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STABILITY OF THE INVENTORY-BACKORDER PROCESS
IN THE (R,S) INVENTORY/PRODUCTION MODEL

Zahir Mouhoubi Djamil Aissani

The aim of this paper is to obtain the sufficient conditions for the uniform
ergodicity and the strong stability of the inventory-backorder process in a
single-item, single location, (R, S) inventory/production model with limited
capacity of production per period and uncertain demands. In this order
some intermediate results are established and an overview about the main
stability methods for stochastic processes and the performance measure in
the inventory models are also considered.

1. Introduction

A stochastic inventory models are generally a complex system which includes
many parameters which can be deterministic or stochastic. The first contribution
to analyze the inventory model under the deterministic demand is published in
1913 by F.W. Harris [4]. The research concerning the inventory model under
assumption that the demand is a stochastic process were considered earlier by
Arrow, Harris and Marsschak [17]. It is well known that the general inventory
model is usually depend on a large class of parameters and so the real system
is often generally considered as a complex system which depends in complicated
way on its parameters. It is out put to precise that the inventory models are
the first stochastic models for which the qualitative property of monotonicity is
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established [9, 19]. Thus, Boylan have proved, in 1969, that the solution of the
optimal inventory equation, which determines the dynamic of the model, depends
continually on its parameters including the demand distribution which is the main
parameter [2].

Usually, the performance measures of inventory systems are generally calcu-
lated in terms of cost, which depends on the parameter of the model, and recently
Chen and Zheng (1997) have showed that the inventory cost in an (R, s, S) model
is relatively insensitive to the changes in D = S−s. However, in certain industries,
customer waiting times, backorder or shortfall level have become more important
as performance measure [12, 11]. Unfortunately, the parameter’s system are
not often known exactly because they are obtained by statistical methods from
empirical data. Therefore, the analysis of the performance measure (depending
on the parameter of the model) of this type of complex systems don’t allow us to
obtain explicitly analytical formula. Also, if we are able to establish analytical
results they are not generally useful in practice.

For this, we try usually to replace the complex system, by an other which is
more simpler in structure and/or component, and close to it in some particular
sense. So the real complex system can be considered as a perturbed of some
parameters of the simpler one which may be considered that is the ideal system.
However, in order to justify these approximations and estimate the resultant
error, it is of interest to precise the kind and the type of this perturbation and
so the stability problem arises. In particular, the stability problem in inventory
model theory arises to establish the domain within which an ideal inventory
system may be considered as a good approximation, in some sense, to the real
complex inventory system under consideration.

The previous approximation must be precise in what sense that is means.
For this, various methods to investigate the stability problem are developed. The
first type of methods which are considered concerns the quantitative stability of
stochastic sequence as the metric method [21], test function method [8], method
of the proximity points [7], the renevating events or renewal method [1], the
weak convergence method [16] applied for queuing system, stability method of
nonhomogeneous discret Markov chain with continuous time [20], the method
of the uniform stability [6] applied for the finite irreductible Markov chain and
the strong stability method [10] for homogeneous Markov chain in general state
space. The second type of existing methods concerns the qualitative stability as
the stochastic stability [13], the stability and continuity of denumerable Markov
chains method [3] and the method of the perturbation of a special form [5, 18].

In this paper, we established the sufficient conditions for the qualitative
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property of the strong stability of the inventory backorder process considering
under an (R,S) inventory/production model with uncertain demands in which
a production capacity is limited per period and generally random leadtime of
replenishment. The treatments’s cause of this type of model is suggested by
Maasaaki Kijima and Tetsu Takimoto [12].

Therefore, our strong stability investigation, and in contrast to other methods
such that are cited previously, allow us to obtain the error of approximation of
the stationary and non stationary characteristics for two inventory-production
backorder processes considered in (R,S) inventory-production model (Σ) (ideal
model) and (Σ̃) (real model) under different demand distribution. Namely, we
are interesting about the effect of perturbation of the total demand distribution
on the behavior of the inventory-production backorder process.

This paper is organized as follows: in section 2., we give a briefly description
of the (R,S) inventory/production model with uncertain demands in which a
capacity production is limited per period. In particular, we will interesting about
the inventory-backorder process. In the third section we introduce the strong
stability approach and all some notations which we need in this paper. Sections
4. and 5. are avoided to compute the transition kernel and to establish ergodicity
condition respectively of the inventory backorder process. The strong stability
and the uniform ergodicity of the backorder process is established in section 6..
Moreover, the rate of convergence of the t-fold power to the stationary projector
of the process is also obtained. Finally, we give a concluding remarks where we
specify some research perspectives.

2. Description of the model

We consider the single-item, single location, (R,S) inventory/production model
(Σ) with limited capacity of production per period and uncertain demands. Let
us fix R = 1 in order to define the time unit appropriately and the time interval
]n − 1, n] is called the n-th period. Let Dn represent the total demand during
period n. When sufficient stock is available for the demand, it is served at the
end period. Otherwise the available stock is supplied, the remaining demand is
backordered and the customer wait until the demand is fully satisfied. We assume
there are an infinite waiting room for the waiting customers and they are served
on an FCFS basis. Moreover, the inventory position IP is reviewed at the end
of each period (at the beginning of the next period) and a replenishment order
is placed to the production system in order to raise the IP to the fixed level
S. Then, we introduce the following basic notations, which have needed in the
sequel of this section. First S, In, Bn and Jn are the order-up-to-level which
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is strictly positive, physical inventory level, backorder and inventory/backorder
level which is equal to In − Bn, respectively, at the end of period n. Moreover,
we denote c the positive fixed capacity production. Replenishment orders are
produced in the production system with a finite capacity c and are delivred at
the end each period, if any, to satisfy the customer demand. For more details
about the structure and the policy of this model, we have to consult [12, 11].

Assume that Dn, n = 0, 1, . . . are an independent identically distributed
nonnegative, integer-valued random variables with common probabilities

dk = P(D1 = k), k = 0, 1, . . .

Let us consider another (R,S) inventory-production model (Σ̃) with the same
structure (limited capacity c of production and random leadtime), but with
different demands D̃n, n = 0, 1, . . . having the common probability

d̃k = P(D̃1 = k) k = . . . , 0, 1, . . .

Let us consider J = {Jn : n = 0, 1, . . .} and J̃ = {J̃n : n = 0, 1, . . .} the embedded
Markov chains corresponding to the on-hand backorder level at the end of periods
and we denote by P and Q their respective transition operators and by E their
common state space.

3. Notations and definitions

We notice that all notations used in this paper are introduced in many references
[10, 14, 15] and adapted for the homgeneous discrete non finite Markov chain.

Let us consider J = (Jn, n ∈ N) an homogeneous Markov chain taking values
in a measurable state space E = {. . . ,−2,−1, 0, 1, . . . , S} and defined on the
phase space (E, E) where E is the countably algebra generated by the singletons
of the set E. Moreover, we assume that the chain X have a regular transition
kernel P (x,A), x ∈ E, A ∈ E with a unique and finite stationary distribution
π.

Furthermore, we provide the space mE = {µj}j∈E of finite measures on the
σ-algebra E with some weight norm ‖.‖v which have the following form

(1) ‖µ‖v =

S∑

j∈E

v(j)|µj | =

S∑

j=−∞

v(j)|µj |

where v is a E-measurable function bounded below by a positive constant (not
necessary finite), i.e, inf i∈E v(i) = k > 0. So it is obvious that the subspace
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M = {µ ∈ mE : ‖µ‖β < ∞} has a Banach space structure with respect to the
norm ‖.‖v .

For all measure µ = (µj)j∈E belonged to mE , then the induced corresponding
norms in the space J of measurable E-function on E and the space B of linear
operators on M to M have, respectively, the following form

‖f‖v = sup
j∈E

|f(j)|

v(j)
∀f ∈ J

and

‖Q‖v = sup
j∈E

1

v(j)

+∞∑

i=0

|Q|ijv(i) ∀Q ∈ B

The action of each transition kernel Q ∈ B on µ = (µj)j∈E ∈ mE and f ∈ J , is
defined as follows

(µQ)i =
∑

j∈E

Qijµj ∀i ∈ E

and
Qf(i) =

∑

j∈E

Qijf(j)∀i ∈ E

We introduce also the operator f ◦µ defined on E×E as follows: for all (i, {j}) ∈
E × E , we have

f ◦ µ(i, {j}) = f(i)µ({j}) = f(i)µj

Moreover, we denote the product PQ of two transition kernels P and Q, the
kernel defined by

(P.Q)ij =
∑

k∈N

PikQkj ∀(i, j) ∈ E × E.

Remark 1. See for example N.V.Kartashov in [10] and D. Revuz for the
construction of the trial (test or Lyapounov) function for different classes of
Markov chains.

We denote the stationary projector of the chain J by Π = 1 ◦ π where 1 est
the function identically equal to the unit.

Definition 1. The chain J is said to be uniformly ergodic with respect to the
norm ‖ · ‖v if it has a unique invariant measure π and

lim
t→+∞

‖t−1

t∑

n=1

P t − Π‖v = 0
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Let us denote the stationary projector Π of the chain X by Π = 1 ◦ π, where
π is the invariant probability measure of the transition kernel P of the chain X.

Definition 2. The chain X is said to be uniformly ergodic with respect to
the norm ‖.‖v if it has a unique invariant measure π and

lim
t→+∞

‖t−1

t∑

n=1

P t − Π‖v = 0

Definition 3. The chain X is said to be strongly stable with respect to the
norm ‖.‖v if

1) ‖P‖v < ∞

2) Each transition kernel Q in some neighborhood {Q : ‖Q − P‖v < ε}, has
a unique invariant measure ν = ν(Q) and we have ‖π − ν‖v −→ 0 as
‖Q − P‖v −→ 0 uniformly in this neighborhood.

The main purpose of this paper is to investigation the sufficient conditions of the
strong stability of our backorder process. In this order, we will apply the strong
stability criterion given by the following theorem 1.

Theorem 1 ([10], Theorem 2.3, p. 29) Assume that a Markov chain X

with the regular transition operator P has a unique invariant probability measure
π that satisfies the following conditions

A) ‖P‖v < ∞

B) There exist a natural n, a measure α ∈ mE+, a function h ∈ J + such that
πh > 0, α1 = α(E) = 1, αh > 0 and the residual transition kernel

T = P n − h ◦ α

is nonnegative.

Then, the Markov chain X is strongly stable and aperiodic with respect to the
norm ‖.‖v if and only if we have

(T) ‖T m‖v ≤ ρ for some m ≥ 1, ρ < 1, where the kernel T is defined
according to the condition (B) for the same n, α and h from condition (B).

Furthermore, the uniform ergodicity and aperiodicity of the chain X under
condition (A) imply that condition (T ) is fulfilled for all n, α and h satisfying
condition (B).

Remark 2. Under condition ‖P‖v < ∞, the concept of the strong stability
and uniform ergodicity are equivalent. For more details, we may consult the
monograph of N.V. Kartashov [10].
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4. Transition kernel

We start our investigation by computing the regular transition kernel P (x,A) of
the backorder Markovian process J . In this order, from Kijima and Takimoto
[12] we have the following recursive equation

(2) Jn+1 = Jn + min{c, S − Jn} − Dn+1

Since, Jn+1 depends only on Jn and Dn+1 where Dn+1 is independent of n, then
the inventory-backorder process {Jn} is an homogeneous Markovian process with
a phase space (E, E) where the state space E = {. . . ,−2,−1, 0, 1, . . . , S} and E
is the σ-algebra generated by the singletons of E.

Let us compute the one step transition probabilities. For this, suppose that
at tn = nR we have Jn = i, then we get

Pij = P(Jn+1 = j | Jn = i) = P(Dn+1 = i − j + min(c, S − i)), ∀(i, j) ∈ E × E.

So if we denote by di = P(D1 = i) for all i ∈ E, thus we have to consider some
cases:

a) If i ≥ S − c, then we have

Pij = P(Dn+1 = S − j) = dS−j.

b) If i < S − c, then we have

Pij = P(Dn+1 = i − j + c).

Thus, we distinguish the following two cases:

for j ≤ i + c, we obtain

Pij = P(Dn+1 = i − j + c) = di−j+c.

For j > i + c, we get

Pij = P(Dn+1 = i − j + c) = 0.

In other way, we have for i < S − c

Pij = P(Dn+1 = i − j + c) =





di−j+c j ≤ i + c

0 j > i + c.
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Hence, we get

Pij =





dS−j i ≥ S − c j ∈ E

di−j+c i < S − c j ≤ i + c

0 i < S − c j > i + c.

Finally, the transition kernel P of the homogeneous inventory backorder process
J is represented by the following infinite transition matrix which has the following
form:

(Pij) =

. . . o . . . c − 1 c . . . S − 2 S − 1 S
...

... . . . . . .
...

... . . .
...

...
...

0 . . . dc . . . d1 d0 . . . 0 0 0
1 . . . dc+1 . . . d2 d1 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...
S − c − 1 . . . dS−1 . . . dS−c dS−c−1 . . . d1 d0 0

S − c . . . dS . . . dS−c+1 dS−c dS−c−1 . . . d1 d0

S − c + 1 . . . . . . dS dS−c+1 dS−c dS−c−1 . . . d1 d0

...
...

...
... . . .

...
...

...
...

...

S
... . . . dS dS−c+1 dS−c dS−c−1 . . . d1 d0

5. Ergodicity conditions

In order to establish conditions for the ergodicity of the embedded Markov chain
J , we need to use the following change of variables

(3) Xn = S − Jn − Dn for all n = 0, 1, . . .

and
ξn = Dn − c for all n = 0, 1, . . . .

Then, we get the following well known random walk recursive equation

(4) Xn+1 = max(0, Xn + ξn) for all n = 0, 1, . . . .



Stability of the Inventory-Backorder Process . . . 263

Then, X = {Xn, n = 0, 1, . . .} is a stochastic process with the infinite space
state {0, 1, . . .}. Since (Dn)n is the independent identically distributed random
variables, so the (ξn)n is also an iid random variables. In this case, the process X

is called the Lindley process and it is easily showed extensively in the literature
[1], and especially in queuing theory, that under the assumption E(ξ1) < ∞
the process X is ergodic if and only if the following condition E(ξ1) < 0 hold.
Consequently, the process X is ergodic under the following condition

(5) c > E(D1).

From equation (3) and by the fact that Dn : n = 0, 1, . . . is the independent
identically distributed random variables, so we deduce that X admits a stationary
distribution if and only if J admits also one. Therefore, we obtain that the
homogeneous Markov process J is ergodic under the same condition (5).

Remark 3. This condition is meaningful because the stability of the model
is guaranteed if the capacity production is greater than the mean of the demand
D1.

In other words, the homogeneous Markov chain J admits a unique stationary
distribution π = {π}j∈E ∈ E corresponding to the unique solution of the following
linear infinite equation’s system

(6)





πP = π

∑
j∈E

πj =
S∑

j=−∞
πj = 1.

6. Strong stability analysis

We consider the test function

v : E −→ R
∗
+

j −→ v(j) = β−j ,

where β > 1 is a parameter and E = {. . . ,−2,−1, 0, 1, . . .} is the measurable state
space of the Markov chain J . We denote by E the countably algebra generated
by the singletons of the set E. Hence, the special weight variation norm given by
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relation (7) in the space mE of the finite measures µ = {µj}j∈E has the following
form

(7) ‖µ‖v =
∑

j∈E

v(j)|µ|({j})| =
∑

j∈E

β−j |µj| =

S∑

j=−∞

β−j|µj |.

We also assume the following cramér condition

(8) ∃a > 0 : E[xD] < ∞.

In order to establish the strong stability of the embedded homogeneous Markov
chain J , under the same condition (5), with respect to the norm ‖.‖v where
v(j) = β−j for all j ∈ E and β belonging to a convenient interval, we need some
intermediate results.

Lemma 1. Assume that the following conditions (5) and (8) hold. Then it
exists ω ∈]1,+∞[ such that for all x ∈]1, ω[ we have E(ωD1−c) < 1, i.e.,

+∞∑
l=0

ωldj

ωc
< 1.

P r o o f. Let us consider the E-measurable function g defined on [0,+∞[ by

g(x) = E(xD1−c) =
+∞∑
l=0

xl−cdj . Then, according to condition (8), the function g

is continous and diffentiable in [0, a[. Furthemore, according to condition (5) we
have g′(1)) = E(D1) − c < 0. Moreover, it is not hard to see that g is a convex
function and since g(1) = 1, then it exists ω ∈]1,+∞[ such that g(ω) = 1 and for
all x ∈]1, ω[ we have g(x) < 1. � Now let us consider the measure α defined
on the countably generated σ-algebra E by

∀ j ∈ E : α({j}) = αj = dS−j .

Moreover, we introduce the E-measurable function h defined as follows h(i) =
hi = I{i≥S−c}, explicitly given as below

h(i) = hi =

{
1 i ≥ S − c

0 i < S − c.

Then, we have the following decomposition of the transition kernel P of the
Markovian chain J .



Stability of the Inventory-Backorder Process . . . 265

Lemma 2. The transition kernel P of the Markovian process J admits the
following canonical decomposition

(9) P = T + h ◦ α

where the residual kernel T is a nonnegative operator and further α1 = 1.

P r o o f. Setting T = (Tij), then we have

Tij = T (i, {j}) = Pij − hiαj =

{
Pij − dS−j i ≥ S − c

Pij i < S − c.

Hence, we obtain

Tij = Pij − hiαj =





0 i ≥ S − c j ∈ E

di−j+c i < S − c j ≤ i + c

0 i < S − c j > i + c

Consequently, T is a nonnegative operator and P = T + h ◦ α.

Furthermore, we have α1 =
S∑

j=−∞
αj =

+∞∑
l=0

dl = 1. �

Lemma 3. Under conditions of lemma 1, we get αh > 0 and πh = d−1

0
πS >

0.

P r o o f. We have

αh =

S∑

j=S−c

α({j})h(j) =

S∑

j=S−c

dS−j =

c∑

j=0

dl > 0.

Moreover, the system of linear equations (6), leads to the following identity

(10) πh =

S∑

j=−∞

hjπj = d−1

0
πS.

Moreover, if πh = 0 then we obtain πS = 0 and by induction we obatin πi = 0
for all i ∈ E which is impossible and so πh > 0. Hence, the proof is finished. �
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Lemma 4. Suppose that conditions of lemme 1 hold. Then, it exists ρ =
ρ(β) ∈ [0, 1[ such that

Tv(k) ≤ ρv(k) for all k ∈ E and β ∈]1, ω[,

where

(11) ρ(β) = E(βD1−c) =
E(βD1)

βc
.

P r o o f. We have to compute Tv(k) for all k ∈ E. Indeed, we have for all k ∈ E,

Tv(k) =
S∑

j=−∞
v(j)Tkj and some cases must be considered.

1) If k < S − c, then we get

Tv(k) =
k+c∑

j=−∞

β−jdk−j+c =
+∞∑

l=0

βl−k−cdl

= β−k

∞∑

l=0

βl−cdl = v(k)

∞∑

l=0

βl−cdl

2) If k ≥ S − c, then Tv(k) = 0 because Tkj = 0 for all k ≥ S − c.

Putting ρβ) = E(βD1−c), we obtain Tv(k) ≤ ρ(β)v(k) for all k ∈ E.
Moreover, according to lemma 1, we have ρ(β) < 1 for all β ∈]1, ω[. Finally,

we have established that Tv(k) ≤ ρ(β)v(k) for all k ∈ E where 0 < ρ(β) < 1 and

ρ(β) = E(βD1−c) =
E(βD1)

βc
.

So the result is established. �

Proposition 1. Under conditions of lemma 1, we have ‖T‖v ≤ ρ = ρ(β).

P r o o f. Using the inequality Tv(k) ≤ ρv(k) for all k ∈ E, then we have

‖T‖v = sup
k∈E

1

v(k)

S∑

j=−∞

T (k, {j})v(j) = sup
k∈E

1

v(k)

S∑

j=−∞

Tkjv(j)

= sup
k∈E

1

v(k)
Tv(k) ≤ sup

k∈E

1

v(k)
ρv(k) = ρ.

�

The following result establishes that the transition operator P of the chain J

is bounded with respect to the weight variation norm ‖.‖v .
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Lemma 5. Under conditions of lemma 1, the transition operator P is bounded
with respect to the norm ‖.‖v and we have

‖P‖v = βcρ(β) < ∞,

where ρ = ρ(β) is given by the identity (11).

P r o o f. Using simple computation, the result is easy to establish. Indeed,

‖P‖v = sup
k∈E

βk

S∑

j=−∞

Pkjβ
−j = max(A,B),

where

A = sup
k≥S−c

βk

S∑

j=−∞

Pkjβ
−j = sup

k≥S−c

βk

S∑

j=−∞

β−jdS−j

= sup
k≥S−c

βk

+∞∑

l=0

βl−Sdl =

+∞∑

l=0

βldl

= βcρ

and

B = sup
k<S−c

βk

S∑

j=−∞

Pkjβ
−j = sup

k<S−c

βk

k+c∑

j=−∞

β−jdi−j+c

= sup
k<S−c

βk

+∞∑

l=0

βl−k−cdl =

+∞∑

l=0

βl−cdl = ρ

Therefore, the result is established. �

The next result establishes the strong stability of the embedded Markov chain
J with respect to the norm ‖ · ‖v in the (R,S) model with uncertain demand,
limited production capacity per period and stochastic leadtime order.

Theorem 2. Suppose that conditions of lemme 1 are satisfied. Then, the
discrete inventory bachorder process J in (R,S) inventory-production model with
uncertainty demand, limited capacity production and random leadtime is uniformly
ergodic, strongly stable and aperiodic, with respect to the norm ‖ · ‖v for all
β ∈]1, ω[ where ω is defined in lemma 1 and v(k) = β−k for all k ∈ E.
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P r o o f. Using lemma 1, 2, 3, 4 and 5, then the strong stability and the
aperiodicity of the chain J are directly deduced from theorem 1. Moreover, from
the remark 2 the uniform ergodicity of the Markovian chain J is immediately
established. �

Remark 4. The rate of convergence ρ(β) decreases to zero when c −→ +∞.
Then, we will expect that the bound of the uniform ergodicity and the strong
stability estimates will be kind when the capacity production c is sufficiently
greater. In this case, the inventory/production model can be approximated by
the classical inventory model (unlimited capacity). The later will be the subject
of an other paper.

Concluding remarks

In this paper, we have investigated the uniform ergodicity and the strong stability
of the backorder process in the (R,S) model with randomness demand, limited
production capacity per period and with stochastic leadtime order. However, the
convergence of the transition operator of the chain to the stationary projector,
the estimate of the rate of convergence and some stability estimates of the
stationary and non stationary characteristics of the perturbed process under the
perturbation of the demand distribution will be presented in a separate paper.
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