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UPPER AND LOWER BOUNDS FOR RUIN PROBABILITY

E. Pancheva1 Z. Volkovich L. Morozensky

In this note we discuss upper and lower bound for the ruin probability in
an insurance model with very heavy-tailed claims and interarrival times.

1. Backgrounds

The framework of our study is set by a given Bernoulli point process (Bpp)
N = {(Tk, Xk) : k ≥ 1} on the time-state space S = (0,∞) × (0,∞). By
definition (cf. Balkema and Pancheva 1996) N is simple in time (Tk 6=Tj a.s. for
k 6= j), its mean measure is finite on compact subsets of S and all restrictions of
N to slices over disjoint time intervals are independent. We assume that:

a) the sequences {Tk} and {Xk} are independent and defined on the same
probability space;

b) the state points {Xk} are independent and identically distributed random
variables (iid rv’s) on (0,∞) with common distribution function (df) F
which is asymptotically continuous at infinity;

c) the time points {Tk} are increasing to infinity, i.e. 0 < T1 < T2 < · · · ,
Tk → ∞ a.s.

1Correspondence author.
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The main problem in the Extreme Value Theory is the asymptotic of the

extremal process {∨
k
Xk : Tk ≤ t} =

N(t)
∨

k=1
Xk, associated with N , for t→ ∞. Here

the maximum operation between rv’s is denoted by “∨” and N(t) := max{k :
Tk ≤ t} is the counting process of N . The method usually used is to choose
proper time-space changes ζn = (τn(t), un(x)) of S (i.e. strictly increasing and
continuous in both components) such that for n → ∞ and t > 0 the weak
convergence

(1) Ỹn(t) := {∨
k
u−1

n (Xk) : τ−1
n (Tk) ≤ t} =⇒ Ỹ (t)

to a non-degenerate extremal process holds. (For weak convergence of extremal
processes consult e.g. Balkema and Pancheva 1996.)

In fact, the classical Extreme Value Theory deals with Bpp’s {(tk, Xk) : k ≥
1} with deterministic time points tk, 0 < t1 < t2 < · · · , tk → ∞. One investigates
the weak convergence to a non-degenerate extremal process

(2) Yn(t) := {∨
k
u−1

n (Xk) : tk ≤ τn(t)} =⇒ Y (t)

under the assumption that the norming sequence {ζn} is regular. The later means
that for all s > 0 and for n→ ∞ there exist point-wise

lim
n→∞

u−1
n ◦ u[ns](x) = U s(x)

lim
n→∞

τ−1
n ◦ τ[ns](t) = σs(t)

and (σs(t), U s(x)) is a time-space change. As usual “◦” means the composition
and [s] the integer part of s. The family L = {(σs(t), U s(x)) : s > 0} forms a
continuous one-parameter group w.r.t. composition.

Let us denote the (deterministic) counting function k(t) = max{k : tk ≤ t},
and put kn(t) := k(τn(t)), kn := kn(1). The df of the limit extremal process in
(2) we denote by g(t, x) := P(Y (t) < x), and set G(x) := g(1, x). Then necessary
and sufficient conditions for convergence (2) are the following

1. F kn(un(x))
w

−→G(x), n→ ∞

2.
kn(t)

kn
−→ λ(t), n→ ∞, t > 0.
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The regularity of the norming sequence {ζn} has some important consequences
(cf. Pancheva 1998). First of all, the limit extremal process Y (t) is self-similar
w.r.t. L, i.e.

Us ◦ Y (t)
d
= Y ◦ σs(t), ∀s > 0 .

Furthermore:

0.
k[ns]

kn
−→ sa, n→ ∞, for some a > 0 and all s > 0;

1’. the limit df G is max-stable in the sense that

(3) Gs(x) = G(L−1
s (x)) ∀s > 0, Ls := U a

√
s;

2’. the intensity function λ(t) is continuous.

Thus, under conditions 1. and 2. and the regularity of the norming sequence,
the limit extremal process Y (t) is stochastically continuous with df g(t, x) =
Gλ(t)(x) and the process Y ◦ λ−1(t) is max-stable in the sense of (3).

Let us come back to the point process N with the random time points Tk.
The Functional Transfer Theorem (FTT) in this framework gives conditions on
N for the weak convergence (1) and determines the explicit form of the limit
df f(t, x) := P(Ỹ (t) < x). In other words, the weak convergence (2) in the
framework with non-random time points can be transfer to the framework of N
if some additional condition on the point process N is met. In our case this is
condition d) below.

Denote by M([0,∞)) the space of all strictly increasing, cadlac functions
y : [0,∞) → [0,∞), y(0) = 0, y(t) → ∞ as t → ∞. We assume additionally to
a)–c) the following condition

d) θn(s) := τ−1
n (T[skn]) =⇒ T (s)

where T : [0,∞) → [0,∞) is a random time change, i.e. stochastically continuous
process with sample paths in M([0,∞)). Let us set Nn(t) := N(τn(t)). In view
of condition d) the sequence
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Λn(t) :=
Nn(t)

kn
=

1

kn
max{k : Tk ≤ τn(t)}

= sup{s > 0 : τ−1
n (T[skn]) ≤ t}

= sup{s > 0 : θn(s) ≤ t}

is weakly convergent to the inverse process of T (s). Let us denote it by Λ and
let Qt(s) = P (Λ(t) < s).

Now we are ready to state a general FTT for maxima of iid rv’s on (0,∞).

Theorem (FTT): Let N = {(Tk, Xk) : k ≥ 1} be a Bpp described by
conditions a)–c). Assume further that there is a regular norming sequence ζn(t, x) =
(τn(t), un(x)) of time-space changes of S such that for n→ ∞ and t > 0 conditions
1., 2. and d) hold. Then

i)
Nn(t)

kn

d
−→Λ(t)

ii) P(
Nn(t)
∨

k=1
u−1

n (Xk) < x)
w

−→E[G(x)]Λ(t)

Indeed, we have to show only ii). Observe that for n→ ∞

Nn(t) = kn.
Nn(t)

kn
∼ kn.Λ(t) ∼ kn(λ−1 ◦ Λ(t))

In the last asymptotic relation we have used condition 2). Then by convergence
(2)

Ỹn(t) =
Nn(t)
∨

k=1
u−1

n (Xk) =⇒ Y (λ−1 ◦ Λ(t))

and

P(
Nn(t)
∨

k=1
u−1

n (Xk) < x) −→ f(t, x)

∞
∫

0

Gs(x)dQt(s) = E[G(x)]Λ(t)

Let us apply these results to a particular insurance risk model.
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2. Application to ruin probability

The insurance model, we are dealing with here, can be described by a particular
Bpp N = {(Tk, Xk) : k ≥ 1} where

a) the claim sizes {Xk} are positive iid random variables which df F has a
regularly varying tail, i.e. 1−F ∈ RV−α. We consider the “very heavy tail
case” 0 < α < 1 when EX does not exist, briefly EX = ∞ ;

b) the claims occur at times {Tk} where 0 < T1 < T2 < · · · < Tk → ∞
a.s. We denote the inter-arrival times by Jk = Tk − Tk−1, k ≥ 1, T0 = 0
and assume the random variables {Jk} positive iid with df H. Suppose
1 −H ∈ RV−β, 0 < β < 1;

c) both sequences {Xk} and {Tk} are independent and defined on the same
probability space.

The point process N generates the following random processes we are
interested in.

i) The counting process N(t) = max{k : Tk ≤ t}. It is a renewal

process with
N(t)

t
→ 0 as t → 0 for EJ∞. By the Stable CLT there

exists a normalizing sequence {b(n)}, b(n) > 0, such that
[nt]
∑

k=1

Jk

b(n)
converges weakly to a β- stable Levy process Sβ(t). One can choose
b(n) ∼ n1/βLJ(n), where LJ denotes a slowly varying function. Let us
determine b̃(n) by the asymptotic relation b(b̃(n)) ∼ n as n→ ∞. Now

the normalized counting process
N(nt)

b̃(n)
is weakly convergent to the

hitting time process E(t) = inf{s : Sβ(s) > t} of Sβ, see Meerschaert
and Scheffler (2002). As inverse of Sβ, E(t) is β-selfsimilar.

ii) The extremal claim process Y (t) = {∨Xk : Tk ≤ t} =
N(t)
∨

k=1
Xk. In

view of assumption a) there exist norming constants B(n) ∼ n1/αLX(n)

such that
[nt]
∨

k=1

Xk

B(n)
converges weakly to an extremal process Yα(t)

with Frechet marginal df, i.e. P (Yα(t) < x)Φt
α(x) = exp−tx−α.

Consequently,

Yn(t) :=
N(nt)
∨

k=1

Xk

B(b̃(n))
=⇒ Yα(E(t)).
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Below we use the
β

α
-selfsimilarity of the compound extremal process

Yα(E(t)) (see e.g. Pancheva et al. 2003).

iii) The accumulated claim process S(t) =
N(t)
∑

k=1

Xk. Using the same

norming sequence as above we observe that

Sn(t) :=

N(nt)
∑

k=1

Xk

B(b̃(n))
=⇒ Zα(E(t)).

Here Zα is an α-stable Levy process and the composition Zα(E(t)) is
β

α
-selfsimilar.

iv) The risk process R(t) = c(t) − S(t). Here u := c(0) is the initial
capital and c(t) denotes the premium income up to time t, hence it is
an increasing curve. We assume c(t) right-continuous.

Note, the extremal claim process Y (t) and the accumulated claim process

S(t) need the same time-space changes ζn(t, x) =

(

nt,
x

B(b̃(n))

)

to achieve

weak convergence to a proper limiting process. In fact, {ζn} makes the
claim sizes smaller and compensates this by increasing their number in the
interval [0, t]. Both processes Yn(t) and Sn(t) are generated by the point

process Nn =

{(

Tk

n
,

Xk

B(b̃(n))

)

: k ≥ 1

}

. With the latter we also associate

the sequence of risk processes Rn(t) =
c(nt)

B(b̃(n))
− Sn(t). Let us assume

additionally to a)–c) the condition

d)
c(nt)

B(b̃(n))

w
→ c0(t), c0 increasing curve with c0(0) > 0.

Under conditions a)–d) the sequence Rn converges weakly to the risk process
(cf Furrer et al. 1997) Rα,β(t) = c0(t)−Zα(E(t)) with initial capital u0 = c0(0).
Using the Rα,β-approximation of the initial risk process R(t), when time and
initial capital increase with n, we next obtain upper (ψ̄) and lower(ψ) bound for
the ruin probability Ψ(c, t) : P (inf0≤s≤tR(s) < 0). Let Zα(1) and E(1) have df’s
Gα and Q, resp. Then we have:



Upper and Lower Bounds for Ruin Probability 321

ψ(c0, t) := P ( inf
0≤s≤t

Rα,β(s) < 0)

≤ P ( sup
0≤s≤t

Zα(E(s)) > u0)

≤ P (Zα(E(t)) > u0)

=

∞
∫

0

Q̄(

(

u0

xt
β

α

)α

)dGα(x) =: ψ̄(c0, t)

Here Q̄ = 1 −Q. On the other hand

ψ(c0, t) ≥ P (Yα(E(t)) > c0(t))

=

∞
∫

0

Q̄(

(

c0(t)

xt
β

α

)α

)dΦα(x) =: ψ(c0, t)

Here we have used the self-similarity of the processes Zα, Yα and E. Thus, finally
we get

ψ(c0, t) ≤ ψ(c0, t) ≤ ψ̄(c0, t)

Remember, our initial insurance model was described by the point process N
with the associated risk process R(t). We have denoted the corresponding ruin
probability by Ψ(c, t) with u = c(0). Then

Ψ(c, t) = P



 inf
0≤s≤t

{c(s) −

N(s)
∑

k=1

Xk} < 0





= P



 inf
0≤s≤ t

n







c(ns)

B(b̃(n))
−

N(ns)
∑

k=1

Xk

B(b̃(n))







< 0





Now let initial capital u and time t increase with n → ∞ in such a way that
u

B(b̃(n))
= u0,

t

n
= t0. We observe that under conditions a) – d) we may

approximate
Ψ(c, t) ≈ ψ(c0, t0)
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and consequently for u and t “large enough”

(4) ψ(c0, t0) ≤ Ψ(c, t) ≤ ψ̄(c0, t0)

3. Examples

Assume that our model is characterized by α = 0.5, i.e. the df of Zα(1) is

the Levy df Gα(x) = 2

(

1 − Φ

(

√

1

x

))

. Here Φ is the standard normal df.

We suppose also that the random variable E(1) is Exp(1)-distributed, namely
Q(s) = 1 − e−s, s ≥ 0. Further, let us take the income curve c0 to be of the

special form c0(t) = u0 + t
β

α c, c positive constant, that agrees with the self-
similarity of the process Zα(E(t)). Now the upper bound depends on (u0, t0, β)
and the lower bound depends on (u0, t0, β, c). We calculate the bounds ψ and ψ̄

in two cases α > β = 0.25 and α < β = 0.75 by using MATLAB7. The results
of the calculations show clearly that in case β > α, when “large” claims arrive
“often”, the bounds of the ruin probability are larger than in the case β < α,
even in small time interval.

Note, if we choose the income curve in the above special form, we may
calculate the ruin probability ψ(c0, t0) in the approximating model exactly, namely

ψ(c0, t0) = P ( inf
0≤s≤t0

{u0 + s
β

α c− Zα(E(s))} < 0)

= P ( inf
0≤s≤t0

{s
β

α (c− Zα(E(1)))} < −u0)

= P ( inf
0≤s≤t0

{s
β

α (c− Zα(E(1)))} < −u0, c− Zα(E(1)) < 0)

= P (t
β

α

0 (c− Zα(E(1))) < −u0, c− Zα(E(1)) < 0)

= P (Zα(E(1)) > c+
u0

t
β

α

0

)

=

∞
∫

0

Q̄(





c0(t0)

xt
β

α

0





α

)dGα(x)

Below we give graphical results related to the computation of ψ(c0, t0) ,
ψ(c0, t0) and ψ̄(c0, t0) in the 6 cases: c=0.1, c=1, c=10 when α = 0.5 and
β = 0.25 β = 0.75.
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4. Graphics of ψ(c0, t0), ψ(c0, t0) and ψ̄(c0, t0)
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Figure 1: α = 0.5, β = 0.25, c = 0.1
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Figure 2: α = 0.5, β = 0.25, c = 0.5
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Figure 3: α = 0.5, β = 0.25, c = 1.0
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Figure 4: α = 0.5, β = 0.75, c = 0.1



Upper and Lower Bounds for Ruin Probability 325

0.5
1

1.5
2

2
4

6
8

10
0

0.2

0.4

0.6

0.8

time rangemoney in begin

Figure 5: α = 0.5, β = 0.75, c = 0.5

0.5
1

1.5
2

2
4

6
8

10
0

0.2

0.4

0.6

0.8

time rangemoney in begin

Figure 6: α = 0.5, β = 0.75, c = 1.0
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