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STUDIA MATHEMATICA

BULGARICA

ON THE MOVING BOUNDARY HITTING PROBABILITY

FOR THE BROWNIAN MOTION

Dobromir P. Kralchev

Consider the probability that the Brownian motion hits a moving two-sided
boundary by a certain moment. In some special cases we find formulae for
this probability.

1. Introduction

Let Bt be the Brownian motion (drift = 0, volatility = 1), B0 = 0;
T > 0; upper(t) and lower(t) be two functions defined at least for t ∈ [0;T ],
lower(t) < upper(t),∀t ∈ [0;T ] , lower(0) ≤ 0 ≤ upper(0); τ be the first
hitting moment, i.e. τ = inf{t ∈ [0;T ] : Bt = upper(t) or Bt = lower(t)}
(τ = T , if the set is empty).

We interpret T as a horizon and are interested in the probabilities of the
events U = {Bτ = upper(τ)} and L = {Bτ = lower(τ)}.

In 1960 T. W. Anderson [1] discovered the crossing probabilities for rectilin-
ear boundaries with no horizon — two straight lines that are parallel or cross
to the left of the origin. In 1964 A. V. Skorohod [2] found the probability that
the motion will get out of the domain through a little “door” at the horizon; his
formula holds for rectilinear boundaries. In 1967 L. A. Shepp [3] found a formula
for the expectation of the first hitting time for a two-sided symmetric square-root
boundary with no horizon. In 1971 A. A. Novikov [4] solved the same problem
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for a one-sided square-root boundary. In 1981 A. A. Novikov [5] published a for-
mula for the probability that the motion will get out of the domain through the
horizon; it holds for curvilinear boundaries that are close to each other. A little
later in the same year A. V. Mel’nikov and D. I. Hadz̆iev [6] published a solution
to a similar problem for Gaussian martingales. In 1999 A. Novikov, V. Frishling
and N. Kordzakhia [7] found approximate formulae for the crossing probabilities
both for a one-sided and a two-sided boundary with a horizon; they were able to
derive an exact formula for a one-sided and a two-sided symmetric square-root
boundary.

In the current paper we find formulae for P (U) and P (L) for parallel recti-
linear boundaries as well as for arbitrary square-root boundaries.

2. Calculation of P (U)

We have a random process starting at time 0 at point 0. Consider a diffusion
process starting at time t at point x instead and let v(t, x) = P (U), 0 ≤ t ≤ T ,
lower(t) ≤ x ≤ upper(t). So we may safely omit the inequality
lower(0) ≤ 0 ≤ upper(0), keeping this one: lower(t) < upper(t),∀t ∈ [0;T ].

Then (cf. [8], chapter 10) the function v(t, x) satisfies the conditions:

∂v

∂t
+

1

2
· ∂2v

∂x2
= 0

v(T, x) = 0, ∀x ∈ (lower(T );upper(T ))
v(t, lower(t)) = 0, ∀t ∈ [0;T ]
v(t, upper(t)) = 1, ∀t ∈ [0;T ]

(1)

The equation is simple enough, but the boundary is too complicated. To get a
rectangular boundary, set

h(t) = upper(t) − lower(t) > 0, v(t, x) = v1

(
t,

x − lower(t)

h(t)

)
.

Then the function v1(t, x) is a solution to the problem:

∂v1

∂t
− h ′(t) . x + lower ′(t)

h(t)
· ∂v1

∂x
+

1

2
· 1

h2(t)
· ∂2v1

∂x2
= 0

v1(T, x) = 0, ∀x ∈ (0; 1)
v1(t, 0) = 0, ∀t ∈ [0;T ]
v1(t, 1) = 1, ∀t ∈ [0;T ]

(2)
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2.1. Two “parallel” curves: h(t) = c = const. (c > 0)

Therefore h ′(t) = 0 and the equation takes this form:

∂v1

∂t
− lower ′(t)

c
· ∂v1

∂x
+

1

2c2
· ∂2v1

∂x2
= 0

2.1.1. Two parallel straight lines: lower(t) = bt + c1

Then upper(t) = bt + c2 , c2 > c1 , c = c2 − c1 > 0, lower ′(t) = b

and the equation becomes:

∂v1

∂t
− b

c
· ∂v1

∂x
+

1

2c2
· ∂2v1

∂x2
= 0

Let κ =
1

2c2
> 0 , λ =

b

c
. Then we have to solve the problem:

∂v1

∂t
− λ · ∂v1

∂x
+ κ · ∂2v1

∂x2
= 0

v1(T, x) = 0, ∀x ∈ (0; 1)
v1(t, 0) = 0, ∀t ∈ [0;T ]
v1(t, 1) = 1, ∀t ∈ [0;T ]

We would prefer to have initial conditions rather than final ones, so we set

v1(t, x) = v2(T − t, x)

and reformulate the problem as follows:

− ∂v2

∂t
− λ · ∂v2

∂x
+ κ · ∂2v2

∂x2
= 0

v2(0, x) = 0, ∀x ∈ (0; 1)
v2(t, 0) = 0, ∀t ∈ [0;T ]
v2(t, 1) = 1, ∀t ∈ [0;T ]

Now the time horizon T takes part in the intervals only. We can get rid of it by
means of the following argument: when the value of T changes, only the domain
of the function v2(t, x) changes, not its values. Since T can be an arbitrary
positive number, we may assume that the function v2(t, x) is defined at least for
t ∈ [0;+∞):

κ · ∂2v2

∂x2
− λ · ∂v2

∂x
− ∂v2

∂t
= 0

v2(0, x) = 0, ∀x ∈ (0; 1)
v2(t, 0) = 0, ∀t ∈ [0;+∞)
v2(t, 1) = 1, ∀t ∈ [0;+∞)
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After the Laplace transformation V (p, x) = L[v2(t, x)] we get the problem:

κ . V ′′ − λ . V ′ − p . V = 0

V (0) = 0

V (1) =
1

p

(3)

(V is considered a function of x, and p is just a parameter.)

The characteristic equation is

κν2 − λν − p = 0

D = λ2 + 4κp > 0, because p > 0, so ν1, 2 =
λ ±

√
λ2 + 4κp

2κ
and

V (x) =

(
C1 . cosh

√
λ2 + 4κp . x

2κ
+ C2 . sinh

√
λ2 + 4κp . x

2κ

)
· exp

(
λx

2κ

)

From V (0) = 0 it follows that C1 = 0. Then from V (1) =
1

p
we get

C2 =
exp

(
− λ

2κ

)

p . sinh

√
λ2+4κp

2κ

·

Finally, we obtain the equality:

V (x) =
sinh

√
λ2+4κp . x

2κ

p . sinh

√
λ2+4κp

2κ

· exp

(
λ(x − 1)

2κ

)

So we have just proved the following theorem (where L−1 stands for the
reversed Laplace transformation):

Theorem 1. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0,

then P (U) = v(t, x), v(t, x) = v1

(
t,

x − bt − c1

c

)
, v1(t, x) = v2(T − t, x),

v2(t, x) = L−1 [V (p, x)] , V (p, x) =
sinh

√
λ2+4κp . x

2κ

p . sinh

√
λ2+4κp

2κ

· exp

(
λ(x − 1)

2κ

)
,

where κ =
1

2c2
, λ =

b

c
.
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Fortunately, the function V (p, x) can be explicitly transformed to the function
v2(t, x) and then back to v(t, x). According to [9], we have:

v2(t, x) = L−1 [V (p, x)] =
∑

pn

res
pn

V (p, x) exp(p t) =

=


 sinh λx

2κ

sinh λ

2κ

+ 2κπ

∞∑

n =1

(−1)n. n. sin(nπx). exp

�
− � κn2π2+ λ

2

4κ � t �
κn2π2+ λ2

4κ


 · exp

(
λ(x−1)

2κ

)

The value of the single addend must be considered equal to x, when λ = 0. This
addend comes from the residuum at p 0 = 0. The n-th addend in the sum comes
from the residuum at p n = −κn2π2 − λ2

4κ
, n ∈ N . Then

v1(t, x) = v2(T − t, x) =

=


 sinh λx

2κ

sinh λ

2κ

+ 2κπ

∞∑

n =1

(−1)n . n. sin(nπx). exp

� � κn2π2+ λ
2

4κ � (t−T ) �
κn2π2+ λ2

4κ


 · exp

(
λ(x−1)

2κ

)

Substituting κ and λ in the last expression, we get
 sinh(bcx)

sinh(bc)
+ 2π

∞∑

n=1

(−1)n . n. sin(nπx). exp � (n2π2+ b2c2) t−T

2c2 �
n2π2+ b2c2


 · exp {bc(x−1)}

Finally, the probability we are looking for is equal to

P (U) = v(t, x) = v1

(
t,

x − bt − c1

c

)

and can be found from the expression above.

Theorem 2. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0,

then P (U) = v(t, x) = e
b(x− bt− c

2 )
.


 sinh{b(x− bt− c

1
)}

sinh(bc)
+

+ 2π

∞∑

n =1

(−1)n . n . sin � nπ
x− bt− c

1

c � . exp � (n2π2+ b2c2) t−T

2c2 �
n2π2+ b2c2


 ,

where the single addend is equal to
x− c

1

c
, when b = 0.
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To check, let T → +∞; we can do this, because the series is convergent
uniformly with respect to T ∈ [t; +∞); thus we obtain the formula for the case,
when there is no horizon:

Corollary 1. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0
and there is no horizon, then

P (U) = v(t, x) =





e2b(x− bt− c
1
) − 1

e2bc − 1
for b 6= 0

x − c1
c

for b = 0

The formula for b = 0 is well known from the martingale theory. The formula
for b 6= 0 can be found (in different denotation) in [1] as Theorem 4.1 on page 175.

Again, let c1 → −∞ in Corollary 1; thus we get the solution for a one-sided
boundary with no horizon:

Corollary 2. If upper(t) = bt + c2 and there is no lower boundary and no

horizon, then

P (U) = v(t, x) =

{
e2b(x− bt− c

2
) for b > 0

1 for b ≤ 0

This result can be verified by means of Kendall’s famous formula.
Unfortunately, this technique does not work for Theorem 2: the series is not

uniformly convergent with respect to c1 ∈ (−∞;x0],∀x0 ≤ x − bt.

2.2. Square-root boundaries

Let lower(t) = a
√

t + γ + c0 , upper(t) = b
√

t + γ + c0 , b > a. Then the prob-
lem (2) takes the form:

∂v1

∂t
− 1

2(t + γ)
·
(

x +
a

b − a

)
· ∂v1

∂x
+

1

2
· 1

(b − a)2(t + γ)
· ∂2v1

∂x2
= 0

v1(T, x) = 0, ∀x ∈ (0; 1)
v1(t, 0) = 0, ∀t ∈ [0;T ]
v1(t, 1) = 1, ∀t ∈ [0;T ]

Remark: The number γ must be positive, because v(t, x) is defined for
t ∈ [0;T ] and upper(t) > lower(t),∀t ∈ [0;T ]. If the domain of the function changes,
the domain of γ will change respectively.

It is essential that the multiplier (t + γ) is raised to the same power in both
denominators; this happens for square-root boundaries only. That is why, by
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multiplying the equation by 2(t + γ) we can ensure that the variable t takes part
in only one coefficient:

2(t + γ) · ∂v1

∂t
−
(

x +
a

(b − a)

)
· ∂v1

∂x
+

1

(b − a)2
· ∂2v1

∂x2
= 0

We can get rid of the multiplier (t + γ) by means of a suitable substitution.
Let v1(t, x) = v2

(
1
2 ln(t + γ), x

)
; then the function v2(t, x) is a solution to the

following problem:

∂v2

∂t
−
(

x +
a

b − a

)
· ∂v2

∂x
+

1

(b − a)2
· ∂2v2

∂x2
= 0

v2

(
1
2 ln(T + γ), x

)
= 0, ∀x ∈ (0; 1)

v2(t, 0) = 0, ∀t ∈
[

1
2 ln γ; 1

2 ln(T + γ)
]

v2(t, 1) = 1, ∀t ∈
[

1
2 ln γ; 1

2 ln(T + γ)
]

Finally, let v2(t, x) = v3

(
− t + 1

2 ln(T + γ), x
)

in order to have an initial condition
instead of a final one.

− ∂v3

∂t
−
(

x +
a

b − a

)
· ∂v3

∂x
+

1

(b − a)2
· ∂2v3

∂x2
= 0

v3(0, x) = 0, ∀x ∈ (0; 1)

v3(t, 0) = 0, ∀t ∈
[
0; 1

2 ln(T + γ) − 1
2 lnγ

]

v3(t, 1) = 1, ∀t ∈
[
0; 1

2 ln(T + γ) − 1
2 lnγ

]

Again, we would prefer to search for v3(t, x) defined for t ∈ [0;+∞):

− ∂v3

∂t
−
(

x +
a

b − a

)
· ∂v3

∂x
+

1

(b − a)2
· ∂2v3

∂x2
= 0

v3(0, x) = 0, ∀x ∈ (0; 1)

v3(t, 0) = 0, ∀t ∈ [0;+∞)

v3(t, 1) = 1, ∀t ∈ [0;+∞)

Apply the Laplace transformation: V (p, x) = L[v3(t, x)]. Then

1

(b − a)2
· V ′′ −

(
x +

a

b − a

)
· V ′ − p · V = 0

V (0) = 0

V (1) =
1

p
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(V is considered a function of x, and p is just a parameter.)
This boundary value problem has a unique solution; the solution is an analyt-

ical function: V (x) =

∞∑

n= 0

cnxn. The differential equation turns into the following

equation for the coefficients of the series:

1

(b − a)2
(n + 2)(n + 1)cn+2 −

(
ncn +

a

b − a
(n + 1)cn+1

)
− p cn = 0, n ∈ N0;

cn+2 =
a(b − a)

n + 2
cn+1 +

(b − a)2(n + p)

(n + 2)(n + 1)
cn , n ∈ N0

We have to find c0 and c1 in order to specify the sequence (cn)∞n =0 . From V (0) = 0
it follows that c0 = 0. Let c1 = c, cn = cαn , n ∈ N0 . Then

α0 = 0, α1 = 1, αn+2 =
a(b − a)

n + 2
αn+1 +

(b − a)2(n + p)

(n + 2)(n + 1)
αn , ∀n ∈ N0;

V (x) = c .

∞∑

n =0

αnxn = c .

∞∑

n = 1

αnxn ; the unknown constant c can be found from

the boundary condition V (1) =
1

p
; it follows that c =

1

p .

∞∑

n =1

αn

· We have just

proved the following theorem:

Theorem 3. If lower(t) = a
√

t + γ + c0 , upper(t) = b
√

t + γ + c0 , b > a,

then P (U) = v(t, x) = v1

(
t,

x− c
0
−a

√
t+γ

( b− a)
√

t+γ

)
, v1(t, x) = v2

(
1
2 ln(t + γ), x

)
,

v2(t, x) = v3

(
− t + 1

2 ln(T + γ), x
)
, v3(t, x) = L−1 [V (p, x)] , where L−1 stands

for the reversed Laplace transformation, V (p, x) = c .

∞∑

n = 1

αnxn,

α0 = 0, α1 = 1, αn+2 =
a(b − a)

n + 2
αn+1 +

(b − a)2(n + p)

(n + 2)(n + 1)
αn , ∀n ∈ N0;

c =
1

p .

∞∑

n =1

αn

·

When a = 0, we can obtain an explicit formula for (αn)∞n =0 . Indeed, α0 = 0,

α1 = 1, αn+2 = b 2(n+p)
(n+2)(n+1) αn,∀n ∈ N 0; so α

2m
= 0,∀m ∈ N 0 .
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Let βm = α
2m+1

,∀m ∈ N 0; then β0 = 1, βm+1 =
b 2(2m + 1 + p)

(2m + 3)(2m + 2)
βm ,

i.e. βm =
b 2(2m − 1 + p)

(2m + 1)(2m)
βm−1 , hence βm =

b 2m

(2m + 1)!

m∏�
m = 1

(2m̃ − 1 + p) .

That is why, the following statement holds:

Corollary 3. If lower(t) = c0 , upper(t) = b
√

t + γ + c0 , b > 0, then

P (U) = v(t, x), v(t, x) = v1

(
t,

x − c0

b
√

t + γ

)
, v1(t, x) = v2

(
1
2 ln(t + γ), x

)
,

v2(t, x) = v3

(
− t + 1

2 ln(T + γ), x
)
, v3(t, x) = L−1 [V (p, x)] , where L−1 stands

for the reversed Laplace transformation, V (p, x) = c .

∞∑

m = 0

βmx2m+1,

β0 = 1, βm =
b 2m

(2m + 1)!

m∏�
m = 1

(2m̃ − 1 + p) , ∀m ∈ N; c =
1

p .

∞∑

m =0

βm

·

3. Calculation of P (L)

The only difference is that 0 and 1 change places in the boundary conditions
of (1). This change propagates through the sequence of substitutions.

3.1. Two parallel straight lines

Now (3) changes in this way:

κ . V ′′ − λ . V ′ − p . V = 0

V (0) =
1

p

V (1) = 0

After the substitution V (x) = W (1 − x) we get the problem:

κ .W ′′ + λ .W ′ − p .W = 0

W (0) = 0

W (1) =
1

p
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This is the same problem as (3), only λ has changed its sign. Then

W (x) =
sinh

√
λ2+4κp . x

2κ

p · sinh

√
λ2+4κp

2κ

· exp

(
λ(1 − x)

2κ

)
,

V (x) =
sinh

√
λ2+4κp . (1− x)

2κ

p · sinh

√
λ2+4κp

2κ

· exp

(
λx

2κ

)

and the following statement holds:

Theorem 4. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0,

then P (L) = v(t, x), v(t, x) = v1

(
t,

x − bt − c1

c

)
, v1(t, x) = v2(T − t, x),

v2(t, x) = L−1 [V (p, x)] , V (p, x) =
sinh

√
λ2+4κp . (1− x)

2κ

p · sinh

√
λ2+4κp

2κ

· exp

(
λx

2κ

)
,

where L−1 stands for the reversed Laplace transformation, κ =
1

2c2
, λ =

b

c
.

Theorem 5 can be deduced from Theorem 4 as Theorem 2 was deduced from
Theorem 1. Or we may notice that the changes in the formulae are equivalent
to swapping the lower and the upper boundary: we replace x − lower(t) with
upper(t) − x and vice versa as well as b with −b in Theorem 2.

Theorem 5. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0,

then P (L) = v(t, x) = e
b(x− bt− c

1 )
.


 sinh{b(bt+ c

2
− x)}

sinh(bc)
+

+ 2π

∞∑

n=1

(−1)n . n . sin � nπ
bt+ c

2
− x

c � . exp � (n2π2+ b2c2) t−T

2c2 �
n2π2+ b2c2


 ,

where the single addend is equal to
c
2
− x

c
, when b = 0.

Corollary 4. If lower(t) = bt + c1 , upper(t) = bt + c2 , c = c2 − c1 > 0
and there is no horizon, then

P (L) = v(t, x) =





e−2b( bt+ c
2
−x) − 1

e−2bc − 1
for b 6= 0

c2 − x
c

for b = 0
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Corollary 5. If lower(t) = bt + c1 and there is no upper boundary and no

horizon, then

P (L) = v(t, x) =

{
e2b(x− bt− c

1
) for b < 0

1 for b ≥ 0

3.2. Square-root boundaries

Theorem 6. If lower(t) = a
√

t + γ + c0 , upper(t) = b
√

t + γ + c0 , b > a,

then P (L) = v(t, x) = v1

(
t,

x− c
0
− a

√
t+γ

( b− a)
√

t+γ

)
, v1(t, x) = v2

(
1
2 ln(t + γ), x

)
,

v2(t, x) = v3

(
− t + 1

2 ln(T + γ), x
)
, v3(t, x) = L−1 [V (p, x)], where

V (p, x) = W (p, 1 − x), W (p, x) = c .

∞∑

n = 1

αnxn, c =

(
p .

∞∑

n = 1

αn

)−1

,

α0 = 0, α1 = 1, αn+2 =
− b(b − a)

n + 2
αn+1 +

(b − a)2(n + p)

(n + 2)(n + 1)
αn , ∀n ∈ N0.

Corollary 6. If lower(t) = a
√

t + γ + c0 , upper(t) = c0 , a < 0, then

P (L) = v(t, x), v(t, x) = v1

(
t,

x− c
0
− a

√
t+γ

− a
√

t+γ

)
, v1(t, x) = v2

(
1
2 ln(t + γ), x

)
,

v2(t, x) = v3

(
− t + 1

2 ln(T + γ), x
)
, v3(t, x) = L−1 [V (p, x)] , where

V (p, x) = W (p, 1 − x), W (p, x) = c .

∞∑

m = 0

βmx2m+1, c =

(
p .

∞∑

m =0

βm

)−1

,

β0 = 1, βm =
(− a) 2m

(2m + 1)!

m∏�
m = 1

(2m̃ − 1 + p) , ∀m ∈ N.

4. Numerical experiments

In order to return to the original formulation of the problem (B0 = 0, i.e.
starting moment = 0, initial position = 0), one has to put t = 0 and x = 0 in our
formulae; for square-root boundaries γ must be positive.

The formulae were programmed and tabulated. The results were compared
with the values of the crossing probabilities calculated by means of the Monte
Carlo method and dynamical programming. The idea of the last method is to
calculate the values of v(t, x), beginning from the horizon and moving to the
starting moment step by step; for each t an array of values of v(t, x) is calculated
using the array of the preceding step.

The three results agree with one another. So we have a numerical confirmation
of our formulae besides the theoretical one. The algorithm that uses the formulae
is the fastest one.
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5. Conclusion

The propositions above give a comprehensive answer to the question about
the crossing probabilities in two special cases: rectilinear parallel boundaries and
square-root boundaries with a time horizon. The obtained formulae are suitable
for programming: numerical calculations based on them are fast enough.
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