}_{\theta ; \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right) D_{k}^{-1} \stackrel{\text { notation }}{=} \sum_{k=m}^{n} Y_{k}^{*}(\theta) \\
U_{m, n}(\theta)=\sum_{k=m}^{n} \eta_{k} \tilde{\Delta}_{\theta ; \theta_{0}}\left(F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right) D_{k}^{-1}
\end{array}
$$

Since $U_{m, n}^{*}(\theta)=U_{m, n}(\theta)-U_{m, n}\left(\theta_{*}(\theta)\right)$, where $\left\{U_{m, n}(\theta)\right\}_{n}$ and $\left\{U_{m, n}\left(\theta_{*}(\theta)\right)\right\}_{n}$ are martingales, then $\left\{U_{m, n}^{*}(\theta)\right\}_{n}$ is a martingale, and according to Jensen's inequality, this implies that $\left\{\sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|\right\}_{n}$ is a submartingale. Therefore using th.2.1 from Hall and Heyde (p.14), we get

$$
\lambda P\left(\max _{n: m \leq n \leq m^{\prime}} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right) \leq E\left(\sup _{\theta}\left|U_{m, m^{\prime}}^{*}(\theta)\right|\right) \leq E\left(\sup _{\theta}\left|\sum_{m}^{m^{\prime}} Y_{k}^{*}(\theta)\right|\right)
$$

Denote $\theta_{m^{\prime}}=\arg \sup _{\theta}\left|U_{m, m^{\prime}}^{*}(\theta)\right|$. Using Hölder's inequality, for any $\lambda>0$,

$$
\left.\lambda P\left(\max _{n: m \leq n \leq m^{\prime}} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right) \leq E\left[\sum_{m}^{m^{\prime}} Y_{k}^{*}\left(\theta_{m^{\prime}}\right) D_{k}^{-1}\right]^{2}\right)^{1 / 2} .
$$

Let $k \in\left\{m, \ldots, m^{\prime}\right\}$. Using the definition of η_{k} and Taylor's expansion of $\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right)$ at $\theta_{*}\left(\theta_{m^{\prime}}\right)$ which depends only on each coordinate of $\theta_{m^{\prime}}$ $\theta_{*}\left(\theta_{m^{\prime}}\right)$ given F_{k-1}, E_{k}, we get

$$
\begin{aligned}
& P\left(\left\{\eta_{k} \in E\right\} \cap\left\{\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D\right\} \mid F_{k-1}, E_{k}\right)= \\
& P\left(\left\{Z_{k} \in E+f_{\mu_{0}}\left(F_{k-1}, E-k\right)\right\} \cap\left\{\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D\right\} \mid F_{k-1}, E_{k}\right)= \\
& \iint_{e} \int_{t} P\left(\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D \mid Z_{k}=\right. \\
& \left.e+f_{\mu_{0}}\left(F_{k-1}, E_{k}\right), \theta_{m^{\prime}}-\theta_{*}\left(\theta_{m^{\prime}}\right)=t, F_{k-1}, E_{k}\right) . \\
& d P\left(\theta_{m^{\prime}}-\theta_{*}\left(\theta_{m^{\prime}}\right)=t \mid Z_{k}=e+f_{\mu_{0}}\left(F_{k-1}, E_{k}\right), F_{k-1}, E_{k}\right) . \\
& d P\left(Z_{k}=e+f_{\mu_{0}}\left(F_{k-1}, E_{k}\right) \mid F_{k-1}, E_{k}\right)
\end{aligned}
$$

Since, given $F_{k-1}, E_{k}, \Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right)$ depends only on coordinates of the difference $\theta_{m^{\prime}}-\theta_{*}\left(\theta_{m^{\prime}}\right)$, which follow a uniform law on $\left(-\varepsilon_{*} / 2,+\varepsilon_{*} / 2\right)$, then

$$
\begin{aligned}
& P\left(\left\{\eta_{k} \in E\right\} \cap\left\{\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D\right\} \mid F_{k-1}, E_{k}\right)= \\
& \int_{e} \int_{t} P\left(\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D \mid \theta_{m^{\prime}}-\theta_{*}\left(\theta_{m^{\prime}}\right)=t, F_{k-1}, E_{k}\right) \\
& d P\left(\theta_{m^{\prime}}-\theta_{*}\left(\theta_{m^{\prime}}\right)=t \mid F_{k-1}, E_{k}\right) d P\left(Z_{k}=e+f_{\mu_{0}}\left(F_{k-1}, E_{k}\right) \mid F_{k-1}, E_{k}\right)= \\
& P\left(\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right) \in D \mid F_{k-1}, E_{k}\right) P\left(\eta_{k} \in E \mid F_{k-1}, E_{k}\right)
\end{aligned}
$$

that is, η_{k} and $\Delta_{\theta_{m^{\prime}}, \theta_{*}\left(\theta_{m^{\prime}}\right)}\left(F_{k-1}, E_{k}\right)$ are independent, given F_{k-1}, E_{k}, leading to $E\left[\sum_{m}^{m^{\prime}} Y_{k}^{*}\left(\theta_{m^{\prime}}\right) D_{k}^{-1}\right]^{2}=E\left[\sum_{m}^{m^{\prime}} E\left(Y_{k}^{* 2}\left(\theta_{m^{\prime}}\right) D_{k}^{-2} \mid F_{k-1}, E_{k}\right)\right]$. Consequently

$$
\begin{aligned}
& \lambda P\left(\max _{n: m \leq n \leq m^{\prime}} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right) \leq \\
& \left.E\left[\sum_{m}^{m^{\prime}} E\left(Y_{k}^{* 2}\left(\theta_{m^{\prime}}\right) D_{k}^{-2} \mid F_{k-1}, E_{k}\right)\right]\right)^{1 / 2} \leq \\
& \sigma\left(E\left[\sum_{k=m}^{\infty} \sup _{\theta}\left[\Delta_{\theta, \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2}\right]\right)^{1 / 2} \leq \\
& \sigma\left(E\left(\left[\sup _{k>m} \sup _{\theta}\left[\Delta_{\theta, \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \sum_{k=m}^{\infty} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2}\right]\right)\right)^{1 / 2}
\end{aligned}
$$

According to $B 2 s$, to lemma 1, and to $\Delta_{\theta, \theta_{*}(\theta)}()=.\Delta_{\theta, \theta_{0}(\theta)}()+.\Delta_{\theta_{0}, \theta_{*}(\theta)}($.$) ,$ $\varlimsup_{k} \sup _{\theta}\left[\Delta_{\theta, \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \sum_{k=h+1}^{\infty} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2}$ is a.s. finite implying that $\sup _{\theta, k>m}\left[\Delta_{\theta_{s}, \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \sum_{k \geq m} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2}$ converges a.s. to 0 , as $m \rightarrow \infty$. Consequently according to Beppo-Levi lemma, $E\left[\sup _{\theta, k>m}\left[\Delta_{\theta, \theta_{*}(\theta)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)\right]^{2} \sum_{k \geq m} a\left(F_{k-1}, E_{k}\right) D_{k}^{-2}\right]^{2}$ tends to 0, as $m \rightarrow \infty$. Moreover

$$
P\left(\sup _{n: m \leq n} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right)=\lim _{m^{\prime}} P\left(\max _{m \leq n \leq m^{\prime}} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right)
$$

Therefore $P\left(\sup _{n: m \leq n} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right|>\lambda\right)$ tends to 0 as $m \rightarrow \infty$. This implies that $\sup _{n: m \leq n} \sup _{\theta}\left|\bar{U}_{m, n}^{*}(\theta)\right|$ converges to 0 in probability, and therefore there exists a subsequence $\sup _{n: m_{i} \leq n} \sup _{\theta}\left|U_{m_{i}, n}^{*}(\theta)\right|$ which converges a.s. to 0, as $m_{i} \rightarrow$ ∞. But, for $m>m_{i}, U_{m, n}^{*}(\theta)=U_{m_{i}, n}^{*}(\theta)-U_{m_{i}, m-1}^{*}(\theta)$ which implies

$$
\begin{aligned}
\sup _{\theta}\left|U_{m, n}^{*}(\theta)\right| & \leq \sup _{\theta}\left|U_{m_{i}, n}^{*}(\theta)\right|+\sup _{\theta}\left|U_{m_{i}, m-1}^{*}(\theta)\right| \\
& \leq \sup _{\theta}\left|U_{m_{i}, n}^{*}(\theta)\right|+\sup _{m^{\prime}: m^{\prime} \geq m_{i}} \sup _{\theta}\left|U_{m_{i}, m^{\prime}}^{*}(\theta)\right|
\end{aligned}
$$

This implies $\sup _{n: n \geq m} \sup _{\theta}\left|U_{m, n}^{*}(\theta)\right| \leq 2 \sup _{n: n \geq m_{i}} \sup _{\theta}\left|U_{m_{i}, n}^{*}(\theta)\right|$ and therefore the left-hand member converges a.s. to 0 , as $m \rightarrow \infty$, since the right-hand member converges to 0 .

Then, it remains to show that $\lim _{n}\left|L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right| D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$. Denote $S_{k, n}^{*}=\sum_{l=1}^{k-1} Y_{l}^{*}\left(\theta_{n}\right) \stackrel{\text { definition }}{=} U_{1, k-1}^{*}\left(\theta_{n}\right)$. We have

$$
\begin{array}{r}
\frac{L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)}{D_{n}}=\sum_{k=h+1}^{n} \frac{Y_{k}^{*}\left(\theta_{n}\right) D_{k}}{D_{n}}=\sum_{k=h+1}^{n} \frac{\left(S_{k+1, n}^{*}-S_{k, n}^{*}\right) D_{k}}{D_{n}} \\
\quad=S_{n+1, n}^{*}-\sum_{k=h+1}^{n} \frac{S_{k, n}^{*}\left(D_{k}-D_{k-1}\right)}{D_{n}}=\frac{\sum_{k=h+1}^{n}\left(S_{n+1, n}^{*}-S_{k, n}^{*}\right) a_{k}}{\sum_{k=h+1}^{n} a_{k}}
\end{array}
$$

Since $S_{n+1, n}^{*}-S_{k, n}^{*}=U_{k, n}^{*}\left(\theta_{n}\right)$, then

$$
\frac{L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)}{D_{n}}=\frac{\sum_{k=h+1}^{n} U_{k, n}^{*}\left(\theta_{n}\right) a_{k}}{\sum_{k=h+1}^{n} a_{k}}
$$

implying
$\lim _{n} \frac{\left|L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right|}{D_{n}} \leq \lim _{N} \lim _{n} \frac{\sum_{1}^{N} a_{k}}{\sum_{1}^{n} a_{k}} \sup _{k<N}\left|U_{k, n}^{*}\left(\theta_{n}\right)\right|+\lim _{N} \lim _{n} \sup _{N \leq k \leq n}\left|U_{k, n}^{*}\left(\theta_{n}\right)\right|$
Now using $U_{k, n}^{*}\left(\theta_{n}\right)=U_{k, N-1}^{*}\left(\theta_{n}\right)+U_{N, n}^{*}\left(\theta_{n}\right)$, for the first term, and $U_{k, n}^{*}\left(\theta_{n}\right)=$ $U_{N, n}^{*}\left(\theta_{n}\right)-U_{N, k-1}^{*}\left(\theta_{n}\right)$, for the second term, we have

$$
\begin{aligned}
\lim _{n} \frac{\left|L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right|}{D_{n}} \leq & \lim _{N} \lim _{n} \frac{\sum_{1}^{N} a_{k}}{\sum_{1}^{n} a_{k}}\left[\sup _{k<N} \sup _{\theta}\left|U_{k, N-1}^{*}(\theta)\right|+\sup _{\theta} U_{N, n}^{*}(\theta)\right]+ \\
& \lim _{N} \lim _{n}\left[\sup _{\theta}\left|U_{N, n}^{*}(\theta)\right|+\sup _{N \leq k \leq n} \sup _{\theta}\left|U_{N, k-1}^{*}(\theta)\right|\right]
\end{aligned}
$$

Since $\lim _{n}\left[\sum_{1}^{N} a_{k}\right]\left[\sum_{1}^{n} a_{k}\right]^{-1} \sup _{k<N} \sup _{\theta}\left|U_{k, N-1}^{*}(\theta)\right| \stackrel{\text { a.s. }}{=} 0$, then

$$
\begin{aligned}
\lim _{n} \frac{\left|L_{n}\left(\theta_{n}\right)-L_{n}\left(\theta_{*}\left(\theta_{n}\right)\right)\right|}{D_{n}} \leq & \lim _{N} \lim _{n} \frac{\sum_{1}^{N} a_{k}}{\sum_{1}^{n} a_{k}}\left[\sup U_{N, n}^{*}(\theta)\right]+ \\
& \left.\lim _{N} \lim _{n} \sup _{\theta}\left|U_{N, n}^{*}(\theta)\right|+\lim _{N} \sup _{N \leq k} \sup _{\theta}\left|U_{N, k-1}^{*}(\theta)\right|\right] \\
\leq & \left.3 \lim _{N} \sup _{n>N} \sup _{\theta} U_{N, n}^{*}(\theta)\right]
\end{aligned}
$$

which is null a.s..

Consider next the case where $f_{\theta}^{(1)}($.$) is not necessarily differentiable. Let G_{m}$ a regular grid of \mathbb{R}^{d} of size ε_{m}, that is $G_{m}=\prod_{j=1}^{d} G_{m, j}$, where $G_{m, j}=\left\{x_{m, j}\right\}_{j}$, $x_{m, j+1}-x_{m, j}=\varepsilon_{m}$. Assume $\lim _{m} \varepsilon_{m}=0$. Let $\Theta_{m}=\Theta \cap G_{m}$ and define the DCLSE of θ_{0} by $\widehat{\theta}_{m, h, n, \nu}=\arg \min _{\theta \in \Theta_{m}} \widetilde{S}_{h, n, \nu}(\theta)$.

Proposition 6. Assume $f_{\theta}^{(1)}\left(F_{k-1}, E_{k}\right) v\left(F_{k-1}, E_{k}\right)$ continuous at θ_{0}, uniformly in k, i.e. $\lim _{\theta_{m}\left(\theta_{0}\right) \rightarrow \theta_{0}} \sup _{k}\left|\left(f_{\theta_{m}\left(\theta_{0}\right)}^{(1)}\left(F_{k-1}, E_{k}\right)-f_{\theta_{0}}^{(1)}\left(F_{k-1}, E_{k}\right)\right) v\left(F_{k-1}, E_{k}\right)\right|$ $\stackrel{\text { a.s. }}{=} 0$. Assume $B 1, B 2 s, B 3, B 4$ and $B 5$. Then $\lim _{m} \lim _{n} \widehat{\theta}_{m, h, n, \nu} \stackrel{a . s}{=} \theta_{0}$ (resp. $\lim _{m} \lim _{n} \widehat{\theta}_{m, h, n, \nu} \stackrel{P}{=} \theta_{0}$, if $B 3$ is checked in probability).

Proof. The proof is similar to the previous one and relies on Wu's lemma ([20]) applied to Θ_{m} : Let $\theta_{m}\left(\theta_{0}\right)$ the point of Θ_{m} the nearest from θ_{0} and let $B_{m \delta}^{c}=\left\{\theta \in \Theta_{m}: \sum_{j=1}^{d}\left|\theta_{j}-\left[\theta_{m}\left(\theta_{0}\right)\right]_{j}\right|>\delta\right\}$. Then, if for all $\delta>0$, $\underline{\lim }_{m} \underline{\lim }_{n}\left(\inf _{\theta \in B_{m \delta}^{c}} S_{h, n, \nu}(\theta)-S_{h, n, \nu}\left(\theta_{m}\left(\theta_{0}\right)\right)>0\right.$ a.s. (resp. in probability), then $\lim _{n} \widehat{\theta}_{m, h, n, \nu} \stackrel{a . s(\text { resp. } P) .}{=} \theta_{m}\left(\theta_{0}\right)$ (proof in the a.s. case: assume that it is not true. Then there exists a non negligible set of trajectories ω such that, for each ω, there exists δ and an infinite subsequence $\left\{\widehat{\theta}_{m_{j}, h, n_{i}, \nu}\right\}_{m_{j}, n_{i}}$ with $\widehat{\theta}_{m_{j}, h, n_{i}, \nu} \in B_{m \delta}^{c}$, for all m_{j}, n_{i}, implying that $S_{h, n_{i}, \nu}\left(\widehat{\theta}_{m_{j}, h, n_{i}, \nu}\right)>S_{h, n_{i}, \nu}\left(\theta_{m_{j}}\left(\theta_{0}\right)\right)$, for large m_{j}, n_{i}, which is in contradiction with the definition of $\widehat{\theta}_{m_{j}, h, n_{i}, \nu}$; in the probability case, δ and $\left\{n_{i}\right\}_{i}$ do not depend on ω).

According to $B 5$, there exists $\theta_{m, n}$ such that

$$
\inf _{\theta \in B_{m \delta}^{c}} S_{h, n, \nu}(\theta)-S_{h, n, \nu}\left(\theta_{m}\left(\theta_{0}\right)\right)=S_{1 n}\left(\theta_{m, n}\right)+2 S_{2 n}\left(\theta_{m, n}\right)+2 S_{3 n}\left(\theta_{m, n}\right)
$$

where $S_{1 n}\left(\theta_{m, n}\right)=\sum_{k=h+1}^{n}\left[\Delta_{\theta_{m}\left(\theta_{0}\right), \theta_{m, n}}\left(F_{k-1}, E_{k}\right)\right]^{2} a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$, $S_{2 n}\left(\theta_{m, n}\right)=\sum_{k=h+1}^{n} \Delta_{\theta_{0}, \nu_{0} ; \theta_{m}\left(\theta_{0}\right), \nu}\left(F_{k-1}, E_{k}\right) \Delta_{\theta_{m}\left(\theta_{0}\right), \theta_{m, n}}\left(F_{k-1}, E_{k}\right) a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$, $S_{3 n}\left(\theta_{m, n}\right)=\sum_{k=h+1}^{n} \eta_{k} v\left(F_{k-1}, E_{k}\right) \Delta_{\theta_{m}\left(\theta_{0}\right), \theta_{m, n}}\left(F_{k-1}, E_{k}\right) a\left(F_{k-1}, E_{k}\right) D_{n}^{-1}$.

As previously, we have $\underline{\lim }_{n} S_{1 n}\left(\theta_{m, n}\right) \stackrel{\text { a.s. }}{>} 0, \lim _{n} S_{3 n}\left(\theta_{m, n}\right) \stackrel{\text { a.s. }}{=} 0$, and
$\left|\frac{\lim _{m}}{} \frac{l_{m}}{n} S_{2 n}\left(\theta_{m, n}\right)\right| \leq$
$\left.\varlimsup_{m} \varlimsup_{n}\left\|\Delta_{\theta_{0}, \theta_{m}\left(\theta_{0}\right)}\right\|_{n}+\varlimsup_{m} \varlimsup_{n}\left\|\left(f_{\mu_{0}}^{(2)}\left(F_{.-1}, E .\right)-\widehat{f_{\mu_{0}}^{(2)}}\left(F_{.-1}, E .\right)\right) v\left(F_{.-1}, E .\right)\right\|_{n}\right]$.
$2 \varlimsup_{n} \sup _{\theta \in B_{\delta}^{c}}\left\|\Delta_{\theta_{0}, \theta}\left(F_{.-1}, E_{.}\right)\right\|_{n}$.
which converges a.s. to 0 according to $B 2, B 3$ and $\lim _{m} \theta_{m}\left(\theta_{0}\right)=\theta_{0}$ and the continuity of $f_{\theta}^{(1)}($.$) at \theta_{0}$.

5. Strong consistency in the linear model

Assume $f\left(F_{n-1}, E_{n}\right)=\mu_{0}^{T} W_{n}$, where W_{n} is a measurable function of $\left(F_{n-1}, E_{n}\right)$. Let $v^{-1}\left(W_{k}\right)=\left\|W_{k}\right\|_{L_{p}} \stackrel{\text { def. }}{=}\left[\sum_{j=1}^{d}\left|W_{k, j}\right|^{p}\right]^{1 / p}$. We also denote $\left\|W_{k}\right\|$ for $\left\|W_{k}\right\|_{L_{p}}$. Since by Hölder's inequality: $\left\|W_{k}\right\|_{1} \leq\left\|W_{k}\right\|_{L_{p}} d^{1 / q}$, for any q with $p^{-1}+q^{-1}=1$, then $B 1$ with $p=1$ is the weakest condition among conditions $B 1$ with $p \geq 1$. Whereas $B 3$ with $p=1$ is the strongest one. For simplification of the notations, assume here $\delta\left(F_{k-1}, E_{k}\right)=1$, for all k. Assume that we can decompose W_{n} according to $W_{n}=\left(W_{n}^{(1)}, W_{n}^{(2)}\right), W_{n}^{(2)}$ being the maximum subset of W_{n} such that $\lim _{n} D_{n}^{(2)} D_{n}^{-1}=0$, where $D_{n}^{(i)}=\sum_{k=1}^{n}\left\|W_{k}^{(i)}\right\|^{2} g\left(F_{k-1}, E_{k}\right), i=1,2, D_{n}=$ $\sum_{k=1}^{n}\left\|W_{k}\right\|^{2} g\left(F_{k-1}, E_{k}\right)$. Writing $\bar{W}_{k}^{(i)}=W_{k}^{(i)}\left\|W_{k}\right\|^{-1}, i=1,2$, this means that $\left\{\left\|\bar{W}_{k}^{(2)}\right\|\right\}_{k}$ is asymptotically negligible.

Notice that if $W_{k}^{(1)}$ and $W_{k}^{(2)}$ are orthogonal, for all k, i.e. $W_{k, i}^{(1)} W_{k, j}^{(2)}=0$, for all i, j, then, for all k, there exists $i \in\{1,2\}$ such that $W_{k}=W_{k}^{(i)}$ implying $\left\|\bar{W}_{k}^{(i)}\right\|=0$ or 1 , i.e. $\left\|\bar{W}_{k}^{(i)}\right\|=\delta_{\left\|W_{k}^{(i)}\right\|}$, where $\delta_{Z}=1$ if $Z \neq 0$ and is 0 otherwise. Then

$$
\left\|\left\|\bar{W}^{(2)}\right\|\right\|_{n}=\left\|\delta_{\left\|W_{\cdot}^{(2)}\right\|}\right\|_{n}=\frac{\sum_{k=h+1}^{n} \delta_{W_{k}^{(2)}} a\left(F_{k-1}, E_{k}\right)}{\sum_{k=h+1}^{n}\left(\delta_{W_{k}^{(1)}}+\delta_{W_{k}^{(2)}}\right) a\left(F_{k-1}, E_{k}\right)}
$$

Therefore, in the orthogonal case, the negligibility of $\left\{\left\|\bar{W}_{k}^{(2)}\right\|\right\}_{k}$ means that the mean number (or percentage) of observations of $\bar{W}_{k}^{(2)}$, weighted by $a($.$) , tends a.s.$ to 0 . In the general case, according to the following lemma, we can equivalently use D_{n} or $D_{n}^{(1)}$ in proposition 3 .

Lemma 7. Assume $\lim _{n} D_{n}^{(2)} D_{n}^{-1}=0$. Then

$$
\lim _{n} \frac{\left|D_{n}-D_{n}^{(1)}\right|}{D_{n}} \stackrel{\text { a.s. }}{=} 0
$$

Proof. Use $\left[\left\|W_{k}\right\|^{2}\right]^{p / 2}=\left\|W_{k}^{(1)}\right\|^{p}+\left\|W_{k}^{(2)}\right\|^{p} \leq\left(\left\|W_{k}^{(1)}\right\|^{2}+\left\|W_{k}^{(2)}\right\|^{2}\right)^{p / 2}$ which implies $D_{n} \leq D_{n}^{(1)}+D_{n}^{(2)}$, leading to the result since $\lim _{n} D_{n}^{(2)} D_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$.

Let θ_{0}, the subset of μ_{0} relative to $W_{n}^{(1)}$ and ν_{0}, the subset of μ_{0} relative to $W_{n}^{(2)}$. Then the CLSE $\left(\widehat{\theta}_{h, n}, \widehat{\nu}_{h, n}\right)$ may be written in the following way

$$
\begin{align*}
& \left(\widehat{\theta}_{h, n}, \widehat{\nu}_{h, n}\right)= \tag{4}\\
& \left(\left[\sum_{k=h+1}^{n}\left(Z_{k}-\widehat{\nu}_{h, n}^{T} W_{k}^{(2)}\right) W_{k}^{(1) T} g\left(F_{k-1}, E_{k}\right)\right]\left[\sum_{k=h+1}^{n} W_{k}^{(1)} W_{k}^{(1) T} g\left(F_{k-1}, E_{k}\right)\right]^{-1}\right. \\
& \left.\left[\sum_{k=h+1}^{n}\left(Z_{k}-\widehat{\theta}_{h, n}^{T} W_{k}^{(1)}\right) W_{k}^{(2) T} g\left(F_{k-1}, E_{k}\right)\right]\left[\sum_{k=h+1}^{n} W_{k}^{(2)} W_{k}^{(2) T} g\left(F_{k-1}, E_{k}\right)\right]^{-1}\right)
\end{align*}
$$

In the particular case where W_{k} is an orthogonal set of variables, for all k, that is $W_{k, i} W_{k, j}=0$, for all k, (4) is reduced to

$$
\widehat{\mu}_{h, n, i}=\left[\sum_{k=h+1}^{n} Z_{k} W_{k, i}^{T} g\left(F_{k-1}, E_{k}\right)\right]\left[\sum_{k=h+1}^{n} W_{k, i}^{2} g\left(F_{k-1}, E_{k}\right)\right]^{-1}
$$

$$
\begin{equation*}
i=1, \ldots, d \tag{5}
\end{equation*}
$$

This means that, in that case, we aim to prove either the individual consistency of each $\widehat{\mu}_{h, n, i}$, or the stronger property of the consistency of $\widehat{\theta}_{h, n}$, under the identifiability of θ_{0}, and in addition the consistency of $\widehat{\nu}_{h, n}$ under the identifiability of ν_{0}. The simultaneous consistency means that the rate of convergence is of the same order for all the individual estimators and is a stronger property than the individual consistency. Denote $\lambda_{\min }(A)$, the smallest eigen value of A (resp. $\lambda_{\max }(A)$, the largest one). Let, for $i \in\{1,2\}, B 2^{(i)}, \ldots, B 4^{(i)}$, be the conditions $B 2, \ldots, B 4$ relative to $\left\{W_{k}^{(i)}\right\}_{k}$, and

$$
\tilde{B} 1^{(i)}: \frac{\lim }{n}\left[\lambda_{\min }\left(\sum_{k=h+1}^{n} W_{k}^{(i)} W_{k}^{(i) T} g\left(F_{k-1}, E_{k}\right)\right)\right]\left[D_{n}^{(i)}\right]^{-1} \stackrel{\text { a.s. }}{>} 0
$$

In the following proposition, we give general conditions leading to the consistency of the CLSE of $\left(\theta_{0}, \nu_{0}\right)$ although $\nu_{0} W^{(2)}\left\|W^{(1)}\right\|^{-1}$ is asymptotically negligible. Let $D_{n}^{(1,2)}=\sum_{k=h+1}^{n}\left\|W_{k}^{(1)}\right\|\left\|W_{k}^{(2)}\right\| g\left(F_{k-1}, E_{k}\right)$.

Proposition 8. 1. Assume $\tilde{B} 1^{(1)}, B 4^{(1)}$ and $\tilde{B} 3^{(1)}: \lim _{n} D_{n}^{(2)}\left[D_{n}^{(1)}\right]^{-1} \stackrel{\text { a.s. }}{=} 0$. Then $\lim _{n} \widehat{\theta}_{h, n} \stackrel{\text { a.s. }}{=} \theta_{0}$.
2. Assume in addition $p=2, \tilde{B} 1^{(2)}, B 4^{(2)}$, and $\tilde{B} 3^{(2)}$ defined by the existence of a deterministic sequence $\left\{\phi_{n}\right\}_{n}$ such that:
i) $\lim _{n} \phi_{n}\left\|\theta_{0}-\widehat{\theta}_{h, n, \nu_{0}}\right\|_{L_{2}}$ exists in distribution (resp. $\varlimsup_{n} \phi_{n}\left\|\theta_{0}-\widehat{\theta}_{h, n, \nu_{0}}\right\|_{L_{2}} \stackrel{\text { a.s. }}{<}$ $\infty)$.
ii) $\lim _{n} D_{n}^{(1)}\left[\phi_{n}^{2} D_{n}^{(2)}\right]^{-1} \stackrel{P(\text { resp.a.s. })}{=} 0$.
iii) $\varlimsup_{n} \phi_{n} D_{n}^{(1,2)}\left[D_{n}^{(1)}\right]^{-1} \stackrel{P(\text { resp.a.s. })}{<} \infty$.

Then $\lim _{n} \widehat{\nu}_{h, n} \stackrel{P(\text { resp.a.s. })}{=} \nu_{0}$.

Examples

1. Let $Z_{n}=\theta_{0}+\nu_{0} a_{n}^{-1}+\eta_{n}$, where $\lim _{n} a_{n}=\infty$, and the $\left\{\eta_{n}\right\}_{n}$ are i.i.d. $E\left(\eta_{n}\right)=0, E\left(\eta_{n}^{2}\right)=1$. Then θ_{0} is asymptotically identifiable at the rate $v()=$.1 , while $\nu_{0} a_{n}^{-1}$ is asymptotically negligible. Let $h=0$. Then $D_{n}^{(1)}=n$ and according to item 1 of proposition $8, \widehat{\theta}_{0, n}$ is strongly consistent. Now ν_{0} is asymptotically identifiable in $\nu_{0} a_{n}^{-1}$ at the rate a_{n}, implying $D_{n}^{(2)}=\sum_{k=1}^{n} a_{k}^{-2}$. Moreover $\lim _{n} \sqrt{n}\left(\widehat{\theta}_{0, n, \nu_{0}}-\theta_{0}\right) \stackrel{d}{=} \mathcal{N}(0,1)$, i.e. $\phi_{n}^{2}=D_{n}^{(1)}=n$, and $D_{n}^{(1,2)}=\sum_{k=1}^{n} a_{k}^{-1}$. Consequently if $\lim _{n} \sum_{k=1}^{n} a_{k}^{-2}=\infty$ and if $\left[\sum_{k=1}^{n} a_{k}^{-1}\right] n^{-1 / 2}$ is bounded, conditions of proposition 8 are all satisfied implying the weak consistency of $\widehat{\nu}_{h, n}$. In the particular case $a_{k}=k^{\alpha}$, the only solution for having both ii) and iii) is $\alpha=1 / 2$. Moreover if the LIL (Law of the Iterated Logarithm) is valid, then $\phi_{n}=n^{1 / 2}[\ln \ln n]^{-1 / 2}$ implying the strong consistency of $\widehat{\nu}_{h, n}$. The condition given in [13] concerns $\left[\ln \lambda_{\max }\left(\sum_{k=1}^{n} W_{k} W_{k}^{T}\right)\right]^{\rho}\left[\lambda_{\min }\left(\sum_{k=1}^{n} W_{k} W_{k}^{T}\right)\right]^{-1}=[\ln n]^{\rho}[\ln n]^{-1}$ which does not tend to 0 . Therefore the conditions described here are weaker.
2. Let $Z_{n}=\sum_{i=1}^{Z_{n-1}} Y_{n, i}$, where the $\left\{Y_{n, i}\right\}_{i}$ are i.i.d. $\left.\left(\theta_{0}+\nu_{0} Z_{n-1}^{-\alpha}\right), \sigma^{2}\left(Z_{n-1}\right)\right)$, given F_{n-1}, with $\theta_{0} \geq 1, \nu_{0}>0, \alpha>0$. Then $\left\{Z_{n}\right\}_{n}$ is a size-dependent branching process belonging to the class of processes studied by Klebaner [11] and which does not extinct with a nonnull probability. We have $Z_{n}=\left(\theta_{0}+\right.$ $\left.\nu_{0} Z_{n-1}^{-\alpha}\right) Z_{n-1}+\eta_{n}$. Assume first that $\theta_{0}=1, \alpha=1$ and $Y_{n, i} \in\{1,2\}$. Then $\sigma^{2}\left(Z_{n-1}\right)=\nu_{0} Z_{n-1}^{-1}\left(1-\nu_{0} Z_{n-1}^{-1}\right)$ and $g()=$.1 , implying $D_{n}^{(2)}=n$. Therefore $\widehat{\nu}_{0, n}$ is strongly consistent. This case has been studied in [17]. Assume now that $\theta_{0}>1$ with $g(Z)=Z^{-1}$. Then $Z_{n} \theta_{0}^{-n}$ converges a.s. $([11]), D_{n}^{(1)}=\sum_{k=1}^{n} Z_{k-1}$ and $\widehat{\theta}_{0, n}$ is strongly consistent. But the consistency of $\widehat{\nu}_{0, n}$ depends on the value of α since $D_{n}^{(2)}=\sum_{k} Z_{k-1}^{1-2 \alpha}, D_{n}^{(1,2)}=\sum_{k} Z_{k-1}^{1-\alpha}$. When $\alpha=1, \lim _{n} D_{n}^{(2)}<\infty$ a.s., and $\widehat{\nu}_{0, n}$ cannot be consistent, whereas when $\alpha=1 / 2$, the conditions of proposition 8 are fulfilled in probability with $\phi_{n}=\theta_{0}^{n / 2}$.

Remarks.

1. In the case $\nu=0, h=0, g()=$.1 , formula (4) is reduced to the classical formula $\widehat{\theta}_{n}^{T}=\mathcal{Z}_{n}^{T} \mathcal{W}_{n}\left[\mathcal{W}_{n}^{T} \mathcal{W}_{n}\right]^{-1}$, where $\mathcal{Z}_{n}^{T}=\left(Z_{1}, \ldots, Z_{n}\right), \mathcal{W}_{n}[i, j]=W_{i, j}$, $i=1, \ldots, n, j=1, \ldots, d$, and $\tilde{B} 1: \varlimsup_{n} \lambda_{\min }\left(\mathcal{W}_{n}^{T} \mathcal{W}_{n}\right) D_{n}^{-1} \stackrel{\text { a.s. }}{>} 0$.
2. Let $Z_{n}=\theta_{0} W_{n}+\eta_{n}$ with $d=1,\left\{\eta_{n}\right\}_{n}$ independent of $\left\{W_{n}\right\}_{n}$ and $\underline{\lim }_{n} E\left(\eta_{k}^{2}\right) g\left(W_{k}\right) \stackrel{\text { a.s. }}{>} 0$. Then $\widehat{\theta}_{0, n}=\left[\sum_{k=1}^{n} Z_{k} W_{k} g\left(W_{k}\right)\right] D_{n}^{-1}$, and therefore $\operatorname{Var}\left(\widehat{\theta}_{0, n}-\theta_{0} \mid\left\{W_{n}\right\}_{n}\right) \geq \inf _{k} E\left(\eta_{k}^{2}\right) g\left(W_{k}\right) D_{n}^{-1}$, which does not converge to 0 , as $n \rightarrow \infty$, if $\lim _{n} D_{n}<\infty$. Consequently in the general case, $B 4$ is a necessary and sufficient condition for the strong consistency in the meaning that if $B 4$ is not checked, then there exist some models in which the estimators are not consistent. But we saw in proposition 8 that we may have the consistency even if the simultaneous identifiability is not ensured.

Proof.
1.Use proposition 3 and lemma 7. Denote now $\bar{W}^{(i)}=W^{(i)}\left[\left\|W^{(i)}\right\|\right]^{-1}, i=$ 1,2. Concerning $\theta_{0}, v\left(W_{k}\right)=\left\|W_{k}^{(1)}\right\|^{-1}$ and conditions of proposition 3 are the following:
$B 1^{(1)}: \underline{\lim }_{n} \inf _{\theta \in B_{\delta}^{c}}\left\|\left(\theta_{0}-\theta\right)^{T} \bar{W}^{(1)}\right\|_{n} \stackrel{\text { a.s. }}{>} 0$
$B 2 s^{(1)}: \varlimsup_{n} \sup _{\theta \in B_{\delta}^{c}}\left|\left(\theta_{0}-\theta\right)^{T} \bar{W}_{n}^{(1)}\right| \stackrel{\text { a.s. }}{<} \infty$
$B 3^{(1)}: \varlimsup_{n}\left\|\left(\nu_{0}-\widehat{\nu}_{h, n}\right)^{T} W^{(2)}\left[\left\|W^{(1)}\right\|\right]^{-1}\right\|_{n} \stackrel{\text { a.s. }}{=} 0$
$B 4^{(1)}: \lim _{n} D_{n}^{(1)} \stackrel{\text { a.s. }}{=} \infty$
$B 5^{(1)}: \forall \delta>0, \forall W_{k}^{(1)}, \sup _{\theta \in B_{\delta}^{c}} \theta^{T} W_{k}^{(1)}\left(\right.$ resp. $\left.\inf _{\theta \in B_{\delta}^{c}} \theta^{T} W_{k}^{(1)}\right)$ is attained at some $\theta_{W_{k}}^{(1) \text { sup }}$ (resp. at some $\theta_{W_{k}}^{(1) \text { inf }}$).

Consider $B 1^{(1)}$. Let $A_{n}^{(1)}=\sum_{k=h+1}^{n} W_{k}^{(1)} W_{k}^{(1) T} g\left(F_{k-1}, E_{k}\right)$. Since $A_{n}^{(1)}$ is a semi-definite matrix, there exists an orthogonal matrix U_{n} such that $A_{n}^{(1)}=$ $U_{n} \Lambda_{n} U_{n}^{T}, \Lambda_{n}$ being the diagonal matrix of the eigen values of $A_{n}^{(1)}$. Therefore

$$
\begin{aligned}
& \frac{\lim }{n} \inf _{\theta \in B_{\delta}^{c}}\left\|\left(\theta_{0}-\theta\right)^{T} \bar{W}_{\cdot}^{(1)}\right\|_{n}^{2}= \\
& \frac{\lim }{n}\left[\inf _{\theta \in B_{\delta}^{c}}\left(\theta_{0}-\theta\right)^{T} A_{n}^{(1)}\left(\theta_{0}-\theta\right)\right]\left[D_{n}^{(1)}\right]^{-1} \geq \\
& \frac{\lim }{n}\left[\inf _{\theta \in B_{\delta}^{c}}\left[\left(\theta_{0}-\theta\right)^{T} U_{n} \Lambda_{n} U_{n}^{T}\left(\theta_{0}-\theta\right)\right]\right]\left[D_{n}^{(1)}\right]^{-1} \geq \\
& \delta \underline{\lim }\left[\lambda_{\min }^{n}\left(A_{n}^{(1)}\right)\right]\left[D_{n}^{(1)}\right]^{-1}
\end{aligned}
$$

and therefore $B 1^{(1)}$ is satisfied under $\tilde{B} 1^{(1)}$.
Consider now $B 2 s^{(1)}$. According to Hölder's inequality with $p^{-1}+q^{-1}=1$,

$$
\varlimsup_{n} \sup _{\theta \in B_{\delta}^{c}}\left|\left(\theta_{0}-\theta\right)^{T} \bar{W}_{n}^{(1)}\right| \leq \varlimsup_{n} \sup _{\theta \in B_{\delta}^{c}}\left\|\theta_{0}-\theta\right\|_{L_{q}}\left\|\bar{W}_{n}^{(1)}\right\|_{L_{p}}
$$

which is finite since B_{δ}^{c} is compact and $\left\|\bar{W}_{n}^{(1)}\right\|_{L_{p}}=1$.

Next, consider $B 3^{(1)}$, using again Hölder's inequality,

$$
\begin{align*}
\left\|\left(\nu_{0}-\widehat{\nu}_{h, n}\right)^{T} W_{\cdot}^{(2)}\left[\left\|W_{\cdot}^{(1)}\right\|_{L_{p}}\right]^{-1}\right\|_{n}^{2} & \leq\left\|\nu_{0}-\widehat{\nu}_{h, n}\right\|_{L_{q}}^{2}\| \| W_{\cdot}^{(2)}\left\|_{L_{p}}\left[\left\|W_{\cdot}^{(1)}\right\|_{L_{p}}\right]^{-1}\right\|_{n}^{2} \\
& \leq\left\|\nu_{0}-\widehat{\nu}_{h, n}\right\|_{L_{q}}^{2}\left[D_{n}^{(2)}\right]\left[D_{n}^{(1)}\right]^{-1} \tag{6}
\end{align*}
$$

the limit of which is 0 since $\widehat{\nu}_{h, n}$ belongs to the compact set N.
Next concerning $B 5^{(1)}$, it is automatically satisfied.
2. In the same way as previously, $B 1^{(2)}, B 2^{(2)}, B 4^{(2)}, B 5^{(2)}$ are satisfied. It remains to prove $B 3^{(2)}: \varlimsup_{n}\left\|\left(\theta_{0}-\widehat{\theta}_{h, n}\right)^{T} W^{(1)}\left[\left\|W^{(2)}\right\|\right]^{-1}\right\|_{n} \stackrel{\text { a.s. }}{=} 0$. We have, in the same way as for (6),

$$
\begin{aligned}
\left\|\left(\theta_{0}-\widehat{\theta}_{h, n}\right)^{T} W_{\cdot}^{(1)}\left[\left\|W_{\cdot}^{(2)}\right\|\right]^{-1}\right\|_{n} \leq & \left\|\theta_{0}-\widehat{\theta}_{h, n}\right\|_{L_{q}}\left[D_{n}^{(1)}\left[D_{n}^{(2)}\right]^{-1}\right]^{1 / 2} \\
\leq & \phi_{n}\left\|\theta_{0}-\widehat{\theta}_{h, n, \nu_{0}}\right\|_{L_{q}}\left[D_{n}^{(1)}\left[\phi_{n}^{2} D_{n}^{(2)}\right]^{-1}\right]^{1 / 2}+ \\
& \phi_{n}\left\|\widehat{\theta}_{h, n, \nu_{0}}-\widehat{\theta}_{h, n}\right\|_{L_{q}}\left[D_{n}^{(1)}\left[\phi_{n}^{2} D_{n}^{(2)}\right]^{-1}\right]^{1 / 2} .
\end{aligned}
$$

The first term converges in probability to 0 by Billingsley convergence results (known also as Slutzky theorem) [2]. Concerning the second term, using the fact that there exists $C<\infty$ such that $\left\|\widehat{\nu}_{h, n}-\nu_{0}\right\| \leq C$ and using Hölder's inequality and (4),

$$
\begin{align*}
\phi_{n}\left\|\widehat{\theta}_{h, n, \nu_{0}}-\widehat{\theta}_{h, n}\right\|_{L_{q}} & =\phi_{n}\left\|\left(\widehat{\nu}_{h, n}-\nu_{0}\right)^{T} \sum_{k=h+1}^{n} W_{k}^{(2)} W_{k}^{(1) T} g\left(W_{k}\right)\left[A_{n}^{(1)}\right]^{-1}\right\|_{L_{q}} \\
& \leq \phi_{n}\left\|\left(\widehat{\nu}_{h, n}-\nu_{0}\right)^{T} 1 D_{n}^{(1,2)} 1^{T} U_{n} \Lambda_{n}^{-1} U_{n}^{T}\right\|_{L_{q}} \\
& \leq \phi_{n}\left\|\widehat{\nu}_{h, n}-\nu_{0}\right\|_{L_{q}} D_{n}^{(1,2)}\left\|1^{T} U_{n} \Lambda_{n}^{-1} U_{n}^{T}\right\|_{L_{q}} \\
& \leq \phi_{n} D_{n}^{(1,2)} C\left\|1^{T} U_{n} \Lambda_{n}^{-1} U_{n}^{T}\right\|_{L_{q}} . \tag{8}
\end{align*}
$$

For $q=2,\left\|1^{T} U_{n} \Lambda_{n}^{-1} U_{n}^{T}\right\|_{L_{q}}^{2}=1^{T} U_{n} \Lambda_{n}^{-2} U_{n}^{T} 1 \leq\left[\lambda_{\min }\left(A_{n}^{(1)}\right]^{-2} \sum_{j}\left(\sum_{i} U_{n}[i, j]\right)^{2} \leq\right.$ $\left[\lambda_{\min }\left(A_{n}^{(1)}\right]^{-2} d^{3}\right.$. This leads to $\tilde{B} 3^{(2)}$, using $\tilde{B} 1^{(1)}$, (7) and (8).

Corollary 9. Assume the particular case of W_{k} orthogonal, for all k. Let $D_{n, i}=\sum_{k=h+1}^{n}\left|W_{k, i}\right|^{2} g\left(F_{k-1}, E_{k}\right)$. Then
$1 . B 1 \Longleftrightarrow \underline{\lim }_{n} \min _{1 \leq i \leq d}\left\|\delta_{\left|W_{., i}\right|}\right\|_{n} \stackrel{\text { a.s. }}{>} 0 \Longleftrightarrow: \underline{\lim }_{n} \min _{1 \leq i \leq d} D_{n, i}\left[D_{n}\right]^{-1} \stackrel{\text { a.s. }}{>} 0$.
Under $B 1$ and $B 4, \lim _{n} \widehat{\theta}_{h, n, \nu} \stackrel{\text { a.s. }}{=} \theta_{0}$.
2. Under $B 4_{i}: D_{n, i}$ increases to ∞, then $\lim _{n} \widehat{\theta}_{h, n, \nu, i} \stackrel{\text { a.s. }}{=} \theta_{0, i}$.

Remark. $\underline{\lim }_{n} \min _{1 \leq i \leq d} D_{n, i}\left[D_{n}\right]^{-1}>0$ a.s. means that the amounts of information relative to each component of θ_{0} are balanced.

Proof. Since W_{k} is orthogonal, for all $k, W_{k} W_{k}^{T}$ is diagonal, for all k, implying the first result. The other results are direct consequence of proposition 8.

Assume now that W_{k} is of dimension $d=2$ and $\|\cdot\|_{L_{p}}=\|\cdot\|_{L_{1}}$. Let $D_{n, 12}=$ $\sum_{k=h+1}^{n} W_{k, 1} W_{k, 2} g\left(F_{k-1}, E_{k}\right), D_{n,|12|}=\sum_{k=h+1}^{n}\left|W_{k, 1} W_{k, 2}\right| g\left(F_{k-1}, E_{k}\right)$. According to Hölder's inequality, $D_{n, 12}^{2}-D_{n, 1} D_{n, 2} \leq 0$, for all n. $D_{n, 12}$ represents the information which is common to $\left\{W_{k, 1}\right\}_{k}$ and $\left\{W_{k, 2}\right\}_{k}$, whereas $D_{n, 1}$ and $D_{n, 2}$ represent the individual informations. Notice that when W_{k} is orthogonal, for all k, then $D_{n}=D_{n, 1}+D_{n, 2}$.

Proposition 10. 1. In the general case

$$
B 1 \Longleftrightarrow \tilde{B} 1 \Longleftrightarrow \frac{\lim }{n}\left(-D_{n, 12}^{2}+D_{n, 1} D_{n, 2}\right)\left(D_{n, 1}+D_{n, 2}\right)^{-2} \stackrel{\text { a.s. }}{>} 0
$$

2. Assume W_{k} orthogonal, for all k. Then

$$
\begin{equation*}
B 1 \Longleftrightarrow \tilde{B} 1: 0 \stackrel{\text { a.s. }}{<} \frac{\lim }{n} \frac{D_{n, 1}}{D_{n, 2}} \leq \varlimsup_{n} \frac{D_{n, 1}}{D_{n, 2}} \stackrel{\text { a.s. }}{<} \infty . \tag{9}
\end{equation*}
$$

Remark. Assume the particular case W_{k} orthogonal, for all $k, D_{n, 1}>D_{n, 2}$, $\lim _{n} D_{n, i} \stackrel{\text { a.s. }}{=} \infty, \lim _{n} D_{n, 2} D_{n, 1}^{-1} \stackrel{\text { a.s. }}{=} 0$. Then $\left\{\widehat{\theta}_{h, n, i}\right\}_{i}$ are separately strongly consistent but not simultaneously consistent. Moreover if we assume that $E\left(\eta_{k}^{2} \mid F_{k-1}, E_{k}\right) g\left(F_{k-1}, E_{k}\right)=\sigma^{2}$ and $\left\{W_{k, i}^{2} g\left(F_{k-1}, E_{k}\right)\right\}_{k}$ is deterministic, then $\operatorname{Var}\left(\widehat{\theta}_{h, n, 1}-\theta_{0,1}\right)\left[\operatorname{Var}\left(\widehat{\theta}_{h, n, 2}-\theta_{0,2}\right)\right]^{-1}=D_{n, 2} D_{n, 1}^{-1}$, which tends to 0 . Therefore $\widehat{\theta}_{h, n, 1}$ converges infinitely more rapidly than $\widehat{\theta}_{h, n, 2}$.

Proof. 1. We have

$$
\begin{aligned}
& \lambda_{\min }\left(\sum_{k=h+1}^{n} W_{k} W_{k}^{T} g\left(F_{k-1}, E_{k}\right)\right)= \\
& 2^{-1}\left[D_{n, 1}+D_{n, 2}-\sqrt{\left(D_{n, 1}+D_{n, 2}\right)^{2}+4\left(D_{n, 12}^{2}-D_{n, 1} D_{n, 2}\right)}\right]
\end{aligned}
$$

$\tilde{B} 1$ is therefore satisfied if and only if

$$
\varliminf_{n} \frac{1-\sqrt{1+4\left(D_{n, 12}^{2}-D_{n, 1} D_{n, 2}\right)\left(D_{n, 1}+D_{n, 2}\right)^{-2}}}{D_{n}\left(D_{n, 1}+D_{n, 2}\right)^{-1}}>0, a . s .
$$

For $L_{p}=L_{1}, D_{n}=D_{n, 1}+D_{n, 2}+2 D_{n,|12|}$. But according to Hölder's inequality, $D_{n,|12|}^{2} \leq D_{n, 1} D_{n, 2}$, leading to

$$
\varlimsup_{n} \frac{\left|D_{n,|12|}\right|}{D_{n, 1}+D_{n, 2}} \leq \varlimsup_{n} \frac{1}{\left[D_{n, 1} D_{n, 2}^{-1}\right]^{1 / 2}+\left[D_{n, 2} D_{n, 1}^{-1}\right]^{1 / 2}}<\infty, \text { a.s. }
$$

Therefore $\tilde{B} 1$ is checked if and only if

$$
\lim _{n} 1-\sqrt{1+4\left(D_{n, 12}^{2}-D_{n, 1} D_{n, 2}\right)\left(D_{n, 1}+D_{n, 2}\right)^{-2}}>0 \text { a.s. }
$$

which leads to the result.
Next, since $\tilde{B} 1$ implies $B 1$, it remains to prove that $\tilde{B} 1^{c}$ implies $B 1^{c}$.

$$
\left.B 1^{c}: \frac{\lim }{n} \sum_{k=h+1}^{n}\left[\left(\theta_{0}-\theta\right)^{T} W_{k}\right]^{2} g\left(F_{k-1}, E_{k}\right)\right)\left[D_{n}\right]^{-1} \stackrel{\text { a.s. }}{=} 0 .
$$

Since $d=2$,

$$
\begin{aligned}
& \sum_{k=h+1}^{n}\left[\left(\theta_{0}-\theta\right)^{T} W_{k}\right]^{2} g\left(F_{k-1}, E_{k}\right)= \\
& \left(\theta_{0,1}-\theta_{1}\right)^{2} D_{n, 1}+\left(\theta_{0,2}-\theta_{2}\right)^{2} D_{n, 2}+2\left(\theta_{0,1}-\theta_{1}\right)\left(\theta_{0,2}-\theta_{2}\right) D_{n, 12}
\end{aligned}
$$

Assume $\tilde{B} 1^{c}$ or equivalently, there exists an infinite subsequence $\left\{n_{j}\right\}_{j}$ such that

$$
\begin{aligned}
& \lim _{n_{j}}\left[\frac{\left(\theta_{0,1}-\theta_{1}\right)^{2} D_{n_{j}, 1}+\left(\theta_{0,2}-\theta_{2}\right)^{2} D_{n_{j}, 2}+2\left(\theta_{0,1}-\theta_{1}\right)\left(\theta_{0,2}-\theta_{2}\right) D_{n_{j}, 12}}{D_{n_{j}}}-\right. \\
& \left.\frac{\left(\theta_{0,1}-\theta_{1}\right)^{2} D_{n_{j}, 1}+\left(\theta_{0,2}-\theta_{2}\right)^{2} D_{n_{j}, 2}+2\left(\theta_{0,1}-\theta_{1}\right)\left(\theta_{0,2}-\theta_{2}\right) D_{n_{j}, 1}^{1 / 2} D_{n_{j}, 2}^{1 / 2}}{D_{n_{j}}}\right] \stackrel{\text { a.s. }}{=} 0 .
\end{aligned}
$$

But $\left(\theta_{0,1}-\theta_{1}\right)^{2} D_{n_{j}, 1}+\left(\theta_{0,2}-\theta_{2}\right)^{2} D_{n_{j}, 2}+2\left(\theta_{0,1}-\theta_{1}\right)\left(\theta_{0,2}-\theta_{2}\right) D_{n_{j}, 1}^{1 / 2} D_{n_{j}, 2}^{1 / 2}=$ $\left[\left(\theta_{0,1}-\theta_{1}\right) D_{n_{j}, 1}^{1 / 2}+\left(\theta_{0,2}-\theta_{2}\right) D_{n_{j}, 2}^{1 / 2}\right]^{2}$ which is null for some θ. Therefore $B 1^{c}$ is checked.
2. Result (9) is directly deduced from item 1 since $D_{n, 12}=0$.

6. Asymptotic convergence rate of $\widehat{\theta}_{h, n}-\theta_{0}$ in the linear orthogonal model

In this section, we assume that $\nu_{0}=0$ and we write $\widehat{\theta}_{h, n}$ instead of $\widehat{\theta}_{h, n, \nu}$.
The asymptotic law of the estimator could be obtained in the general case under some suitable assumptions using central limit theorems for martingales and the classical Taylor's decomposition at the first order of $\partial S_{h, n} / \partial \theta$ at θ_{0} :

$$
-\frac{\partial^{2} S_{h, n}}{\partial \theta \partial \theta^{T}}\left(\tilde{\theta}_{n}\right)\left(\widehat{\theta}_{h, n}-\theta_{0}\right)=-\frac{\partial S_{h, n}}{\partial \theta}\left(\theta_{0}\right)
$$

where $\tilde{\theta_{n}}$ lies between θ_{0} and $\widehat{\theta}_{h, n}$. But the assumptions used in these theorems (see for example theorem 7.4.28 in [7]) being difficult to check in the general case, we study here only the linear model with W_{k} orthogonal, $W_{k}^{(2)}=0$ and $\delta\left(F_{k-1}, E_{k}\right)=1$, for all k.

Since $S_{h, n}(\theta)=\sum_{k=h+1}^{n}\left(Z_{k}-\theta^{T} W_{k}\right)^{2} g\left(F_{k-1}, E_{k}\right)$, we have

$$
\begin{aligned}
\frac{\partial S_{h, n}}{\partial \theta_{i}}\left(\theta_{0}\right) & =-2 \sum_{k=h+1}^{n} \eta_{k} W_{k, i} g\left(F_{k-1}, E_{k}\right) \\
\frac{\partial^{2} S_{h, n}}{\partial \theta_{i}^{2}}\left(\theta_{0}\right) & =2 \sum_{k=h+1}^{n} W_{k, i}^{2} g\left(F_{k-1}, E_{k}\right)=2 D_{n, i} \\
\frac{\partial^{2} S_{h, n}}{\partial \theta_{i} \partial \theta_{j}}\left(\theta_{0}\right) & =2 \sum_{k=h+1}^{n} W_{k, i} W_{k, j} g\left(F_{k-1}, E_{k}\right)=0
\end{aligned}
$$

Then $2^{-1}\left[\partial^{2} S_{h, n}\right]\left[\partial \theta \partial \theta^{T}\right]^{-1}(\theta)$ is a diagonal matrix, independent of θ, with $D_{n, 1}$, $\ldots, D_{n, d}$ on the diagonal, and that we denote $\Lambda_{D_{n, .}}$.

Here $\widehat{\theta}_{h, n, i}-\theta_{0}=\left[\sum_{k} \eta_{k} W_{k, i} g\left(F_{k-1}, E_{k}\right)\right] D_{n, i}^{-1}$. Therefore

$$
\begin{equation*}
\Lambda_{D_{n, .}}\left(\widehat{\theta}_{h, n}-\theta_{0}\right)=-\frac{1}{2} \frac{\partial S_{h, n}}{\partial \theta}\left(\theta_{0}\right) \tag{10}
\end{equation*}
$$

Lemma 11. $E\left(\frac{\partial S_{h, n}}{\partial \theta_{i}}\left(\theta_{0}\right) \frac{\partial S_{h, n}}{\partial \theta_{j}}\left(\theta_{0}\right)\right)=0, \forall i \neq j$.
Proof. Write G_{k} for $g\left(F_{k-1}, E_{k}\right)$. For $i \neq j$, we have

$$
\frac{1}{4} E\left(\frac{\partial S_{h, n}}{\partial \theta_{i}}\left(\theta_{0}\right) \frac{\partial S_{h, n}}{\partial \theta_{j}}\left(\theta_{0}\right)\right)=2 \sum_{l>k} E\left[\eta_{l} \eta_{k} W_{l, i} W_{k, j} G_{l} G_{k}\right]+\sum_{k} E\left[\eta_{k}^{2} W_{k, i} W_{k, j} G_{k}^{2}\right]
$$

The quadratic term obtained for $l=k$ is null since $W_{k, i} W_{k, j}=0$ (orthogonality of W_{k}), for all k. Moreover, using the $\sigma-\left(F_{l-1}, E_{l}\right)$ measurability of $\left\{W_{k}, G_{k}\right\}_{k \leq l}$ and $\left\{\eta_{k}\right\}_{k<l}$, we have

$$
\begin{aligned}
E\left[\eta_{l} \eta_{k} W_{l, i} W_{k, j} G_{l} G_{k}\right] & =E\left[E\left[\eta_{l} \eta_{k} W_{l, i} W_{k, j} G_{l} G_{k}\right] \mid F_{l-1}, E_{l}\right] \\
& =E\left[\eta_{k} W_{k, j} G_{k} W_{l, i} G_{l} E\left[\eta_{l} \mid F_{l-1}, E_{l}\right]\right]
\end{aligned}
$$

which is null since $E\left[\eta_{l} \mid F_{l-1}, E_{l}\right]=0$.
Proposition 12. Assume that there exists a deterministic sequence $\left\{\phi_{n}\right\}_{n}$ such that, for $i=1, \ldots, d, i) \lim _{n} D_{n, i} \phi_{n}^{-2} \stackrel{P}{=} d_{*, i}<\infty$,
ii) $\lim _{n} \phi_{n}^{-2} \sum_{k=h+1}^{n} E\left(\eta_{k}^{2} \mid F_{k-1}, E_{k}\right) g^{2}\left(F_{k-1}, E_{k}\right) W_{k, i}^{2} \stackrel{\text { a.s. }}{=} \sigma_{i}^{2}$, iii) $\lim _{n} \sum_{k=h+1}^{n} P\left(\left|\eta_{k}\right| \geq \phi_{n} \epsilon\left[g\left(F_{n-1}, E_{n}\right)\right]^{-1} W_{k, i}^{-1} \mid F_{k-1}, E_{k}\right) \stackrel{P}{=} 0, \forall \epsilon>0$.

Then $\lim _{n} \phi_{n}\left(\widehat{\theta}_{h, n}-\theta_{0}\right) \stackrel{d}{=} \mathcal{N}\left(0, \Lambda_{\sigma_{.}^{2} d_{*, .}^{-2}}\right)$.
Condition ii) may be replaced by the stronger condition: for all $\epsilon>0$,
$\left.\lim _{n} \phi_{n}^{-2} \sum_{k=h+1}^{n} E\left(\eta_{k}^{2} \mid F_{k-1}, E_{k}\right) g^{2}\left(F_{k-1}, E_{k}\right) W_{k, i}^{2} 1_{\left\{\left|\eta_{k} g\left(F_{n-1}, E_{n}\right) W_{k, i}\right| \geq \phi_{n} \epsilon\right\}} \mid F_{k-1}, E_{k}\right) \stackrel{P}{=} 0$.
Proof. First, according to (10),

$$
\begin{equation*}
\frac{1}{\phi_{n}} \Lambda_{D_{n, .}}\left(\widehat{\theta}_{h, n}-\theta_{0}\right)=-\frac{1}{\phi_{n}} \frac{1}{2} \frac{\partial S_{h, n}}{\partial \theta}\left(\theta_{0}\right) \tag{11}
\end{equation*}
$$

where the i th term of this vector is

$$
\begin{equation*}
\frac{1}{\phi_{n}} D_{n, i}\left(\widehat{\theta}_{h, n, i}-\theta_{0, i}\right)=\frac{\sum_{k=h+1}^{n} \eta_{k} W_{k, i} G_{k}}{\phi_{n}} \tag{12}
\end{equation*}
$$

Moreover according to lemma 11 and (11),

$$
E\left(D_{n, i}\left(\widehat{\theta}_{h, n, i}-\theta_{0, i}\right) D_{n, j}\left(\widehat{\theta}_{h, n, j}-\theta_{0, j}\right)\right)=0, i \neq j
$$

Then, for each $i=1, \ldots, d$, we apply the central limit theorem for martingales (see for example theorem $7.4 .28,[7]$) to (12) and we obtain

$$
\lim _{n} \frac{\sum_{k=h+1}^{n} \eta_{k} W_{k, i} G_{k}}{\phi_{n}} \stackrel{d}{=} \mathcal{N}\left(0, \sigma_{i}^{2}\right)
$$

Finally using Slutzky theorem and the convergence in probability of $\phi_{n}^{-2} \Lambda_{D_{n, .}}$, we obtain the asymptotic distribution $\mathcal{N}\left(0, \Lambda_{\sigma_{2}^{2} d_{*, .}^{-2}}\right)$ of $\phi_{n}\left(\widehat{\theta}_{h, n}-\theta_{0}\right)=\phi_{n}^{-1} \Lambda_{D_{n, .}}\left(\hat{\theta}_{h, n}-\right.$ $\left.\theta_{0}\right) \phi_{n}^{2} \Lambda_{D_{n,},}^{-1}$.

7. Nonparametric estimation

Let $Z_{n}=\theta_{n 0}^{T} W_{n}+\eta_{n}$, where η_{n} satisfies the assumption of model (1) and $\theta_{n 0}$ is of finite dimension d, for all n. Then, if $\tilde{B} 1$ and $B 4$ are checked with $h=$ $n-1$, the conditional least squares estimator $\widehat{\theta}_{n}^{T}=\left[Z_{n} W_{n}^{T}\right]\left[W_{n} W_{n}^{T}\right]^{-1}$ is strongly consistent, i.e. $\lim _{n} \widehat{\theta}_{n}-\theta_{n 0} \stackrel{\text { a.s. }}{=} 0$. The proof is the same one as the proof used in the parametric case (Wu's lemma [20]), where $\theta \in B_{\delta}^{c}$ is replaced by $\theta_{n}-\theta_{n 0} \in$ $B_{n, \delta}^{c}(0), B_{n, \delta}^{c}(0)=\left\{\theta^{\prime}: \sum_{j=1}^{d}\left|\theta_{j}^{\prime}-\theta_{n 0, j}\right| \geq \delta\right\}$. For example, for $d=1$ with
$W_{n}=Z_{n-1}$, then $\widehat{\theta}_{n}=Z_{n} Z_{n-1}^{-1}$. In this case, $\tilde{B} 1$ is automatically satisfied on the set of nonnull observations implying that the only condition $B 4$ " $W_{n}^{2} g\left(F_{n-1}, E_{n}\right)$ increases a.s. to $\infty "$ has to be checked. The supercritical Galton-Watson process is such an example. In that case, $W_{n}=Z_{n-1}, g\left(F_{n-1}, E_{n}\right)=Z_{n-1}^{-1}$ and therefore $B 4$ (" Z_{n-1} increases a.s. to ∞ ") is satisfied on the nonextinction set.

8. Regenerative branching processes

Let a regenerative process (see for ex. [8], [18], [22]) defined by $\left\{\xi_{j},\left(X_{j}(.), T_{j}\right)\right\}_{j}$, where $\left\{\xi_{j}\right\}_{j}$ is the process of waiting times between the successive working periods T_{j-1}, T_{j}, and $X_{j}($.$) is the j$ th working process defined on the working period T_{j}. Let $\mathcal{T}_{j}=\xi_{j}+T_{j}, N(t)=\max \left\{J: \sum_{j=1}^{J} \mathcal{T}_{j} \leq t\right\} ; N(t)$ is the number of periods \mathcal{T}_{j} until t; and let $\sigma(t)=t-\sum_{j=1}^{N(t)} \mathcal{I}_{j}-\xi_{N(t)+1} ; \sigma(t)$ is, when it is positive, the working time from $\sum_{j=1}^{N(t)} \mathcal{T}_{j}+\xi_{N(t)+1}$ until t. Then, the regenerative process $\left\{Z_{t}\right\}_{t}$ may be written as

$$
\begin{aligned}
Z_{t} & =X_{N(t)+1}(\sigma(t)), \text { if } \sigma(t) \geq 0 \\
& =0, \text { if } \sigma(t)<0
\end{aligned}
$$

When the period $\mathcal{T}_{j}=\mathcal{T}$, for all j , with \mathcal{T} deterministic, and independent $\left\{\xi_{j},\left(X_{j}(.), T_{j}\right)\right\}_{j}$, for all j, then the different periods \mathcal{T}_{j} may be considered as replications of the same process leading for example to classical regression models with replications or ANOVA models.

We assume here processes in discrete time with

$$
\begin{aligned}
& X_{j}(l)=U_{l+1}\left(X_{j}(l-1)\right)=\delta_{X_{j}(l-1)} \sum_{i=1}^{X_{j}(l-1)} Y_{j, i}(l) \\
& X_{j}(0)=I_{j} \delta_{j, 0}^{I}
\end{aligned}
$$

where the $\left\{Y_{j, i}(l)\right\}_{i}$ are i.i.d. given $\left\{\left\{X_{j^{\prime}}(.), \xi_{j^{\prime}}\right\}_{j^{\prime}<j}, \xi_{j}\right\}$, the conditional law of the Bernoulli variable $\delta_{j, 0}^{I}$ may depend on $\left\{X_{j^{\prime}}(.), \xi_{j^{\prime}}\right\}_{j^{\prime}<j}$. The $\left\{I_{j}\right\}_{j}$ are i.i.d. and independent of the past, given $\delta_{j, 0}^{I}=1$. The $\left\{T_{j}\right\}_{j}$ are the survival times of the branching processes $\left\{X_{j}(.)\right\}_{j}$. Therefore Z_{n} is recursively defined from the past of the process by

$$
Z_{n}=\delta_{Z_{n-1}} \sum_{i=1}^{Z_{n-1}} Y_{n, i}+I_{n} \delta_{n}^{I}
$$

where the $\left\{Y_{n, i}\right\}_{i}$ are i.i.d. with the same conditional laws as the $\left\{Y_{j, i}(l)\right\}_{i}$, and $I_{n} \delta_{n}^{I}$ has the same conditional law as $I_{N(n)+1} \delta_{N(n)+1}^{I}$. The process $\left\{Z_{n}\right\}_{n}$ is a general branching process with immigration.

Let $F_{n-1}=\left\{Z_{k}\right\}_{k \leq n-1}$ and E_{n} any subset of $\left\{\delta_{k}^{I}\right\}_{k},\left\{C_{k}\right\}_{k}, C_{k}$ being any environmental variable at time k. Assume

$$
\begin{aligned}
& E\left(Y_{n, i} \mid F_{n-1}, E_{n}\right)=m \alpha\left(F_{n-1}, E_{n}\right) ; \operatorname{Var}\left(Y_{n, i} \mid F_{n-1}, E_{n}\right)=\sigma^{2} \beta\left(F_{n-1}, E_{n}\right) \\
& E\left(I_{n} \mid \delta_{n}^{I}=1, F_{n-1}, E_{n}\right)=\lambda ; \operatorname{Var}\left(I_{n} \mid \delta_{n}^{I}=1, F_{n-1}, E_{n}\right)=b^{2}
\end{aligned}
$$

These assumptions mean that the process may be size-dependent. It is the case for population dynamics depending on a limited environment (nearly any biological populations, for example infectious diseases, ...).

Denote $p\left(F_{n-1}, E_{n}\right)=E\left(\delta_{n}^{I} \mid F_{n-1}, E_{n}\right)$. When $\delta_{n}^{I} \in E_{n}$, then $p\left(F_{n-1}, E_{n}\right)=$ δ_{n}^{I}. We have

$$
\begin{equation*}
E\left(Z_{n} \mid F_{n-1}, E_{n}\right)=m \alpha\left(F_{n-1}, E_{n}\right) Z_{n-1}+\lambda p\left(F_{n-1}, E_{n}\right) \tag{13}
\end{equation*}
$$

Our aim is the estimation of the parameters of $E\left(Z_{n} \mid F_{n-1}, E_{n}\right)$ given by (13). Assuming $\alpha(),. \beta($.$) and p($.$) known, the model is linear in \theta_{0}=(m, \lambda)$. Here $W_{k}=\left(\alpha\left(F_{k-1}, E_{k}\right) Z_{k-1}, p\left(F_{k-1}, E_{k}\right)\right)$. We assume $\delta_{Z_{k-1}} \delta_{p\left(F_{k-1}, E_{k}\right)}=0$, for all k, that is W_{k} is orthogonal, for all k, implying $D_{n, 12}=0$, for all n. It is the case when $p\left(F_{n-1}, E_{n}\right)=\delta_{n}^{I}$ with $\delta_{n}^{I}=0$ when $Z_{n-1}>0$.

Let $\eta_{n}=Z_{n}-E\left(Z_{n} \mid F_{n-1}, E_{n}\right)$. Then η_{n} is a martingale difference and we have $E\left(\eta_{n}^{2} \mid F_{n-1}, E_{n}\right)=\sigma^{2} \beta\left(F_{n-1}, E_{n}\right) Z_{n-1}+\left(b^{2}+\lambda^{2}\left(1-p\left(F_{n-1}, E_{n}\right)\right)\right) p\left(F_{n-1}, E_{n}\right)$. Let

$$
\begin{aligned}
v\left(F_{n-1}, E_{n}\right) & =\alpha^{-1}\left(F_{n-1}, E_{n}\right) Z_{n-1}^{-1} \delta_{Z_{n-1}}+p^{-1}\left(F_{n-1}, E_{n}\right) \delta_{p\left(F_{n-1}, E_{n}\right)} \\
g\left(F_{n-1}, E_{n}\right) & =\beta^{-1}\left(F_{n-1}, E_{n}\right) Z_{n-1}^{-1} \delta_{Z_{n-1}}+p^{-1}\left(F_{n-1}, E_{n}\right) \delta_{p\left(F_{n-1}, E_{n}\right)} \\
D_{n, 1} & =\sum_{k=h+1}^{n} \alpha^{2}\left(F_{n-1}, E_{n}\right) \beta^{-1}\left(F_{k-1}, E_{k}\right) Z_{k-1} \stackrel{\text { notation }}{=} S_{n} \\
D_{n, 2} & =\sum_{k=h+1}^{n} p\left(F_{k-1}, E_{k}\right)^{\text {notation }} V_{n}
\end{aligned}
$$

According to (5), the estimators are

$$
\begin{align*}
\widehat{m}_{h, n} & =\frac{\sum_{k=h+1}^{n} Z_{k} \alpha\left(F_{k-1}, E_{k}\right) \beta^{-1}\left(F_{k-1}, E_{k}\right) \delta_{Z_{k-1}}}{\sum_{k=h+1}^{n} Z_{k-1} \alpha^{2}\left(F_{k-1}, E_{k}\right) \beta^{-1}\left(F_{k-1}, E_{k}\right) \delta_{Z_{k-1}}} \tag{14}\\
\widehat{\lambda}_{h, n} & =\frac{\sum_{k=h+1}^{n} Z_{k} \delta_{p\left(F_{k-1}, E_{k}\right)}}{\sum_{k=h+1}^{n} p\left(F_{k-1}, E_{k}\right)} . \tag{15}
\end{align*}
$$

8.1. Identifiability and consistency

8.1.1. General size-dependent case

According to proposition 10, we have the following result
Proposition 13. 1. (m, λ) is identifiable if and only if

$$
\begin{equation*}
0<\underline{\lim } \frac{S_{n}}{n} \frac{\varlimsup_{n}}{V_{n}} \frac{S_{n}}{V_{n}}<\infty, \text { a.s. } \tag{16}
\end{equation*}
$$

2, If $\varlimsup_{n} V_{n} S_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$ (resp. $\varlimsup_{n} S_{n} V_{n}^{-1} \stackrel{\text { a.s. }}{=} 0$), then m is identifiable alone with an asymptotically negligible information $\left\{\delta_{k}^{I}\right\}$ concerning the immigration process, (resp. λ is identifiable alone with an asymptotically negligible information $\left\{\delta_{Z_{k-1}}\right\}$ concerning the branching process).

Remark. Since $W_{k, 1} v\left(F_{k-1}, E_{k}\right)=\delta_{Z_{k-1}}, W_{k, 2} v\left(F_{k-1}, E_{k}\right)=\delta_{p\left(F_{k-1}, E_{k}\right)}$, then, for $\delta_{p\left(F_{k-1}, E_{k}\right)}=\delta_{k}^{I}, S_{n} V_{n}^{-1}=\left\|\delta_{Z_{.-1}}\right\|_{n}\left\|\delta_{\text {. }}^{I}\right\|_{n}^{-1}$ is the ratio between the information relative to the presence of the branching process and that relative to the presence of the immigration process. When the presence of these two processes is balanced (16), the parameters are simultaneously identifiable.

The following corollary is a direct application of corollary 9 and proposition 13.

Corollary 14. 1. Assume $B 4_{1}: S_{n}$ increases a.s. to ∞ (resp. $B 4_{2}$: V_{n} increases a.s. to ∞). Then $\widehat{m}_{h, n}\left(\right.$ resp. $\widehat{\lambda}_{h, n}$) is strongly consistent.
2. Assume $B 4: S_{n}+V_{n}$ increases a.s. to ∞ with

$$
0<\varliminf_{n} S_{n} V_{n}^{-1} \leq \varlimsup_{n} S_{n} V_{n}^{-1}<\infty, \text { a.s.. }
$$

Then $\left(\widehat{m}_{h, n}, \widehat{\lambda}_{h, n}\right)$ is strongly consistent.
8.1.2. Bienaymé-Galton-Watson case with immigrations allowed in the 0 state. Assume that the $\left\{X_{k}(.)\right\}_{k}$ are i.i.d. Galton-Watson processes, independent of the waiting periods $\left\{\xi_{k}\right\}_{k}$ which are assumed i.i.d.. Therefore $\alpha()=.\beta()=$.1 . Assume $p\left(F_{k-1}, E_{k}\right)=\delta_{k}^{I}$, for all k. Then $S_{n}=\sum_{k=h+1}^{n} Z_{k-1}$, $V_{n}=\sum_{k=h+1}^{n} \delta_{k}^{I}$, and $S_{n} \geq V_{n}$. According to (14) and (15), the estimators are

$$
\widehat{m}_{h, n}=\frac{\sum_{k=h+1}^{n} Z_{k} \delta_{Z_{k-1}}}{\sum_{k=h+1}^{n} Z_{k-1} \delta_{Z_{k-1}}} ; \widehat{\lambda}_{h, n}=\frac{\sum_{k=h+1}^{n} I_{k} \delta_{k}^{I}}{\sum_{k=h+1}^{n} \delta_{k}^{I}}
$$

Notice first that when $m<1$, then $\left\{Z_{n}\right\}_{n}$ is stationary, implying that the asymptotic information given by $\lim _{n} S_{n}+V_{n}$ is stationary when $n-h$ is fixed, and
therefore it cannot increase to ∞. The consistency of the estimators cannot be ensured in that case. So we will assume that h is fixed. Let $s_{*}=E\left(\sum_{l=1}^{T_{j}} X_{j}(l)\right)=$ $\lambda(1-m)^{-1}$.

Proposition 15. If $E\left(\mathcal{T}_{1}\right)<\infty$, and therefore $m<1$, then on the set $\left\{\lim _{n} V_{n}=\infty\right\}$, we have $\lim _{n} S_{n} V_{n}^{-1} \stackrel{\text { a.s. }}{=} s_{*}, \lim _{n} V_{n} n^{-1} \stackrel{\text { a.s. }}{=}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}$, and $\left(\widehat{m}_{h, n}, \widehat{\lambda}_{h, n}\right)$ is strongly consistent.

Remarks

1. If $E\left(\xi_{1}\right)=\infty$ with $\lim _{n} P\left(\xi_{1}>n\right)\left[P\left(T_{1}>n\right)\right]^{-1}=\infty$, then $\lim _{n} P(\sigma(n) \geq$ $0)=0$. Therefore on $\left\{\lim _{n} S_{n}<\infty\right\}$, the information is not sufficient for estimating m nor λ. 2. If $E\left(T_{1}\right)=\infty$ i.e. $m \geq 1$ with $\lim _{n} P\left(\xi_{1}>n\right)\left[P\left(T_{1}>n\right)\right]^{-1}=0$, then $\lim _{n} P(\sigma(n) \leq 0)=0$, which implies that on $\left\{\lim _{n} S_{n}=\infty\right\}, \widehat{m}_{h, n}$ is strongly consistent whereas on $\lim _{n} V_{n}<\infty$, the information concerning λ is not sufficient for its estimation.

Proof. Use the results in the general case together with results of the renewal theory and those of regenerative processes for branching processes. First note that $\lim _{n} V_{n} n^{-1} \stackrel{\text { a.s. }}{=}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}$ by the classical renewal theory (cf [8]). Moreover

$$
\begin{equation*}
\frac{\sum_{k=1}^{V_{n}} U_{k-1}}{V_{n}} \leq \frac{S_{n}}{V_{n}} \leq \frac{\sum_{k=1}^{V_{n}+1} U_{k-1}}{V_{n}+1} \frac{V_{n}+1}{V_{n}} \tag{17}
\end{equation*}
$$

where the $\left\{U_{k}\right\}_{k}$ are i.i.d. as $U_{1}=\sum_{k=1}^{T_{1}} Z_{k-1}$ with $E\left(U_{1}\right)=\lambda(1-m)^{-1}$, $\operatorname{Var}\left(U_{1}\right)<\infty$. Therefore according to the SLLN for i.i.d. variables and using (17), we get $\lim _{n} S_{n} V_{n}^{-1} \stackrel{\text { a.s. }}{=} E\left(U_{1}\right)$. This implies according to corollary 14, that $\left(\widehat{m}_{h, n}, \widehat{\lambda}_{h, n}\right)$ is (simultaneously) strongly consistent.

Notice that we could also use here directly the SLLN for i.i.d. variables for obtaining the strong consistency of $\widehat{\lambda}_{h, n}$, and that of $\widehat{m}_{h, n}$ may be obtained directly by using $\widehat{m}_{h, n} \simeq\left[S_{n} V_{n}^{-1}-\widehat{\lambda}_{h, n}\right]\left[S_{n} V_{n}^{-1}\right]^{-1}$ which converges a.s. to m.
8.2. Asymptotic convergence rate of $\widehat{\theta}_{h, n}-\theta_{0} ; \theta_{0}=(m, \lambda)^{T}$

Proposition 16. Assume the frame $m<1$ of proposition 15. Then

$$
\begin{equation*}
\lim _{n} \sqrt{n}\left(\widehat{\theta}_{h, n}-\theta_{0}\right) \stackrel{d}{=} \mathcal{N}(0, \Lambda) \tag{18}
\end{equation*}
$$

where Λ is a diagonal matrix with $\sigma^{2} s_{*}^{-1} E\left(\mathcal{T}_{1}\right), b^{2} E\left(\mathcal{T}_{1}\right)$ on the diagonal.
Proof. The result follows from proposition 12 with $\phi_{n}=n^{1 / 2}$. Here we have $\eta_{n} g\left(F_{n-1}, E_{n}\right) W_{n, 1}=\left(Z_{n}-m Z_{n-1}\right) \delta_{Z_{n-1}}, \eta_{n} g\left(F_{n-1}, E_{n}\right) W_{n, 2}=\left(I_{n}-\lambda\right) \delta_{n}^{I}$,
$d_{*, 1}=s_{*}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}, d_{*, 2}=\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}$ and $\sigma_{1}^{2}=\sigma^{2} s_{*}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}, \sigma_{2}^{2}=b^{2}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}$ since iii) becomes

$$
\begin{aligned}
n^{-1} \sum_{k=h+1}^{n} E\left(\eta_{k}^{2} \mid F_{k-1}, E_{k}\right) g^{2}\left(F_{k-1}, E_{k}\right) W_{k, 1}^{2} & =n^{-1} \sum_{k=h+1}^{n} Z_{k-1} \sigma^{2} \\
& =n^{-1} S_{n} \sigma^{2} \\
n^{-1} \sum_{k=h+1}^{n} E\left(\eta_{k}^{2} \mid F_{k-1}, E_{k}\right) g^{2}\left(F_{k-1}, E_{k}\right) W_{k, 2}^{2} & =n^{-1} \sum_{k=h+1}^{n} b^{2} \delta_{k}^{I} \\
& =n^{-1} V_{n} b^{2}
\end{aligned}
$$

We have, according to the stationarity of the process, the Lindeberg's condition:

$$
\begin{align*}
& \lim _{n} n^{-1} \sum_{k=h+1}^{n} E\left(\left[Z_{k}-m Z_{k-1}\right]^{2} 1_{\left\{\left|Z_{k}-m Z_{k-1}\right| \geq \epsilon n^{1 / 2}\right\}}\right) \stackrel{P}{=} 0 \tag{19}\\
& \lim _{n} n^{-1} \sum_{k=h+1}^{n} E\left(\left(I_{k}-\lambda\right)^{2} \delta_{k}^{I} 1_{\left\{\left|\left(I_{k}-\lambda\right) \delta_{k}^{I}\right| \geq \epsilon n^{1 / 2}\right\}}\right) \stackrel{P}{=} 0 .
\end{align*}
$$

Notice that in that case, we also have

$$
-\frac{1}{2} \frac{1}{\sqrt{n}} \frac{\partial S_{h, n}}{\partial \theta^{T}}\left(\theta_{0}\right)=\left(\frac{\sum_{l=1}^{S_{n}}\left(Y_{l, i}-m\right)}{\sqrt{n}}, \frac{\sum_{l=1}^{V_{n}}\left(I_{l}-\lambda\right)}{\sqrt{n}}\right)
$$

and therefore the convergence of each term of this vector may also directly follow from the central limit theorem for random sums together with $\lim _{n} S_{n} n^{-1} \stackrel{P}{=}$ $s_{*}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}, \lim _{n} V_{n} n^{-1} \stackrel{P}{=}\left[E\left(\mathcal{T}_{1}\right)\right]^{-1}$. Finally (18) follows from lemma 11.

REFERENCES

[1] Anderson T.W., J. B. Taylor Strong consistency of least squares estimates in dynamic models, Ann. Statist. 7 (1979) 484-489.
[2] Billingsley P. Convergence of probability measures. Wiley series in Probability and Mathematical Statistics. John Wiley 1968.
[3] Christopeit N., K. Helmes Strong consistency of least squares estimators in linear regression models, Ann. Statist. 8 (1980) 778-188.
[4] Dion, J.-P., N. M. Yanev Estimation theory for branching processes with or without immigration, C. R. Acad. Bulgare Sci. 44(4) (1991) 19-22.
[5] Dion, J.-P., N. M. Yanev Central limit theorem for martingales in BGWR branching processes with some statistical applications, Math. Methods Statist. 4(3) (1995) 344-358.
[6] Dion, J. P., N. M. Yanev Limit theorems and estimation theory for branching processes with an increasing random number of ancestors, J. Appl. Probab. 34(2) (1997) 309-327.
[7] Dacunha-Castelle D., M. Duflo Probabilits et statistiques. 2. Problmes temps mobile. Masson 1993.
[8] Feller W. An introduction to probability theory and its applications, volume II of Probabiblity and Mathematical Statistics. John Wiley 1971.
[9] Hall P., C. C. Heyde Martingale limit theory and its application. Probability and Mathematical Statistics, New York 1980.
[10] Heyde C.C., E. Seneta Analogues of classical limit theorems for the supercritical Galton-Watson process with immigration, Math. Biosci. 11 (1971) 249-259.
[11] Klebaner, F. C. On population-size dependent branching processes. Adv. in Appl. Probab. 16 (1984) 30-55.
[12] Lai T. L., H. Robbins, C. Z. Wei Strong consistency of estimates in multiple regression II, J. Multivariate Anal. 9 (1979) 343-361.
[13] Lai T. L., C. Z. Wei Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems, Ann. Statist. 10 (1982) 154-166.
[14] Lai T. L., C. Z. Wei Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters, J. Multivariate Anal. 13 (1983) 1-23.
[15] Lai T.L. Asymptotic properties of nonlinear least squares estimates in stochastic regression models, Ann. Statist. 22 (1994) 1917-1930.
[16] Lalam N., C. Jacob Estimation of the offspring mean in a supercritical or nearcritical size-dependent branching process, Adv. Appl. Probab. 36(2) (2004) 582-601.
[17] Lalam N., C. Jacob, P. Jagers (2003) Modelling of the PCR amplification process by a size-dependent branching process and estimation of the efficiency. Adv. Appl. Probab., 36(2) (2004) 602-615.
[18] Yanev, N. M., K. V. Mitov, G. P. Yanev Renewal, regenerative, and branching processes with stable distributions. J. Math. Sci. (N. Y.) 122(4) (2004) 3438-3448.
[19] Wei C.Z., J. Winnicki Estimation of the means in the branching process with immigration, Ann. Statist. 18 (1990) 1757-1773.
[20] WU C.F. Asymptotic theory of nonlinear least squares estimation, Ann. Statist. 9 (1981) 501-513.
[21] Yanev, N. M., S. Tschoukova-Dantcheva On the statistics of branching processes with immigration. C. R. Acad. Bulgare Sci. 33(4) (1980) 469-471.
[22] Mitov, K. V., N. M. Yanev Regenerative processes in the infinite mean cycle case. J. Appl. Probab. 38(1) (2001) 165-179.

Christine Jacob
Applied Mathematics and
Informatics unity,
INRA,
78352 Jouy-en-Josas Cedex, France
e-mail: cj@banian.jouy.inra.fr
Nicolas Yanev
Institute of Mathematics
and Informatics,
Bulgarian Academy of Sciences,
8, G.Bonchev Str.,
1113 Sofia, Bulgaria
e-mail: yanev@math.bas.bg

Nadia Lalam
EURANDOM,
P.O. Box 513

5600 MB Eindhoven,
The Netherlands

