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ANALYZING CONJOINT ANALYSIS DATA BY A RANDOM

COEFFICIENT REGRESSION MODEL

Roberto Furlan, Roberto Corradetti

Since late 1960s conjoint analysis has been applied in estimating consumer
preferences in marketing research [8]. This article discusses how to model
the data coming from a full or a fractional factorial design within a unique
regression model, as an alternative to the estimation done by n independent
multiple linear regression models, one for each subject. The advantage of
the method presented here resides in the possibility of computing correct
standard errors for the conjoint analysis utility values based on a particular
group of subjects [7]. The model assumes that the utility values within
subjects could be correlated.

1. Introduction

Conjoint analysis (CA) is a multivariate statistical analysis technique based on
the study of the joint effects on consumers of the elements that compose a product
or service.

It was first developed in the early 1970s by Green and Rao [5] which got
advantage by Sidney Addelman’s efforts spent in developing methods for deter-
mining fractional factorial designs [1] [2]. Since then, CA has received more and
more academic and private sector attention. As a result, after Green and Rao’s
initial presentation, many articles have been written about CA, and several com-
puter programs implementing CA have been put on the market. One of the most
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important statistical problems concerning CA studies resides in the CA design.
The choice of the design depends strongly on the characteristics of the study, such
as the number of variables involved, the potential presence of interaction effects
among the variables, the ability and the motivation of the target respondents
to the CA survey, the statistical ability of the researcher, and the availability of
software.

One of the most common ways to prepare a CA study is by using a full
factorial design or a fractional factorial design [6] [8]. In this CA design, each
subject participating in the study evaluates all possible profiles or a particular
subset of them. The analysis is done at the subject level by fitting a different
multiple linear regression model for each subject [12]. Eventually, the researcher
can combine the n vectors of utilities coming from different subjects in order to
get a vector of utilities for the whole sample or for a particular group of subjects.
Analogously, the researcher can combine the covariance matrices (necessary for
the computation of the standard errors and of the confidence intervals for the
utility values) of different subjects in order to summarize the information for a
particular group of subjects. The problem with this approach consists in the
possibility of incorrect computation of the standard error for each CA utility
value based on a particular group of subjects. As a matter of fact, this approach
assumes that the utility values are not correlated within subjects. This is a
strong assumption that usually does not hold true. More correct standard errors
for the utility values based on a particular group of subjects can be computed
by assuming that the utility values within subjects could be correlated. In this
article the authors solve this problem by using a random coefficient regression
model to analyze the data from a full or a fractional factorial design within a
unique regression model.

The necessity to adopt a model able to deal with correlated data within
subject is shown in this article by an application using data from a CA survey
conducted in Italy in Spring 2002.

2. The Traditional Setup

First, let

(1) i = 1, . . . , n

denote the set of n subjects evaluating a particular set of p profiles, each
of which is composed by f factors. In a full or fractional factorial design, the
multiple linear regression model for the ith subject is
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(2) yi = Xβi + εi,

where yi = (yi1, , yip)
′ is a p-dimensional vector of responses for the ith subject,

whose generic jth element contains the evaluation of the profile j; X is a design
matrix of the type (p x T ), whose creation is explained below in the section ‘The
Design Matrix X;’ βi is a T -dimensional vector of parameters for the ith subject;
and εi is a p-dimensional vector, whose j th element represents the random error
for the subject i associated with the profile j.

Note that in a full factorial design, p is the number of possible profiles, while
in a fractional factorial design, p represents the number of profiles presented for
that particular fraction of the factorial design [4][9][12].

In this setup, the assumptions are: (a) εi ∼ normal(0, σ2
i Ip); (b) Rank(X) =

T ; and (c) T < p, where T , the number of parameters in the mean model,
is assumed to be fixed. Under these assumptions, by the linear models theory
[3][10][11], it is known that the least squares estimators of the βi’s for the model
(2) are

(3) β̂i = (X ′X)−1X ′yi

and that each β̂i is distributed as a normal(βi, σ
2
i (X

′X)−1). The unknown quan-
tity σ2

i can be estimated by the unbiased estimator:

(4) σ̂2
i =

1

p − T
(y′iyi − β̂i

′

X ′yi).

In this model each vector of responses ŷi is distributed as a normal(Xβi, σ
2
i Ip).

Usually, in order to summarize the CA results, the analysis of the data in-
cludes the estimation of the vector of utilities β̂ for a particular group of n
subjects, obtained as a linear combination of the n least squares estimators β̂i’s:

(5) β̂ =
1

n

n∑

i=1

β̂i.

Note that β̂ is the best linear unbiased estimator (BLUE) of β. In addition,
the analysis usually includes the estimation of the covariance matrix for β̂:



74 R. Furlan, R. Corradetti

(6) Cov(β̂) =
1

n2

n∑

i=1

(σ2
i (X

′X)−1),

which is done by plugging-in the estimated values for the σ2
i ’s.

As stated in the introduction, the limitation of this approach consists in the
frequent incorrect computation of the standard errors for the CA utilities based on
a group of n subjects, due to the fact that the βi’s are assumed to be uncorrelated
within subjects, which in fact is not often the case.

3. The Design Matrix X

The design matrix X contains the description of the CA profiles, each of which
comes from a particular combination of factors’ levels. Here, the authors develop
Green and Srinivasan’s idea [6] about the creation of pseudo-attributes, which are
the values that represent the columns of the design matrix X in this approach.
The nature of the factors, either qualitative or quantitative, involved in the CA
study has to be kept in consideration.

A qualitative (or discrete) factor with g levels is represented in the matrix X
by (g − 1) columns. After assuming that the levels within the factor have been
ordered in an arbitrary way, a value is assigned to each position Xjc (jth row,
cth column of X), according to the level observed for the profile j with respect
to each column. In particular, Xjc assumes ‘-1’ if the level g is observed for the
profile j; ‘1’ if the level c is observed for the profile j; and ‘0’ if the level c is not
observed for the profile j. Note that other alternative ways of defining Xjc are
possible, but the one used here is convenient for its particular interpretation, for
when each level of an attribute appears with equal frequency in the CA design,
the sum of the utilities of each level is zero, so that the model is centered on zero.

A quantitative factor with g levels, is represented in the matrix X by (g − 1)
columns. The generic value Xjc is obtained by

(7) Xjc =

(
lj0 − g−1

g∑

e=1

le

)c

, c = 1, . . . , (g − 1)

where ljo is the level observed of the factor for the profile j, and le is the eth level
of the factor, e = 1, . . . , g.

In a CA study characterized by df qualitative factors and by pf quantitative
factors, the design matrix X is of the type (p × T ), where T , the number of
columns of X, is obtained by
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(8) T = 1 +

df∑

m=1

(lm − 1) +

pf∑

m=1

(gm − 1)

where lm is the number of levels of the mth qualitative factor (m = 1, . . . , df),
gm is the number of levels of the mth quantitative factor (m = 1, . . . , pf), and
df + pf = f is the total number of factors included in the study.

Note that the first column of the design matrix X is a p-dimensional vector
of 1’s, which has been included for estimating the model intercept µ.

4. The Random Coefficient Regression Model

Instead of estimating the regression coefficients separately for each subject by
fitting the model (2) n times, it is possible to analyze all the data available
within a unique model. In order to do this, the authors consider the version
of the random coefficient regression model (RCR) presented by Gumpertz and
Pantula [7], which is a special case of the general mixed linear models. The RCR
model is expressed by

(9) yi = Xβi + εi

where yi = (yi1, . . . , yip)
′ is a p-dimensional vector of responses for the ith subject,

whose generic jth element contains the evaluation of the profile j; X is a design
matrix of the type (p × T ); βi is a T -dimensional vector of parameters for the
ith subject; and εi is a p-dimensional vector, whose j th element represents the
random error for the subject i associated with the profile j.

In the present setup the model is fitted not subject by subject, but for all the
n subjects at the same time. Here, the n subjects are assumed to be randomly
selected from a larger population. Therefore, the n regression coefficient vectors
β′

is can be seen as random drawings from a T -dimensional population of param-
eters, from which the name RCR model derives. The assumptions for the RCR
model are: (a) βi ∼

iid normal(β,Σ), where Σ is a nonsingular (T ×T ) covariance
matrix; (b) εi ∼

iid normal(0, σ2
i Ip); (c) βi and εi′ are independent random vari-

ables for all i and i′; (d) Rank(X) = T ; and (e) T < n and T < p, where T , the
number of parameters in the mean model, is assumed to be fixed. Under these
assumptions, the least squares estimators of the βi’s for the RCR model are the
same as in (3). By the linear models theory [3] [10] [11], the distributions of β̂i,
ŷi, and β̂ can be easily derived:
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(10) β̂i ∼
iid normal(β,Σ + σ2

i (X
′X)−1)

(11) ŷi ∼
iid normal(Xβ,XΣX ′ + σ2

i Ip)

(12) β̂ ∼
iid normal

(
β,

Σ

n
+

1

n2

n∑

i=1

(σ2
i (X

′X)−1)

)

Note that in these distributions β, Σ, and σ2
i are unknown quantities.

Gumpertz and Pantula [7] show that for the RCR model, the estimator β̂ in
(5) is the BLUE of β. Note that an unbiased estimator of σ2

i is still provided by
(4). Also, from their results, it is possible to derive an unbiased estimator of Σ:

(13) Σ̂ =
1

n − 1

n∑

i=1

(β̂i − β̂)(β̂i − β̂)′ −
1

n

n∑

i=1

(σ̂2
i (X

′X)−1)

The covariance matrix for β̂ in the RCR model provided in (12) can also
be written as a function of the covariance matrix for β̂ in the traditional model
provided in (6):

(14) Cov(β̂) =
Σ

n
+ Cov(β̂)traditional setup

This expression indicates that the covariance matrix Cov(β̂) computed by
the RCR model is always different than that computed by the traditional model,
except for the case when Σ is a matrix of zeros. In this particular case, verified
if and only if the utility values within subjects are uncorrelated, the two models
provide the same results.

The elements of Cov(β̂) allow the computation of the standard errors for the
CA utility parameters based on the n subjects. Consider the notation β̂km for
the element in β̂ which refers to the level m of the factor k. Analogously, consider
the notation βkm for the element in β which refers to the level m of the factor k.
Also, consider the notation Cov(km, k ′m′) for referring to the element in Cov(β̂)
which corresponds to the covariance between β̂km and β̂k′m′ , where m is a level
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of the factor k, and m′ is a level of the factor k′. Note that by this notation,
Cov(km, km) is the variance for β̂km. Also, note that the first element of the
diagonal of Cov(β̂) represents the variance for µ̂, which is the estimated value for
the intercept µ.

In order to get the final CA utilities for the factors levels and the standard
errors associated with each parameter, the following procedure is used. For a
qualitative factor k with g levels, there are (g − 1) regression coefficients βkm,
where m = 1, . . . , (g − 1). The estimation of the parameter associated with the
last level of the factor k is obtained by adding together the first (g−1) parameters
and by inverting the sign of the result:

(15) β̂km =





β̂km, for m=1, . . . , g-1;

−1

(
g−1∑
m=1

β̂km

)
, for m=g.

The standard error associated with the first (g − 1) parameters of the factor
k are directly obtained from the diagonal of Cov(β̂), while the standard error
associated with the last parameter of the factor k can be derived as follows:

(16)

SE(β̂km) =





Cov(km, km)1/2,for m=1, . . . , g-1;

(
g−1∑

m=1

Cov(km, km) + 2

g−1∑

m=1

g−1∑

m′<m

Cov(km, km′)

)1/2

,for m=g.

For a quantitative factor k with g levels there are (g−1) regression coefficients
βkm, where m = 1, . . . , (g − 1). The utility value for any level of the factor can
be estimated, if it belongs to the range of levels of the same factor included in
the CA study. By assuming that the levels included in the CA design for the
factor k range between l1 and l2, then the utility value for the level l0 ∈ [l1, l2] is
obtained by

(17) β̂kl0 =
c∑

m=1

[∆m
0 β̂km]

where
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(18) ∆0 =

(
l0 − g−1

g∑

e=1

le

)

is the difference between the level l0 of the factor k and the average of all the
values included in the CA study for that factor. In (18), le represents the eth

level included in the study for the factor k, with e = 1, . . . , g. The standard error
for β̂kl0 is provided by

(19)

SE(β̂kl0) =

(
c∑

m=1

∆2m
0 Cov(km, km) + 2∆m

0 ∆m′

0

g−1∑

m=1

g−1∑

m′<m

Cov(km, km′)

)1/2

.

Finally, the final CA utilities associated with the factors levels are obtained
by adding 1/f of µ̂ to each parameter β̂km and β̂kl0 .

5. An Application

The authors report some empirical results from real world data to illustrate the
application of the RCR model to a resolution III fractional factorial design, and to
point out the difference of the results obtained by this new approach and the ones
obtained by a traditional model. The CA survey analyzed here was conducted
in Italy, in Spring 2002. The object of the survey was a non-digital camcorder.
Three brands (JVC, Sony, and Panasonic), three formats (Video 8 mm, Compact
VHS, and Digital 8), two levels for the zoom (10x optical - 40x digital and 20x
optical - 80x digital), two types of viewfinder (B/W and color), three levels for
the LCD screen (absent, 2.5-inch color, and 3.5-inch color), and four levels for the
price after taxes (EUR 500.00, EUR 650.00, EUR 800.00, and EUR 950.00) have
been selected for the study. The design chosen for the CA study was a main-
effects-only fractional factorial design with p = 16 profiles, each to be evaluated
by all the subjects.

Respondents were chosen among the free-lancers of an Italian marketing re-
search company. The sample size was fixed in 80 subjects; however, at the end of
the fieldwork 87 respondents took part in the study. None of them had an earlier
knowledge of any CA methodology. A personal briefing has been provided to
each respondent before the beginning of the interview. A card containing all the
variables/levels involved with a short description has been presented during the
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briefing and left on the operative table throughout the interview. The subjects
have been instructed to consider only the factors included in the CA; the same
conditions for the omitted attributes had to be considered. The subjects’ task
was to rate each of the 16 camcorder alternatives on a scale 1:100. Even thought
they have been instructed in order to face correctly the CA tasks, a supervisor
was always on place to provide technical help. The fieldwork required 16 days
during Spring 2002. Each day no more than six interviews were completed.

All attributes considered are qualitative, except the price that is quantitative.
From the full set of profiles, the 16 profiles shown in Tabl.1 have been selected.
Hence, according to (8) the design matrix X has T = 12 columns, as shown in
Tabl.2. In this table, the authors use the notation Xkm to indicate the column
in the design matrix X, which represents the mth column created for the factor
k. Note that X00 indicates the column created for the intercept µ.

Profile # Brand Format Zoom Viewfinder LCD Price

1 Samsung Video 8 20x-80x B/W absent 650.00
2 JVC VHS-C 10x-40x color absent 650.00
3 Sony Video 8 10x-40x B/W absent 800.00
4 Samsung VHS-C 10x-40x B/W 2.5” 950.00
5 Sony VHS-C 20x-80x B/W 3.5” 500.00
6 JVC Video 8 20x-80x B/W absent 950.00
7 Sony Digital 8 10x-40x color absent 950.00
8 Sony Video 8 20x-80x color 2.5” 650.00
9 Samsung Digital 8 20x-80x color absent 500.00
10 JVC Video 8 10x-40x color 2.5” 500.00
11 Samsung Video 8 10x-40x color 3.5” 800.00
12 JVC Digital 8 20x-80x B/W 2.5” 800.00
13 JVC Video 8 20x-80x color 3.5” 950.00
14 JVC VHS-C 20x-80x color absent 800.00
15 JVC Video 8 10x-40x B/W absent 500.00
16 JVC Digital 8 10x-40x B/W 3.5” 650.00

Table 1: Profiles selected for the study

By considering the RCR model (9) and by applying (3), the authors got the
least squares estimators β̂i’s (for i = 1, . . . , 87). By applying (4), the authors
got unbiased estimators of the σ2

i ’s, while by applying (13), the authors got the

unbiased estimator of Σ, that is Σ̂:
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Profile# X00 X11 X12 X21 X22 X31 X41 X51 X52 X61 X62 X63

1 1 −1 −1 1 0 −1 1 1 0 −75 (−75)2 (−75)3

2 1 1 0 0 1 1 −1 1 0 −75 (−75)2 (−75)3

3 1 0 1 1 0 1 1 1 0 75 (75)2 (75)3

4 1 −1 −1 0 1 1 1 0 1 225 (225)2 (225)3

5 1 0 1 0 1 −1 1 −1 −1 −225 (−225)2 (−225)3

6 1 1 0 1 0 −1 1 1 0 225 (225)2 (225)3

7 1 0 1 −1 −1 1 −1 1 0 225 (225)2 (225)3

8 1 0 1 1 0 −1 −1 0 1 −75 (−75)2 (−75)3

9 1 −1 −1 −1 −1 −1 −1 1 0 −225 (−225)2 (−225)3

10 1 1 0 1 0 1 −1 0 1 −225 (−225)2 (−225)3

11 1 −1 −1 1 0 1 −1 −1 −1 75 (75)2 (75)3

12 1 1 0 −1 −1 −1 1 0 1 75 (75)2 (75)3

13 1 1 0 1 0 −1 −1 −1 −1 225 (225)2 (225)3

14 1 1 0 0 1 −1 −1 1 0 75 (75)2 (75)3

15 1 1 0 1 0 1 1 1 0 −225 (−225)2 (−225)3

16 1 1 0 −1 −1 1 1 −1 −1 −75 (−75)2 (−75)3

Table 2: The Design Matrix X

�
Σ =

�����������������
�

20.9435 −1.2325 −2.5638 −1.1728 0.3460 1.8252 5.6801 1.7130 −0.8012 . . .

9.9551 −3.2650 0.2231 −1.4348 −1.8327 −1.1614 −3.6853 1.7933 . . .

8.8213 0.6652 0.3042 1.1387 −0.0578 2.2703 −0.2594 . . .

8.5861 −6.7384 −1.0997 −0.5871 −1.0729 1.1328 . . .

16.0006 1.6188 −0.5052 0.6788 −2.0393 . . .

1.4920 1.1229 0.8907 −0.4397 . . .

8.0790 0.4642 0.1508 . . .

11.8721 −4.8954 . . .

1.8626 . . .

. . .

. . . −6.6 · 10−3
−1.1 · 10−5 2.2 · 10−7

. . . −1.6 · 10−2 3.8 · 10−6 2.1 · 10−8

. . . 2.1 · 10−2
−3.4 · 10−6

−7.5 · 10−8

. . . −8.9 · 10−3
−8.0 · 10−6 1.4 · 10−7

. . . 1.3 · 10−2
−2.3 · 10−6

−3.9 · 10−7

. . . −5.2 · 10−3
−6.5 · 10−6 1.0 · 10−7

. . . −1.2 · 10−2
−1.5 · 10−6 4.0 · 10−8

. . . −7.5 · 10−3 1.6 · 10−5 8.8 · 10−8

. . . −1.8 · 10−3
−6.6 · 10−6 3.2 · 10−8

6.1 · 10−4 1.4 · 10−7
−1.9 · 10−9

1.7 · 10−10
−2.7 · 10−12

3.1 · 10−15

����������������������
�

(20)

Note that for the sake of clarity, only the upper-right triangle of the symmetric
matrix Σ̂ has been displayed in (20). The same visualization will be used again
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in this section. Therefore, according to (12) β̂ is normally distributed with mean
β, whose estimate is obtained by (5):

(21)�
β = (83.49 −1.46 1.88 −.71 −.23 −.46 −2.28 −3.33 1.54 −2.02 · 10−2 1.45 · 10−7)′

and with covariance matrix Cov(β̂), whose estimate is obtained by (14):

Cov(
�
β) =

�����������������
�

0.2732 −0.0192 −0.0270 −0.0185 0.0065 0.0210 0.0653 0.0147 −0.0067 . . .

0.1344 −0.0475 0.0026 −0.0165 −0.0211 −0.0133 −0.0424 0.0206 . . .

0.1288 0.0076 0.0035 0.0131 −0.0007 0.0261 −0.0030 . . .

0.1186 −0.0874 −0.0126 −0.0067 −0.0123 0.0130 . . .

0.2113 0.0186 −0.0058 0.0078 −0.0234 . . .

0.0284 0.0129 0.0102 −0.0051 . . .

0.1041 0.0053 0.0017 . . .

0.1564 −0.0662 . . .

0.0488 . . .

. . .

. . . −7.6 · 10−5
−7.4 · 10−7 2.5 · 10−9

. . . −1.8 · 10−4 4.3 · 10−8 2.5 · 10−10

. . . 2.4 · 10−4
−3.9 · 10−8

−8.6 · 10−10

. . . −1.0 · 10−4
−9.2 · 10−8 1.6 · 10−9

. . . 1.5 · 10−4
−2.7 · 10−8

−4.5 · 10−9

. . . −5.9 · 10−5
−7.5 · 10−8 1.2 · 10−9

. . . −1.4 · 10−4
−1.7 · 10−8 4.6 · 10−10

. . . −8.6 · 10−5 1.9 · 10−7 1.0 · 10−9

. . . −2.1 · 10−5
−7.6 · 10−8 3.7 · 10−10

1.2 · 10−5 1.6 · 10−9
−1.2 · 10−10

2.4 · 10−11
−3.1 · 10−14

2.2 · 10−15

����������������������
�

(22)

From (20) it is evident that Σ̂ is not a matrix of zeros. It implies that the βi’s
are correlated within subjects, and thus the standard errors should be computed
by the RCR model and not by the traditional model. As a matter of fact, the
RCR model provides the matrix Cov(β̂) displayed in (22), which is substantially
different from the same matrix computed by the expression (6) relative to the
traditional model:
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Cov(
�
β) =

�����������������
�

0.0325 −0.0050 0.0025 −0.0050 0.0025 0 0 −0.0050 0.0025 . . .

0.0199 −0.0100 0 0 0 0 0 0 . . .

0.0274 0 0 0 0 0 0 . . .

0.0199 −0.0100 0 0 0 0 . . .

0.0274 0 0 0 0 . . .

0.0112 0 0 0 . . .

0.0112 0 0 . . .

0.0199 −0.0100 . . .

0.0274 . . .

. . .

. . . 0 −6.23 · 10−7 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

5.06 · 10−6 0 −1.01 · 10−10

2.22 · 10−11 0

2.19 · 10−15

� ������������������
�

(23)

Hence, by (15) one can easily get the parameter value associated with the
last level of each qualitative factor, while by (17) one can estimate the parameter
value for any level l0 ∈ [500, 950] of the quantitative factor price. In addition,
(16) and (19) provide the way to get the standard error from the values in (22)
for any parameter β̂km and β̂kl0 .

6. Conclusions

By the approach developed in this article it is possible to get an estimate of
the covariance matrix for the vectors of coefficients β̂, based on the assumption
that the correlation of the utility values within subjects can be nonzero. As a
consequence, it is possible to obtain more correct estimates of the standard errors
of the CA utility values based on the whole sample or on a particular group of
subjects. In addition, the estimators provided here are unbiased. Therefore, in
this article the authors provided a useful tool that should be adopted whenever
the researcher decides to use a full or a fractional factorial design for a CA study.

A further research could investigate the application of a RCR model in the
case when the design matrix X is not the same for all the subjects, the situation
when the subjects receive different sets of profiles. In this generalization, the
estimator of β is the weighted least squares estimator of the βi’s, where the
weights are the inverse covariance matrices of βi’s.
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