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BRANCHING POPULATIONS OF CELLS BEARING A
CONTINUOUS LABEL

A. Y. Yakovlev N. M. Yanev 1

This paper is concerned with an age-dependent branching process with
particles (cells) bearing a label, the latter being treated as a continuous
parameter. The proposed stochastic model is motivated by applications in
cell biology. It is assumed that the mitotic division results in a random
distribution of the label among daughter cells in accordance with some
bivariate probability distribution. In the event of cell death the label borne
by that cell disappears. The main focus is on the label distribution as
a function of the time elapsed from the moment of label administration.
Explicit expressions for this distribution are derived in some particular cases
which are of practical interest in the analysis of cell cycle. The Markov
branching process with the same evolution of a continuously distributed
label is considered as well.

1. Introduction

The theory of branching stochastic processes has proven itself as a powerful
tool for mathematical modeling of cell proliferation and differentiation (Jagers
[11], Cowan and Staudte [3], Yakovlev and Yanev [21], Huggins and Basawa [6],
Kimmel and Axelrod [13], Haccou et al. [5], Hyrien et al. [8, 9], to name a
few). Among many applied problems for which methods of branching stochastic
processes hold much promise is the analysis of labeling experiments. These
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experimental techniques are intended for making quantitative inference of the
mitotic cycle parameters in renewing cell populations from observed dynamics
of cells after a fraction of the cell population is labeled with specially designed
molecular markers. DNA precursors labeled either with radioactive isotopes (e.g.,
3H-thymidine) or with fluorescent antibodies are typically used for this purpose.
Such labeling of the cells occurs during their progression through the S-phase of
the mitotic cycle.

When using 3H-thymidine and autoradiographic technique (Cleaver [2]), one
can obtain data on grain counts, the latter being interpreted as discrete marks
attached to each labeled cell. The distribution of such marks as a function of
the time elapsed from the administration of a pulse label yields the needed
information on the structure of the mitotic cycle to be extracted by methods
of mathematical modeling. Assuming that the initial distribution of marks is
Poisson, and treating the evolution of labeled cells as a Bellman-Harris age-
dependent branching process with infinitely many cell types, Yanev and Yakovlev
[23] derived an analytical form of this distribution. This result presently has
limited practical utility because experimental data on grain counts are no longer
generated by biological studies. On the other hand, analyzing the kinetics of
cells that have been pulse-labeled with BrdU on a fluorescence-activated cell
sorter has become a method of choice in this field of research. This technique
calls for modeling the distribution of BrdU intensity and its variations with time.
However, little attention has been given to this problem within the framework of
stochastic branching processes. The case of a randomly distributed continuous
label is more complicated than its discrete counterpart and involves modeling of
a branching process with states characterized by a real-valued parameter.

Kolmogorov [14] was the first to consider a branching process (particle split-
ting) of this type with the continuous parameter being the particle size. Further
results in this direction were reported by Filipov [4]. Ney [19, 20] studied cascade
processes, where each particle is characterized by its energy. In the case of Markov
binary splitting, he obtained interesting asymptotic results which are recalled in
our discussion in Section 4. In his famous and influential book, Harris [7] devoted
a whole chapter to energy-dependent branching processes. Bertoin [2] considered
random fragmentation processes and their relation to multiplicative cascades and
branching processes in a recent review (see also the literature therein).

All these methods, however, are not directly applicable to the problem under
discussion. The time evolution of a continuous label incorporated into the cell
during a limited period of its life cycle should be modeled with due account of
the knowledge amassed in cell biology. In particular, the model should include
the event of cell death resulting in the disappearance of the entire label borne by
the cell.

In Section 2, we consider an age-dependent branching process with a continu-
ous parameter as a general stochastic model for the analysis of labeling experi-
ments and introduce the so-called label distribution. In Section 3, the label
distributions are obtained for some particular non-Markov cases which are of
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interest from this prospective. The Markov case is investigated with more details
in Section 4. Finally some possible extensions are discussed.

2. Age-dependent branching processes with a continuously
distributed label

Suppose that every cell has a life time τ with distribution function G(x) = Pr (τ ≤
x) and at the end of its life it either divides into two cells with probability p
(0 < p ≤ 1) or it dies with probability 1 − p. If a cell divides, its label L
is distributed randomly between daughter cells so that their labels L1 and L2

satisfy the condition L1 + L2 ≤ L. Introduce the conditional distribution

(1) Pr (L1 ≤ y1, L2 ≤ y2|L = y) = K(y1/y, y2/y), 0 ≤ y1 ≤ y, 0 ≤ y2 ≤ y,

where the bivariate distribution function K(x1, x2) is symmetric, that is
, K(x1, x2) = K(x2, x1), 0 ≤ K(x1, x2) ≤ 1 for 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. Let
K(x) = K(x, 1) = K(1, x) be the one-dimensional distribution that defines both
marginal distributions of K(x1, x2). In the event of cell death the label borne by
that cell disappears.

We assume for simplicity that the process begins with one cell of age zero at
time t = 0 and the initial cell bears a certain amount L0 of label. The results can
readily be generalized to include an arbitrary initial distribution of the random
variable L0 and then the resultant formulas can be compounded with respect
to this distribution. The initial distribution can be estimated nonparametrically
from the data on label intensity available at time t = 0.

Let Z(t, x) be the number of cells at time t > 0 with the label intensity
of L ≥ x. It is clear that Z(t, x) = 0 if x > L0. Introduce the notation:
Pn(t, x|L0) = Pr (Z(t, x) = n). From (1) it follows

(2) Pn(t, x|L0) = Pn(t, x/L0|1), x ≤ L0.

In what follows, we will use the notation

(3) Pn(t, x) = Pn(t, x|1), 0 ≤ x ≤ 1.

Note that Pn(t, x) = 0 for n > 1/x.
Let us introduce the probability generating function (p.g.f.)

(4) Ψ(t, x, s) = E{sZ(t,x)} =

∞
∑

n=0

Pn(t, x)sn, |s| ≤ 1.

Theorem 1. Under conditions (1) − (3) the p.g.f. (4) satisfies the equation:
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(5) Ψ(t, x, s) = (1 − p)G(t) + s[1 − G(t)]

+ p
t
∫

0

{
1
∫

x

1
∫

x
Ψ(t − y, x/u1, s)Ψ(t − y, x/u2, s)K(du1, du2)}dG(y),

which has a unique solution in the class of the p.g.f.

P r o o f. Conditioning on the evolution of the first cell and using the law of
total probability by (1) − (3) one has

(6) Pn(t, x) = δn,1[1 − G(t)] + (1 − p)δn,0G(t)

+p
t
∫

0

{
1
∫

x

1
∫

x

n
∑

k=0

Pk(t − y, x/u1)Pn−k(t − y, x/u2)K(du1, du2)}dG(y),

where δn,k = 0 for n 6= k and δn,k = 1 for n = k.
Now multiplying (6) by sn and summarizing one obtains (5).

Introduce the notation:

A(t, x) = E{Z(t, x)} = ∂
∂sΨ(t, x, s)|s=1,

B(t, x) = E{Z(t, x)[Z(t, x) − 1]} = ∂2

∂s2 Ψ(t, x, s)|s=1.

Recalling that Var{Z(t, x)} = B(t, x) + A(t, x) − A2(t, x), one can obtain from
(5) the following equations:

(7) A(t, x) = 2p
t
∫

0

{
1
∫

x
A(t − y, x/u)dK(u)}dG(y) + 1 − G(t),

(8) B(t, x) = 2p
t
∫

0

{
1
∫

x
B(t − y, x/u)dK(u)}dG(y)

+2p
t
∫

0

{
1
∫

x

1
∫

x
A(t − y, x/u1)A(t − y, x/u2)K(du1, du2)}dG(y). �

Remark. If p = 1, the above model reduces to the binary splitting case
considered by Ney [19, 20].
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Setting x = 0 in (6) − (8) one arrives at the equations

(6a) Ψ(t, 0, s) = (1 − p)G(t) + s[1 − G(t) + p
t
∫

0

Ψ2(t − y, 0, s)dG(y),

(7a) A(t, 0) = 2p
t
∫

0

A(t − y, 0)dG(y) + 1 − G(t),

(8a) B(t, 0) = 2p
t
∫

0

B(t − y, 0)dG(y) + 2p
t
∫

0

A2(t − y, 0)dG(y),

that describe an age-dependent binary branching process considered by Bellman
and Harris [1]. Note that (6a) is a renewal-type equation and its solution is given
by

(9) A(t, 0) =
∞
∑

k=0

(2p)k(G ∗ G∗k)(t),

where G(t) ≡ 1−G(t) and ∗ is the usual symbol of convolution. More specifically,
G∗k(t) is the k−th convolution of G(t), that is

G∗(k+1)(t) =
t
∫

0

G(t − y)dG∗k(y), k ≥ 0,

G∗0(y) = 0 for y < 0 and G∗0(y) = 1 for y ≥ 0.

Definition 1. The label distribution Dt(x) is defined as follows

(10) Dt(x) = 1 − Dt(x) = A(t, x)/A(t, 0).

Comment. The formula (10) can be interpreted in the following way. Denote
by L(t) the amount of the label borne by a randomly chosen cell at the moment
t. If Z(t) = n then Z(t, x) will have a binomial distribution with parameters n
and p = Dt(x) = Pr(L(t) ≥ x), because of the usual independence assumptions
of the individual evolutions in branching processes.

Therefore

A(t, x) =
∞
∑

n=0
P (Z(t) = n)E{Z(t, x)|Z(t) = n}

=
∞
∑

n=0
P (Z(t) = n)nDt(x) = A(t, 0)Dt(x),

which gives (10).
In the general case, finding an explicit solution of equation (7) (as is the case

with equation (9)) is not feasible but some particular cases of practical importance
can still be investigated.
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3. Specific Label Distributions Associated with the Bellman-
Harris Process

A closed form solution can be obtained in the special case where one of the
daughter cells receives a fixed fraction c (0 < c < 1) of the mother label while the
complement 1− c goes to the second daughter cell. By a symmetry argument we
have the condition: 0 < c ≤ 1/2. In this particular case,

(11) Kc(u) = 0 for u < c and Kc(u) = 1 for u ≥ c.

Let 〈z〉 denotes the smallest integer greater or equal to z.

Theorem 2. Under condition (11) the following label distribution holds:
(i)For x < c ≤ 1/2

(12) Dt(x) = {
N
∑

k=0

(2p)k(G ∗ G∗k)(t)}/
∞
∑

k=0

(2p)k(G ∗ G∗k)(t),

where

(13) N = N(x, c) = 〈(ln(x/c))/ ln c〉;

(ii) If x ≥ c then

(14) Dt(x) = G(t)/
∞
∑

k=0

(2p)k(G ∗ G∗k)(t)

for every c ∈ (0, 1/2].

P r o o f. Using (11) it is not difficult to obtain that

(15)
1
∫

x
A(t − y, x/u)dK(u) = 0 for 0 < c ≤ x < 1

and

(16)
1
∫

x
A(t − y, x/u)dK(u) = A(t − y, x/c) for 0 < x < c.

Now applying (7), (11), (15) and (16) one has:
(i) If x ≥ c then

(17) A(t, x) = 1 − G(t) ≡ G(t);
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(ii) If x < c then

(18) A(t, x) = 2p
t
∫

0

A(t − y, x/c)dG(y) + 1 − G(t).

Iterating (15) one can show that for every n ≥ 1

(19) A(t, x) = (2p)n
t
∫

0

A(t − y, x/cn)dG∗n(y) +
n−1
∑

k=0

(2p)k(G ∗ G∗k)(t).

On the other hand, if x/cn ≥ c then from (i) it follows that

(20) A(t − y, x/cn) = G(t − y).

Note that x/cn ≥ c is equivalent to n ≥ (ln(x/c))/ ln c.
Then applying (19) and (20) it follows that

(21) A(t, x) =
N
∑

k=0

(2p)k(G ∗ G∗k)(t),

where N is defined by (13).
Finally from (9), (10) and (18) one obtains (12).

If x ≥ c, then (14) follows from (9), (10) and (17). �

Corollary 1. The distribution given by Theorem 2 assumes a particularly
simple form in the biologically plausible case of c = 1/2. In this case, formula
(13) is replaced with

(22) N = N(x, 1/2) = 〈−(ln 2x)/ ln 2〉 for x < 1/2.

Proceeding from (8) let us now calculate B(t, x). Note that

K(du1, du2) = Kc,1−c(du1, du2) = Kc(du1)K1−c(du2)

where Kc(u1) and K1−c(u2) are the d.f. of the constants c and 1 − c. Hence

(23) Kc,1−c(u1, u2) = Kc(u1)K1−c(u2) = 0 for {u1 ≥ c} ∪ {u2 ≥ 1 − c},

= 1 for {u1 < c} ∩ {u2 < 1 − c},
and

(24) Ic(x) =
1
∫

x

1
∫

x
A(t − y, x/u1)A(t − y, x/u2)K(du1, du2)
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=
1
∫

x
A(t − y, x/u1)Kc(du1)

1
∫

x
A(t − y, x/u2)K1−c(du2).

Now from (11) and (24) one obtains the following relations:

(a) If x < c then

(25) Ic(x) = A(t − y, x/c)A(t − y, x/(1 − c));

(b) If x ≥ c then

(26) Ic(x) = 0.

On the other hand, similarly to (12) and (13) one has

(27)
1
∫

x
B(t − y, x/u)dKc(u) = 0 for 0 < c ≤ x < 1

and

(28)
1
∫

x
B(t − y, x/u)dKc(u) = B(t − y, x/c) for 0 < x < c.

Now one can claim that

(29) B(t, x) = 0 for x ≥ c

and for 0 < x < c ≤ 1/2 the following equation holds

(30) B(t, x) = 2p
t
∫

0

B(t−y, x/c)dG(y)+2p
t
∫

0

A(t−y, x/c)A(t−y, x/(1−c))dG(y).

For c = 1/2 the equation (30) becomes

(31) B(t, x) = 2p
t
∫

0

B(t − y, 2x)dG(y) + 2p
t
∫

0

A2(t − y, 2x)dG(y).

Iterating (31) one can prove that for every n ≥ 1 and 0 < x < 1/2

(32) B(t, x) = 2p
t
∫

0

B(t − y, 2nx)dG∗n(y) +
n−1
∑

k=1

(2p)k
t
∫

0

A2(t − y, 2kx)dG∗k(y).

By formula (29) one has B(., 2nx) = 0 for 2nx ≥ 1/2, which is the same as
the condition: n ≥ −(ln 2x)/ ln 2. Hence for N(x, 1/2) = 〈−(ln 2x)/ ln 2〉 (see also
(20)) it follows from (32) that

(33) B(t, x) =
N(x,1/2)

∑

k=1

(2p)k
t
∫

0

A2(t − y, 2kx)dG∗k(y).
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Since 2kx < 1/2 for k = 1, 2, . . . , N(x, 1/2) and 0 < x < 1/2 then by (18) one has

(34) A(t, 2kx) =
N(2kx,1/2)

∑

i=1
(2p)i(G ∗ G∗i)(t),

where N(2kx, 1/2) = 〈−(ln 2k+1x)/ ln 2〉. Finally, using (8), (33) and (34) one
obtains for 0 < x < 1/2

(35) B(t, x) =
N(x,1/2)

∑

k=1

(2p)k
N(2kx,1/2)

∑

i=1
(2p)i(G ∗ G∗i)(t).

Another special case arises if one assumes that the mother label is uniformly
distributed among daughter cells. In this case, it is clear that

(36) K(u) = u for 0 ≤ u ≤ 1.

Therefore, instead of (7) and (8) one uses the equations

(37) A(t, x) = 2p
t
∫

0

{
1
∫

x
A(t − y, x/u)du}dG(y) + 1 − G(t),

(38) B(t, x) = 2p
t
∫

0

{
1
∫

x
B(t− y, x/u)du}dG(y) + 2p

t
∫

0

{
1
∫

x
A(t− y, x/u)du}2dG(y).

Further extensions allowing for the process of differentiation into another cell
type and the initial age-distribution in the S-phase are straightforward.

4. Label Distributions in the Markov Case

Let G(x) = 1 − e−λx, λ > 0, which means that the considered process is a
Markovian one.

Theorem 3. In the Markov case

(39) Dt(x) =
∞
∑

n=o
Πn(2pλt)R∗n(− log x),

where R(x) = 1 − K(e−x) and Πn(x) = nxe−x/n! is the Poisson distribution.

P r o o f. In this case it is not difficult to check that the solution of equation
(7) is given by

(40) A(t, x) = e−λt
∞
∑

n=o
(2pλt)n/n![1 − Qn(x)],
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where

(41) Qn(x) = P (
n
∏

i=1
ξi ≤ x)

and {ξi} are i.i.d. random variables with a common distribution function K(x).
Note that

1 − Qn(x) = P (
n
∑

i=1
log(1/ξi) ≤ − log x) = R∗n(− log x).

Therefore (40) can be represented in the following equivalent form

(42) A(t, x) = eλ(2p−1)t
∞
∑

n=0
Πn(2pλt)R∗n(− log x).

Setting additionally x = 0 in (6) one can obtain the equation

(43) ∂
∂tΨ(t, 0, s) = pλΨ2(t, 0, s) − λΨ(t, 0, s) + λ(1 − p).

Then by (43) one arrives at the equation

(44) d
dtA(t, 0) = λ(2p − 1)A(t, 0),

which has the solution

(45) A(t, 0) = eλ(2p−1)t.

Now from (10), (42) and (45) it follows that the label distribution is given by
(39). �

Corollary 2. Assuming in addition that condition (36) is met, formula (39)
becomes

(46) Dt(x) =
∞
∑

n=0
πn(2pλt)Γn(− log x),

where

(47) Γn(y) =
y
∫

0

zn−1e−zdz/(n − 1)!

is the gamma distribution Γ(n, 1).
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Note that from (43) one can obtain the equation

(48) d
dtB(t, 0) = λ(2p − 1)B(t, 0) + 2pλA2(t, 0),

which has the solution

B(t, 0) = eλ(2p−1)t(eλ(2p−1)t − 1)/(2p − 1), 2p 6= 1 and B(t, 0) = λt, 2p = 1.

Under the considered general model, the amount of label tends to vanish as
t → ∞ so that with probability close to one there are no cells with the label
intensity L ≥ x for every fixed x, implying that lim

t→∞

Dt(x) = 1.

Theorem 4. Assume that the following moments are finite

(49) α =
1
∫

0

log(1/x)dK(x), β =
1
∫

0

log2(1/x)dK(x)

and

(50) ∆t(z) = exp{−2pλαt − z(2pλtβ)1/2}.

Then in the Markov case for every z ∈ R1

(51) lim
t→∞

Dt(∆t(z)) = Φ(z),

where

Φ(z) = 1/(2π)1/2
z
∫

−∞

e−u2/2du

is the standard normal distribution.

P r o o f. Denote 2pλt = T. Then from (39) and (50) one has

(52) Dt(∆t(z)) =

∞
∑

n=o

Πn(T )R∗n(αT + z
√

βT ).

Applying the local limit theorem for the Poisson distribution one obtains

(53) Πn(T ) ∼ (2πT )−1/2 exp{−(n/
√

T −
√

T )2/2},

as T → ∞ and

(54) |n/
√

T −
√

T | ≤ C

for any finite C.
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On the other hand, under condition (54) on can obtain by the central limit
theorem that

(55) R∗n(αT + z
√

βT ) ∼ Φ({z
√

β + α(n/
√

T −
√

T )}/σ),

where σ2 = β − α2 = V ar{log(1/ξ)}.
Now applying (53) and (55) in (52) and using similar arguments as Lemma

1 of Ney [20] one obtains (51). �

In particular, if z = 0 then Dt(e
−2λαt) → 1/2 as t → ∞. In other words, if

the label of the ancestor cell is L0 then, for large t, the part of the cells with the
label amount greater or equal to e−2λαtL0, is approximately equal to 1/2.

If K(u) is given by (11), then α = ln(1/c) for 0 < c ≤ 1/2. In the particular
case c = 1/2 one has α = ln 2.

It is worth noting that in the Markov case with p = 1 Ney [20] obtained the
following interesting result:

(56) Z(t,∆t(z))/Z(t, 0) → Φ(z) in probability as t → ∞.

Note that Λt(x) = 1−Z(t, x))/Z(t, 0) can be interpreted as an empirical label
distribution. Remark that it is well defined only for the supercritical processes in
the case when Z(t, 0) does not vanish, while Dt(x) is well defined everywhere.

Finally it is interesting to point out that the asymptotic results (51) and (56)
remain open problems in the non-Markov cases.

5. Label Distributions in More General Cases

The label distribution considered in Section 2 can be generalized in many different
ways by replacing A(t, x) and A(t, 0) in formula (10) with other pertinent models
of cell proliferation kinetics. In particular, age-dependent branching processes
with immigration are gaining in importance in conjunction with recent advance-
ments in experimental approaches to cell proliferation kinetics in analysis of
renewing cell populations (Yakovlev and Yanev [22]). These advancements have
made it possible to distinguish many cell types by antibody labeling so that cells
of different types can be counted in the dissociated tissue by using flow cytometry.
A rich selection of age-dependent branching processes with immigration is offered
by numerous theoretical works in this field (Jagers [10], Yanev [24,25], Kaplan
and Pakes [12], Mitov and Yanev [15, 16, 17], Slavtchova-Bojkova and Yanev [20],
Yanev et al. [26] and the bibliography therein).
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