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A NEW CLASS OF PROCESSES FOR FORMALIZING AND
GENERALIZING INDIVIDUAL-BASED MODELS: THE

SEMI-SEMI-MARKOV PROCESSES

C. Jacob A.F. Viet 1

Individual-based models are a “bottom-up” approach for calculating em-
pirical distributions at the level of the population from simulated individual
trajectories. We build a new class of stochastic processes for mathemati-
cally formalizing and generalizing these simulation models according to a
“top-down” approach, when the individual state changes occur at countable
random times. We allow individual population-dependent semi-Markovian
transitions in a non closed population such as a branching population. These
new processes are called Semi-Semi-Markov Processes (SSMP) and are gen-
eralizations of Semi-Markov processes. We calculate their kernel and their
probability law, and we build a simulation algorithm from the kernel.

1. Introduction

The number of individual-based models used in population dynamics with a com-
plex structure have considerably increased thanks to the increase of the computers
capacity and to the popularization of informatics ([9]) concomitant to the will of
development of complex systems analysis. These models, based on a “bottom-up
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approach” ([9]) allow the calculus of empirical distributions at the level of the pop-
ulation from simulated individual trajectories. The advantage of this approach is
that it generally seems a priori much easier to build an individual-based model
than a population-state-variable model when the individuals are marked by per-
sonal characteristics and/or history or when the next state-change is driven by
complex rule decisions depending on the current state of the population. Never-
theless, the drawback of such models is the lack of mathematical formalism ([7]).
Such attempts are rare while a general rigorous mathematical formalism of these
models at the population level is necessary at least for having a good readability
of the different model components independently of the programming language
in which it is written ([7]) and for validating the simulation approach. The notion
of Generalized Semi-Markov Process (GSMP) was proposed for formalizing the
event-driven simulation approach in the area of operational research ([8]). But in
this framework, individuals were assumed to be independent and the formalism
remained closed to the simulation approach. In addition, a general algorithmic
strategy using multi-agents architecture under a discrete-time simulation mode
is described in [7]. But this approach remains a bottom-up one.

The simplest individual-based models with countable random jump times,
consist of N i.i.d. (identically and independently distributed) individual renewal
processes describing the times of arrival of an event. In this setting the behavior
of the total sum of arrivals until some time t when each process is a Poisson one
with rate λ (the inter-arrival time is exponential with parameter λ), is a Pois-
son variable with parameter tNλ. In the nontrivial case of more heavy tailed
distributions of the inter-arrival times, the asymptotic behavior of this result-
ing process and of some related quantities was studied for infinite life-duration
of each event ([18]) and for heavy-tailed life duration of the event ([14]). The
case of branching processes when the arrival times are procreation times, is also
well-known especially when the individual transitions (offspring or death) are
Markovian (exponential distribution). Less studied is the case of age-dependent
(non exponential) transitions. The most famous and studied age-dependent mod-
els are the Sevastyanov’s process, the Bellman-Harris process (particular case of
the previous one) and the Crump-Mode-Jagers process ([11]).

The objective of this paper is to built a new class of stochastic processes
for rigorously formalizing at the level of the population (top-down approach)
individual-based models. We allow the evolution of the population according
to births and deaths (branching population). The process is defined by a set
of individual random characteristics undergoing semi-Markovian transitions that
may be population-dependent. We call these new processes semi-semi-Markov
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processes (SSMP) since they are generalizations of semi-Markov processes and
have in the general case a longer memory than these processes.

In section 2, we remind the main definitions and properties of the classical
semi-Markov processes. In section 3, we define the semi-semi-Markov processes
(SSMP). These processes are first defined for a closed population of random in-
dividual characteristics evoluating according to semi-Markovian and population-
dependent transitions. Then they are generalized to any branching population.
The proofs follow the same general way as in the semi-Markov setting. We show
that the complexity increases when passing from the individual level to the pop-
ulation level. In the general case of semi-Markovian individual transitions, the
process at the population level is a semi-semi-Markov process (SSMP). But in
the particular case of Markovian individual transitions, the SSMP is reduced to
a classical Markov process with rate equal to the sum of the individual rates.
We give the simulation algorithm associated with the kernel and calculate the
probability law of the process.

We assume in this paper that the individual transition laws are time homo-
geneous, semi-Markovian and may be population-dependent. But the strategy of
elaboration of the kernel (and therefore of the simulation algorithm), of the tran-
sition rates and the direct calculus of the probability law of the process, remain
valid under more complex individual histories.

2. Classical semi-Markov Process (SMP) for one individual

We recall here the main definitions and properties of this class of process (see for
example [4], [3], [6], [10], or [12]). Let {Xn(ω)} be a random process taking values
in a countable space X and {Tn(ω)} be a random process taking values in R

+.
Assume that the process {Xn(ω), Tn(ω)} is an homogeneous Markov Renewal
Process (MRP), that is, denoting (Xn, Tn) for (Xn(ω), Tn(ω)), it satisfies, for all
n ≥ 0,

P (Xn+1 = j, Tn+1 − Tn ≤ τ |Xn, ..., X0, Tn, ..., T0) =

P (X1 = j, T1 − T0 ≤ τ |X0).(1)

Let {Xt(ω)} be a random process taking values in X , defined from the MRP by

Xt(ω)
def.
= Xnt(ω)1{nt(ω)=sup{n:Tn(ω)≤t}},(2)

where “def.” means “by definition”. Process {Xt(ω)} (denoted {Xt}) is constant
on each interval [Tn, Tn+1[ and undergoes state transitions at times {Tn} in ac-
cordance with the Markov chain {Xn}. Therefore it spends a random sojourn
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time ∆Tn+1
def.
= Tn+1 − Tn in the state defined by Xn until the time Tn+1 of the

(n+1)th transition. This process is an homogeneous process called semi-Markov
process because it is Markovian at the transition times (and not necessarily at
all times).

Let Qi,j(τ) = P (X1 = j, T1 − T0 ≤ τ |X0 = i). According to (1) and (2),
{Qi,j(τ)}i,j,τ , called the semi-Markov kernel of the process, defines the law of
{Xt}. Writing ∆T1 for T1−T0, Qi,j(.) can also be written when limτ→∞ Qi,j(τ) 6=
0,

Qi,j(τ) = P (∆T1 ≤ τ |X1 = j,X0 = i)P (X1 = j|X0 = i)(3)
not.
= Fi,j(τ)P (i, j),(4)

where “not.” means “denoted”, Fi,j(τ) is the cdf of the sojourn time in i before
jumping in the state j, and P (i, j) = limτ→∞ Qi,j(τ) is the probability of tran-
sition of the embedded Markov chain {Xn}. Relationship (4) allows simulations
of trajectories of the process according to an event-driven simulation algorithm.
Let i be the current state of {Xn}, then choose the next state j according to
the law {P (i, j)}j , and then simulate the sojourn time τ in i before jumping in
j according to the law Fi,j(.). In some applications, it may be more natural to
deal with the transition rates that are defined given the only past of the process,
contrary to Fi,j(.) defined given the past and the next jump state.
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Figure 1: Trajectory of a semi-Marvov process; the past until the present time Tn = tn
is in a continuous lines while the future is represented by a dashed line.
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2.1. Transition rates

Define, in the same way as in [3], the transition rates λi,j(τ) as the probability
per time unit that the process enters in the state j just after a time lag τ in the
state i, given that there was no transition from i during this lag:

λi,j(τ) = lim
∆τ→0

P (∆T1 ∈ (τ, τ + ∆τ), X1 = j|X0 = i,∆T1 > τ)

∆τ

homog.
= lim

∆τ→0

P (Xτ+∆τ = j|Xs = i,∀s ≤ τ)

∆τ
.

From the definition of λi,j(τ) and Qi,j(τ), one get

λi,j(τ) =
Q̇i,j(τ)

1 − Qi(τ)
(5)

where Q̇i,j(τ) = dQi,j(τ)/dτ and Qi(τ) =
∑
j

Qi,j(τ) = P (∆T1 ≤ τ |X0 = i)
not.
=

Fi(τ), is the cdf of the time spent in state i. One also have, when Fi,j(.) is
absolutely continuous with respect to the Lebesgue’s measure (see section 3.3.):

Qi,j(τ) =

τ∫

0

λi,j(u)exp(−

u∫

0

λi(s)ds)du(6)

where λi(s) =
∑
k

λi,k(s) (see section 3.3.). According to (5) and (6), the knowl-

edge of {Qi,j(τ)}i,j,τ is equivalent to that of {λi,j(τ)}i,j,τ .

The Markov process is a particular case of semi-Markovian processes. It is
an homogeneous process without memory implying that the transition rates are
independent of the transition time, i.e. λi,j(τ) = λi,j, for any τ . Therefore

(6) is reduced to Qi,j(τ) = λi,jλ
−1
i (1 − exp(−λiτ))

def.
= Fi,j(τ)P (i, j) leading to

Fi(τ)
def.
= Qi(τ) = 1 − exp(−λiτ) = Fi,j(τ), P (i, j) = λi,jλ

−1
i .

2.2. Renewal equations

The marginal law of the process may be calculated by using the renewal equations
also called backward equations. Let Pi,j(t) = P (Xt = j|X0 = i). Then, for any
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t, i, j,

Pi,j(t) = P (∆T1 > t|X0 = i)δi,j +
t∫

0

∑

k∈X

dP (Xs = k,∆T1 = s|X0 = i)P (Xt = j|Xs = k)

= (1 − Qi(t))δi,j +

t∫

0

∑

k∈X

dQi,k(s)Pk,j(t − s),(7)

where δi,i = 1 and δi,j = 0 otherwise. The first term of (7) describes the event
that state i has not been left until t and contributes only to Pi,i(t). The second
term describes the event, that state i is not left until a time s. At this time a
transition to some state k occurs, and then the process moves from k to j in t− s
time units. This system of equations may also be written using the convolution
operator: P = (I−QΣ) + Q ∗P, where I is the identity matrix, P[i, j] = Pi,j(.),
Q[i, j] = Qi,j(.), QΣ is the diagonal matrix with {Qi(.)}i on the diagonal. By
induction, defining Q∗(n+1) = Q∗n ∗Q with Q∗0 = I, one solution of this system
is

P =

∞∑

n=0

Q∗n ∗ (I−QΣ),(8)

and when X is finite, this solution is the unique one.
When X is finite, system (7) leads to a recursive calculus algorithm of

{Pi,j(.)}i,j using a discretization of the time. Moreover upper and lower bounds of
the renewal equations may also lead to analytical approximations of {Pi,j(.)}i,j

([13]). In the particular Markovian setting, the solution P(t) of the renewal
equation (7), defined by P(t)[i, j] = Pi,j(t), for all i, j, is exponential:

P(t) = exp(Λt),(9)

where exp(Λt) =
∑
k≥0

Λktk/k! can be calculated using different methods ([15]),

and Λ[i, j] = λi,j, j 6= i, Λ[i, i] = −λi = −
∑
j 6=i

λi,j.

2.3. Asymptotic behavior

The asymptotic behavior of Pi,j(t), solution of (7) as t → ∞, exists under
some additionnal assumptions such as the transition matrix P of {Xn} is ir-

reducible, aperiodic and recurrent, and 0 < mi < ∞, where mi =
∞∫
0

(1 −
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Qi(t))dt, i ∈ X , which implies that mi is the mean sojourn time in i: mi =
∫

tdQi(t)
def.
= E(∆T1|X0 = i). Then there exists a unique invariant probabil-

ity ν = (ν1, ν2, ν3, . . .) for P , that is νP = ν, and, for any i, j, the asymptotic
behavior of {Pi,j(t)}t and that of {Xn} are given by

lim
t→∞

Pi,j(t) =
νjmj∑

k

νkmk

; lim
n→∞

P (Xn = j|X0 = i) = νj.

Therefore limn→∞ P (Xn = j|X0 = i) represents the mean sojourn time in j for
the embedded chain, and limt→∞ Pi,j(t) represents the mean sojourn time in the
state j of the semi-Markovian process.

3. Semi-semi-Markov Processes for closed populations

3.1. Elaboration of the kernel of the process

Let Ω be a finite population of individuals described by a finite set of stochastic
characteristics which are determined by environment-dependent MRPs

{{(X
(c,l)
m (ωl), T

(c,l)
m (ωl))}m}(c,l) (assumptions (A1) to (A3)). The environment is

here the population and X
(c,l)
m (ωl) (which represents a random characteristic of

individual ωl) takes values in X c
l and T

(c,l)
m (ωl) (which represents a random tran-

sition time) takes values in R
+. An individual characteristic may be for example

the individual health state, the group or family to which the individual belongs,
or the individual spatial localization. But it may also represent a set of random
linked characteristics of an individual or a random characteristic that concerns
several linked individuals such as the existence of the couple l relative to two
given individuals. In this case X c

l = {existence of the couple l, non existence}.
Other examples may concern the potential vertices of a random graph defined by
their connected edges, or the potential double helices of an RNA. Consequently
the notion of individual characteristic must be taken here in a broad sense.

Let {(Xn(Ω), Tn(Ω))} be the “renewal” process of the population and {Xt(Ω)}

be the semi-semi-Markov process both defined from {{(X
(c,l)
m (ωl), T

(c,l)
m (ωl))}m}(c,l)
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by:

Xt(Ω)
def.
= Xnt(Ω)(10)

nt(Ω)
def.
=

∑

(c,l)

mc,l,t(ωl)(11)

mc,l,t(ωl)
def.
= sup{m : T (c,l)

m (ωl) ≤ t}(12)

Xnt(Ω)
def.
= {X(c,l)

mc,l,t
(ωl)}(c,l)(13)

Tnt(Ω)
def.
= sup

(c,l)
{T (c,l)

mc,l,t
(ωl)} = sup

(c,l)
sup
m

{T (c,l)
m (ωl) ≤ t}.(14)

The quantity nt is therefore the number of jumps of the population process until
t, Tnt(Ω) is the last jump time of the population before t defined by the last

individual jump time before t, and {Tn(Ω)} = {T
(c,l)
m (ωl)}m,(c,l) is the set of

jump times of {Xt(Ω)} defined by the set of individual jump times. Denote X
the state space of the process {Xt(Ω)} which is also the state space of {Xn(Ω)}.

Denote T
(c,l)
m , X

(c,l)
m , Tn, Xn instead of T

(c,l)
m (ωl), X

(c,l)

T
(c,l)
m (ωl)

(ωl), Tn(Ω), XTn(Ω)(Ω).

Denote also Fn(I) for the past knowledge {Xn = I,Xn−1 = In−1, ...,X0 = I0, Tn =
tn, Tn−1 = tn−1, ..., T0 = t0} until time Tn. According to (10) to (14), the law of
the process {Xt} is defined by the law of {(Xn, Tn)}, itself defined by the set of
transition probabilities (kernels): for all I, J, n,

P (Xn+1 = J,∆Tn+1 ≤ τ |Fn(I)) =

P (∆Tn+1 ≤ τ |Xn+1 = J,Fn(I))P (Xn+1 = J |Fn(I))
not.
=

FFn(I),J(τ)P (Fn(I), J)
not.
= QFn(I),J(τ)(15)

which have to be determined from the law of the set {{(X
(c,l)
m , T

(c,l)
m )}m}(c,l). We

assume two kinds of individual transitions: those which may happen in an inde-
pendent parallel way given the past, implying that the most rapid will determine
the next jump of the population, the laws of the following transitions being de-
fined again when this new state occurs, and those which are exclusive, implying
that the jump state must be chosen a priori according to some probability law.
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Let icl , j
c
l be any couple of potential states of the random characteristic X (c,l)

. .
We assume here that the individual characteristics are defined in such a way that
the next transitions {icl → jc

l }(c,l) given Fn(I) may occur independently, while
the set of transitions {icl → jc

l }jc
l

for a given individual characteristic (c, l) are
exclusive, that is, incompatible. For simplifying the notations we use in this sec-
tion 3. the notation (l) or l instead of (c, l). We assume that all transitions may
be population-dependent. Define similarly as in (12) and for all l,

T (l)
ml,n

= sup
m

{T (l)
m ≤ Tn}

which is the last transition time before Tn concerning the individual characteristic

l. For simplifying the notations we denote T
(l)
mn instead of T

(l)
ml,n

. Define also

R(l)
n = T

(l)
mn+1 − Tn, S(l)

n = Tn − T (l)
mn

, ∆T
(l)
mn+1 = T

(l)
mn+1 − T (l)

mn
.

Then R
(l)
n , S

(l)
n , ∆T

(l)
mn+1 are respectively the residual waiting time of l in its

current state from Tn until its potential next jump at time T
(l)
mn+1, the time spent

by l in its current state until Tn, and the time between the two consecutive jump

times T
(l)
mn , T

(l)
mn+1. By definition ∆T

(l)
mn+1 = S

(l)
n + R

(l)
n , and by definition of Tn,

there exists l such that Tn = T
(l)
mn , implying R

(l)
n = ∆T

(l)
mn+1, and S

(l)
n = 0 for this

l (cf fig. 2).

Assume N individual characteristics. Let (I, J) ∈ X 2 = [ΠlXl]
2, where I =

{i1, ..., il, ..., iN} and J = {i1, ..., jl, ..., iN}, that is the transition I → J concerns
the individual characteristic l. We also denote (I, Jl) for (I, J) and, for any l′,

s
(l′)
n = tn − t

(l′)
mn for the value taken by S

(l′)
n , where tn, t

(l′)
mn are the respective

values taken by Tn, T
(l′)
mn . Assume the following hypotheses, for any {il, jl, τl}l, I,

and given Fn(I),

1. (A1) (independency of the next individual jumps):

dP ({X
(l)
mn+1 = jl, R

(l)
n = τl}l|Fn(I)) = ΠldP (X

(l)
mn+1 = jl, R

(l)
n = τl|Fn(I)).

2. (A2) (memory needed for the individual residual waiting times {R
(l)
n }l):

for each l, R
(l)
n depends at most on the time s

(l)
n already spent in the individual

current state il, on the corresponding current state I of the population at time

tn and on the next individual jump state jl. In particular, R
(l)
n is independent of

{s
(l′)
n }l′ 6=l. Since by definition Tn = T

(l)
mn + S

(l)
n and S

(l)
n has the value s

(l)
n , then
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Figure 2: Trajectories of 3 individual characteristics l, l′, l′′. Until the current time tn =
1500 characterized by the current state I = {il, il′ , il′′}, the trajectories are represented by
continuous lines while the future from tn is represented by dashed lines. The vertical lines
show the jump times of the population. The individual trajectories are not synchronized.

(A2) combined with (A1) implies

dP (R(l)
n = s|X

(l)
mn+1 = jl, {R

(l′)
n }l′ 6=l,Fn(I)) =

dP (∆T
(l)
mn+1 = s + s(l)

n |X
(l)
mn+1 = jl,XT

(l)
mn +s

(l)
n

= I,∆T
(l)
mn+1 > s(l)

n ) =

dP (∆T
(l)
mn+1 = s + s(l)

n |X
(l)
mn+1 = jl,XT

(l)
mn +s

(l)
n

= I,

Xr = I,∀r ∈ [T (l)
mn

, T (l)
mn

+ s(l)
n ],∆T

(l)
mn+1 > s(l)

n ) =

dP (∆T
(l)
mn+1 = s + s

(l)
n |X

T
(l)
mn

= I,X
(l)
mn+1 = jl)

dP (∆T
(l)
mn+1 > s

(l)
n |X

T
(l)
mn

= I,X
(l)
mn+1 = jl)

=
dF

(l)
il|I,jl

(s + s
(l)
n )

1 − F
(l)
il|I,jl

(s
(l)
n )

,(16)

where F
(l)
il|I,jl

(.) is the cdf of the individual sojourn time in il before jumping in jl,
when the state of the whole population is I and remains unchanged during this
sojourn time (constant environment), this cdf being assumed independent of n.

Notice that if (A2) is not checked, then we replace (A2) by dP (R
(l)
n =
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s|X
(l)
mn+1 = jl,Fn(I)) = dG

(l)
il|Fn(I),jl

(s) which is no more time homogeneous.

3. (A3) (memory needed for the individual jump probabilities): for each l,

P (X
(l)
mn+1 = jl|Fn(I)) = P (X

(l)
mn+1 = jl|XTn = I)

not.
= P (l)(il|I, jl),(17)

where
∑

jl∈Xl

P (l)(il|I, jl) = 1 if Xl(I) 6= ∅, or 0 if Xl(I) = ∅, where Xl(I) = {jl ∈

Xl : P (l)(il|I, jl) 6= 0}. As in (16), P (l)(il|I, jl) is a probability of an individual
Markov chain with constant environment I.

4. (A4) (definition of the next population jump as corresponding to the
smallest individual residual time):

QFn(I),Jl
(τ) = P (min

l′
{R(l′)

n } = R(l)
n , R(l)

n ≤ τ,X
(l)
mn+1 = jl|Fn(I)).(18)

We moreover assume for simplifying the presentation that the cdf of the individual
sojourn times are absolutely continuous with respect to the Lebesgue’s measure.

In the next proposition, we calculate the population kernel from the residual
individual kernels defined as:

Q
(l)|s

(l)
n

il|I,jl
(τ)

def.
= P (R(l)

n ≤ τ,X
(l)
mn+1 = jl|Fn(I))(19)

= F
(l)|s

(l)
n

il|I,jl
(τ)P (l)(il|I, jl),(20)

where, for P (l)(il|I, jl) 6= 0,

F
(l)|s

(l)
n

il|I,jl
(τ) =

F
(l)
il|I,jl

(s
(l)
n + τ) − F

(l)
il|I,jl

(s
(l)
n )

1 − F
(l)
il|I,jl

(s
(l)
n )

(21)

is the cdf of the residual individual transition time il|I → jl from tn given the

time s
(l)
n already spent in il by l until tn, and we set F

(l)|s
(l)
n

il|I,jl
(τ) = 0, for all τ < ∞

when P (l)(il|I, jl) = 0.

Notice that when s
(l)
n = 0, then the kernel is reduced to the classical semi-

Markovian kernel, except that it is population dependent.

Proposition 1. Assume that the individual transition laws satisfy (A1) to
(A3) and that the population kernel is defined by (A4). Then

dQFn(I),Jl
(τ) = Πl′ 6=l(1 −

∑

jl′∈Xl′ (I)

Q
(l′)|s

(l′)
n

il′ |I,jl′
(τ))dQ

(l)|s
(l)
n

il|I,jl
(τ).(22)
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P r o o f. The result is directly deduced from (18), (19) and (A1). �

Consequences. We have

P (Fn(I), Jl) =

∞∫

0

dQFn(I),Jl
(τ)

=

∞∫

0

Πl′ 6=l(1 −
∑

jl′∈Xl′ (I)

Q
(l′)|s

(l′)
n

il′ |I,jl′
(τ))dQ

(l)|s
(l)
n

il |I,jl
(τ),(23)

dFFn(I),Jl
(τ) =

dQFn(I),Jl
(τ)

P (Fn(I), Jl)

=

Πl′ 6=l(1 −
∑

jl′∈Xl′ (I)

Q
(l′)|s

(l′)
n

il′ |I,jl′
(τ))dQ

(l)|s
(l)
n

il|I,jl
(τ)

∞∫
0

Πl′ 6=l(1 −
∑

jl′∈Xl′ (I)

Q
(l′)|s

(l′)
n

il′ |I,jl′
(τ))dQ

(l)|s
(l)
n

il|I,jl
(τ)

.(24)

Remarks.

1. If instead of absolutely continuous distributions with respect to Lebesgue
measure, we consider distributions with the possibility of ties, then we must

generalize (22) by considering R
(l′)
n ≥ Rn(l) instead of R

(l′)
n > Rn(l), l′ 6= l.

2. According to the proposition, the kernel is defined by the time-homogeneous

residual individual kernels {Q
(l)|s

(l)
n

il|I,jl
(.)} and therefore is homogeneous and

may be denoted

QFn(I),Jl
(.) = Qsn;I,Jl

(.), where sn = {s(l)
n }l.(25)

3. Define Yn = (Xn,Sn), where Sn = {S
(l)
n }l. Define ∆Ih+1 = {∆I

(l)
h+1}l,

where ∆I
(l)
h+1 = 0 if and only if the state of l at time Th+1 is the same as its

state at Th, denote s(sh,∆th+1,∆Ih+1) = {[s
(l)
h + ∆th+1]1{∆I

(l)
h+1=0}

}l, the

set of spent times at time th+1 defined from the set at time th. Then, for
sh+1 = s(sh,∆th+1,∆Ih+1), for all h ≤ n, {(Yn, Tn)} satisfies

dP (Yn+1 = (In+1, sn+1),∆Tn+1 = ∆tn+1|{Yh = (Ih, sh), Th = th}h≤n) =

dP (Xn+1 = In+1,∆Tn+1 = ∆tn+1|Xn = In,Sn = sn) =

dP (Yn+1 = (In+1, sn+1),∆Tn+1 = ∆tn+1|Yn = (In, sn)).
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Consequently {(Yn, Tn)} is a MRP. Assuming absolutely continuous kernels
with respect to the Lebesgue’s measure, then for any (sn, s(sn,∆tn+1,∆In+1)),
we have either ‖sn+1 − sn‖ > 0 or sn+1 = sn = 0, where ‖sn+1 − sn‖ =

supl[s
(l)
n+1 − s

(l)
n ]1

s
(l)
n+1−s

(l)
n ≥0

, Therefore, for any ((sn, In), (In+1, sn+1)), the

kernel of {(Yn, Tn)} is, when sn+1 = sn = 0, equal to QIn,In+1(.) (semi-
Markov kernel), and when ‖sn+1 − sn‖ > 0,

dP (Yn+1 = (In+1, sn+1),∆Tn+1 = ∆tn+1|Yn = (In, sn))
not.
=

dQY
(In,sn),(In+1,sn+1)

(∆tn+1) =

1‖sn+1−sn‖(∆tn+1)[dQsn;In,In+1(‖sn+1 − sn‖)1{(sn ,sn+1)∈∆S}]
not.
=

dFY
(In,sn),(In+1,sn+1)

(∆tn+1)P
Y((In, sn), (In+1, sn+1)),

where 1‖sn+1−sn‖(∆tn+1) = 1, if ∆tn+1 = ‖sn+1−sn‖, and is null otherwise

(dirac distribution), and ∆S is the set of (sn, sn+1) such that s
(l)
n+1 − s

(l)
n is

a positive constant for any l except one for which this difference is negative
or null; FY

(In,sn),(In+1,sn+1)
(.) = 1‖sn+1−sn‖(.) is the cdf of the sojourn time in

(In, sn) until the next jump into (In+1, sn+1), and PY(., .) is the transition
probability of {Yn}.

4. If (A2) and (A3) are replaced by a long memory assumption such that “|I”

and “|s
(l)
n ” must be replaced by “|Fn(I)”, then the kernel of the process,

defined by (22) is no more time homogeneous and (25) is no more valid.

Corollary 1. Assume the particular case (Exp) defined by individual Marko-

vian transitions, that is, for all τ , il, jl, c, l, I, F
(l)
il|I,jl

(τ) = 1−exp(−λil|I τ), where

λil|I = 0 when Xl(I) = ∅. Then the SSMP is a MP (Markov process) defined, for
all I such that

∑
l′

λil′ |I
6= 0, by

dQI,Jl
(τ) = λil|IP

(l)(il|I, jl) exp(−
∑

l′

λil′ |I
τ)dτ

Consequences. When
∑
l′

λil′ |I
6= 0 (otherwise, set FI,Jl

(τ) = 0, P (I, Jl) = 0),

dFI,Jl
(τ) = dFI(τ) = (

∑

l′

λil′ |I
) exp(−

∑

l′

λil′ |I
τ)dτ(26)

P (I, Jl) = P (l)(il|I, jl)
λil|I∑

l′
λil′ |I

.(27)
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P r o o f. Using (22), we get dQI,Jl
(τ) = λil|IP

(l)(il|I, jl) exp(−
∑
l′

λil′ |I
τ)dτ

from which (26) and (27) are deduced. �

This corollary generalizes to population-dependent processes the well-known
case of superposition of individual Poisson processes: take N i.i.d. Poisson pro-
cesses with inter-arrival times exponentially distributed with rate λ. For each

individual, the only possible transition at time T
(l)
k is k − 1 → k (arrival of the

kth event). Then at time t, if Nt is the sum of the individual counting processes,

P (Nt = k) = P (Tk ≤ t, Tk+1 > t) = F ∗k(t) − F ∗(k+1)(t),

where, according to (26), F (t) = exp(−Nλt) (inter-arrival population time dis-
tribution). Therefore F ∗n(.) is Gamma(n,Nλ) and F ∗k(t) − F ∗(k+1)(t) is the
probability for a Poisson(Nλt) variable to be equal to k.

Consequence. Under (Exp), if
∑
J

P (Fn(I), J) 6= 0 (I is not an absorbing state),

then mI
(Exp)
= E(∆T1|X0 = I) = [

∑
l′

λil′ |I
]−1.

3.2. Event-driven simulation algorithm

In a classical semi-Markov jump process the simulation is done in the following
way: we first determine the next jump state j according to the probability P (i, j),
and then we determine the time of the transition i → j according to the law Fi,j(.).

Consider now a semi-semi-Markov process. We propose an event-driven re-
cursive simulation algorithm generated by the kernel of the process. Assume that
at the nth jump, the process is in the state I = (i1, ..., il, ..., iN ) and the time at
this jump is tn. Then the next jump state with the associated transition time are
determined by the kernel QFn(I),J(.) = FFn(I),J(.)P (Fn(I), J), where FFn(I),J(.)
and P (Fn(I), J) satisfy (24) and (23). We define the state J at the next jump
and the corresponding jump time tn+1 in the following way. For each il in I
satisfying Xl(I) 6= ∅, and such that the next state jl and the associated jump

time t
(l)
mn+1 satisfying t

(l)
mn ≤ tn < t

(l)
mn+1, are either not yet simulated or such

that their transition laws depend not only on il but also on the current state I
of the population,

1. First choose jl ∈ Xl(I) according to the probability law {P (l)(il|I, jl)}jl
;

2. Then simulate according to the law of R
(l)
n defined by (16), and indepen-

dently from the other waiting times, a residual waiting time r
(l)
n in il from

tn until the jump into jl; deduce t
(l)
mn+1 = r

(l)
n + tn.
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3. Keep the simulations {jl, t
(l)
mn+1}l in memory.

Then the minimum time t
(l)
mn+1 among the set of all simulated jump times {t

(l′)
mn+1}l′

defines the next jump time and the next population state Jl.

3.3. Transition rates

Define the individual transition rate from il|I to jl:

λ
(l)
il|Fn(I),jl

(τ)
def.
= lim

∆τ→0

P (R
(l)
n ∈ (τ, τ + ∆τ), X

(l)
mn+1 = jl|X

(l)
mn = il, R

(l)
n > τ,Fn(I))

∆τ
.

Then we directly get

λ
(l)
il|Fn(I),jl

(τ) =
Q̇

(l)|s
(l)
n

il|I,jl
(τ)

1 −
∑

j∈Xl

Q
(l)|s

(l)
n

il|I,j
(τ)

not.
= λ

(l)|s
(l)
n

il|I,jl
(τ).(28)

Define now the transition rate from I to Jl relative to the population:

λFn(I),J(τ)
def.
= lim

∆τ→0

P (∆Tn+1 ∈ (τ, τ + ∆τ),Xn+1 = J |Fn(I),∆Tn+1 > τ)

∆τ
.

Then

λFn(I),J(τ) = lim
∆τ→0

P (Xtn+τ+∆τ = J |Xtn+s = I,∀s ≤ τ,Fn(I))

∆τ

=
Q̇sn;I,J(τ)

1 −
∑
J ′

Qsn;I,J ′(τ)

not.
= λsn;I,J(τ).(29)

Proposition 2. For all il, jl, I, l such that P (l)(il|I, jl) 6= 0, assume that

F
(l)
il|I,jl

(.) is absolutely continuous with respect to the Lebesgue’s measure. Then,

for all Fn(I), J, τ ,

QFn(I),J(τ) =

τ∫

0

λFn(I),J(u) exp(−

u∫

0

∑

J

λFn(I),J (s)ds)du(30)

Q
(l)|s

(l)
n

il|I,jl
(τ) =

τ∫

0

λ
(l)|s

(l)
n

il|I,jl
(u) exp(−

u∫

0

∑

j

λ
(l)|s

(l)
n

il|I,j
(s)ds)du(31)
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P r o o f. The proofs are the same for Q
(l)|s

(l)
n

il|I,jl
(.) and QFn(I),J(.). So we only

prove (30).
Summing (29) on J , we get

∑

J

λFn(I),J (τ) =

∑
J

Q̇Fn(I),J(τ)

1 −
∑
J

QFn(I),J(τ)
.(32)

The solution of (32) is, as in the semi-Markov frame,

1 −
∑

J

QFn(I),J(τ) = exp(−

τ∫

0

∑

J

λFn(I),J(s)ds).(33)

But QFn(I),J(τ) may be written

QFn(I),J(τ) =

τ∫

0

P (Xn+1 = J,∆Tn+1 ∈ (u, u + du)|Fn(I),∆Tn+1 > u).(34)

P (∆Tn+1 > u|Fn(I)) =

τ∫

0

λFn(I),J (u).(1 −
∑

J

QFn(I),J(u))du.

Using (33) and (35), we get (30). � The proposition shows that the knowledge
of {QFn(I),J(.)}Fn(I),J is equivalent to that of {λFn(I),J(.)}Fn(I),J .

Corollary 2. Assume the particular case (Exp) defined in corollary 1. Then

1. λ
(l)|s

(l)
n

il|I,jl
(τ) is independent of τ and s

(l)
n . We denote λ

(l)|s
(l)
n

il|I,jl
(τ)

not.
= λil|I,jl

and

we have λil|I,jl
= λil|IP

(l)(il|I, jl).

2. The population transition rates are independent of the time and

λI,Jl
= λil|IP

(l)(il|I, jl) = λil|I,jl

λI =
∑

J

λI,J =
∑

l

λil|I

The proof is directly deduced from (29) and corollary 1.

Consequence. In the Markovian setting, we directly get P(t) = exp(Λt) from
(9), where P(t)[I, J ] = PI,J(t) and Λ[I, J ] = λI,J , for all I, J .
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3.4. Probability law of {Xs}s∈]0,t]

The probability law of the process in a given time interval ]0, t] is equivalent to
the law of ({(XTl

, Tl)}l=1,nt
, nt). Let n, 0 < t1 < t2 < . . . < tn ≤ t and {Il}0≤l≤n.

Then

dP ({(XTh
= Ih, Th = th)}h=1,nt

, nt = n|F0(I0)) =

dP ({(XTh
= Ih, Th = th)}h=1,n, Tn+1 > t|F0(I0)) =

P (Tn+1 > t|Fn(In))Πn
l=1dP (Xh = Ih, Th = th|Fh−1(Ih−1)) =

[1 −
∑

J

Qsn;In,J(t − tn)]Πn
h=1dQsh−1;Ih−1),Ih

(th − th−1)(35)

3.5. Marginal probability law of {Xt}

We can directly calculate the marginal probability law of the process using (35)
and

P (Xt = J |F0(I0)) = P (tn{XTn = J, Tn ≤ t, Tn+1 > t}|F0(I0))(36)

or we can iteratively calculate it using the renewal theory.

3.5.1. Renewal equations.

Define an “initial” time t0 and initial conditions

F0(I0) = {XT0 = I0, T0 = t0,S0 = s0}
not.
= Ft0 ,∆0(I0); s0

not.
= ∆0.

We denote the set of individual spent times s(sh,∆th+1,∆Ih+1) by ∆th+1−th , h ≥
0. We also denote P (Xt = J |Ft0 ,∆0(I0)) = P∆0 [I0, J ](t − t0) = P[(I0,∆0), J ](t −
t0), since due to the homogeneity of the process and its memory,
P (Xt = J |Ft0 ,∆0(I0)) = P (Xt−t0 = J |X0 = I0,S = s0). In the same way P (Xt =
J |Ft0 ,∆0(I0),X1 = I1, T1 = t1) = P (Xt−t1 = J |X0 = I1,S = s(s0,∆t1,∆I1)).
Therefore we also denote P (Xt = J |Ft0 ,∆0(I0),X1 = I1, T1 = t1) =
P∆t1−t0

[I1, J ](t − t1) = P[(I1,∆t1−t0), J ](t),

Qs0;I0,J(t) = Q∆0 [I0, J ](t) = QY [(I0, s0), (I1, s(s0, t, J − I0))](t),
[
∑
J ′

Qs0;I0,J ′(t)]δI0 ,J = QΣ
∆0

[I0, J ](t) = QΣ[(I0, s0), J ](t), where these quantities

are null, for J 6= I0.

Proposition 3. The marginal probability law of the process is given by the
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following backward equations in the matricial form:

P∆0(t − t0) =(37)

I−QΣ
∆0

(t − t0) +

∫

t1∈(t0 ,t)

dQ∆0(t1 − t0)P∆t1−t0
(t − t1), t ≥ t0

equivalent to

P = (I−QΣ) + QY ∗ P.(38)

Therefore (38) leads by induction to (39), unique solution when X is finite:

P =
∑

n≥0

QY∗n ∗ (I−QΣ)(39)

Then P(t) may be approximated by [
Nt∑

n≥0
QY∗n ∗ (I − QΣ)](t), where Nt < ∞

increases with t, and (39) is reduced to (8) when Qsn;I,J(.) is independent of sn

(semi-Markov kernel). Notice that (39) may also be obtained using directly (36)

since Tn+1 =
n+1∑
k=1

∆Tk and dP (
n+1∑
k=1

∆Tk = u|I0, s0) = (QY∗n ∗ dQΣ)[(I0, s0)](u).

P r o o f. As in the semi-Markov frame, we may write

P (Xt = J |Ft0 ,∆0(I0)) = P (∆T1 > t − t0|Ft0 ,∆0(I0))δI0,J +
∑

I1 6=I0

∫

t1∈(t0 ,t)

P (Xt = J |Ft0 ,∆0(I0),XT1 = I1, T1 = t1).

dP (XT1 = I1,∆T1 = t1 − t0|Ft0 ,∆0(I0)).(40)

Then the result follows from (40) using the time-homogeneity of the process, its
memory and the notations defined at the beginning of the paragraph. �

Corollary 3. Let Q̇∆0 be the derivative of Q∆0 when this derivative exists,
that is when all the individual sojourn time laws are absolutely continuous with re-
spect to the Lebesgue’s measure. Let {ai}i be a deterministic sequence function of
h depending on the chosen numerical integration scheme. Then the discretization
of (37) using t − t0 = nh, t1 − t0 ∈ {ih}i≤n, leads to the solution Pn = R−1

n Bn,
where Pn = (Pt

∆0
(nh), ...,Pt

∆(n−1)h
(h))t, Bn = (Bt

∆0 ,n, ...,Bt
∆(n−1)h ,n)t,
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Rn =




R∆0(0) R∆0(h). . .R∆0 ((n − 1)h)
0 R∆h

(0). . .R∆h
((n − 2)h)

. . . . . . . . . .
0 0 . . . . . . . . .R∆(n−1)h

(0)




R∆(ih) = Iδ0,i − aiQ̇∆(ih)(1 − δ0,i), i = 0, ..., n − 1

B∆jh,n = I−QΣ
∆jh

((n − j)h), j = 0, ..., n − 1,

where δ0,i = 1 if i = 0 and is 0 otherwise.

P r o o f. The discretization of (37) using t− t0 = nh, t1 − t0 ∈ {ih}i≤n, leads
to

P∆0(nh) = I−QΣ
∆0

(nh) +

n−1∑

i=1

aiQ̇∆0(ih)P∆ih
((n − i)h),(41)

equivalent to

n−1∑

i=0

R∆0(ih)P∆ih
((n − i)h) = I−QΣ

∆0
(nh).(42)

Then using (42) with (n− j,∆jh) instead of (n,∆0), j = 0, . . . , n− 1, we get

n−j−1∑

i=0

R∆jh
(ih)P∆(i+j)h

((n − j − i)h) = I−QΣ
∆jh

((n − j)h)

which leads to the result. �

3.6. Asymptotic behavior

Recall that {(Yn, Tn)}, where Yn = (Xn,Sn), Tn =
∑
h≤n

∆Th is a MRP. Ac-

cording to the Markov renewal theory which deals with the asymptotic behav-
ior of functionals of MRP (or MRW) (see [1]), if {Yn} has a unique station-
ary probability measure ν, and if 0 < µ < ∞, where µ =

∫

(I,s)

m(I,s)dν(I, s),

m(I,s) = E(∆T1|Y0 = (I, s)) (mean time spent in I given the set s of individual
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spent times), then, defining At = t − Tnt the associated age process, for some
appropriate function g(., .),

lim
t

E[g(Yt, A(t))|(I0, s0)] =

µ−1

∫

(I,s)∈Y

∫

τ∈(0,∞)

g((I, s), τ)P(I,s)(∆T1 > τ)dτdν(I, s).(43)

Then, for g((Xnt ,Snt), u) = 1J(Xnt), where J ∈ X , and since we assumed mI,s <
∞ which implies

∫

τ∈(0,∞)

P(I,s)(∆T1 > τ)dτ = m(I,s), (43) becomes

lim
t

P (Xt = J |I0, s0) =

∫
s

m(J,s)dν(J, s)

∑
I

∫
s

m(I,s)dν(I, s)
.

It remains to show the existence of ν(.) (the problem has been moved from the
asymptotic behavior of {Xt} to that of {(Xn,Sn)}).

4. Semi-semi-Markov processes for branching populations.

We generalize here the SSMP previously defined for a closed population to a
branching population. In this case, a SSMP becomes a SSMBP (Semi-Semi-
Markovian Branching Process).

4.1. Semi-semi-Markovian Branching Process for individuals with a
pregnancy period

Assume for each individual a single random characteristic B (Branching) which
is his physiological status together with the physiological status of his newborns,
each physiological status taking values in P = {pregnant, not pregnant,R}, where
R means removed from the population by death or emigration. Each individual
is labelled by his time Tj of birth and the number u of the individual among
the set of individuals born at this time. Then (Tj(ω), label(ω)) is equivalently
represented by (Tj(ω), l), where l = (j, u), and we denote ωl such a labelled indi-

vidual. Then when ωl gives birth at time Tn to Ỹn,l newborns, ωl undergoes the
transition denoted ipl → jB

l , where ipl = pregnant and jB
l = {jp

l , {jp
l′}l′∈L(

�

Yn,l)
},

where jp
l = (not pregnant), jp

l′ = (not pregnant), and L(Ỹn,l) is the set of labels

of the newborns of ωl (Ỹn,l represents both the set of newborns of ωl at time Tn

and the size of this set).
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Denote also Ω the population understood as an abstract entity, and Ωn(Ω),
the composition of the population at time Tn. Contrary to a closed population,
this composition changes with time. At each time Tn, each variable ZTn(Ω) that
we will define is in fact function of Ωn(Ω), that is there exists some variable Z̃
such that ZTn(Ω) = Z̃Tn(ΩTn(Ω)), but for simplifying the notations we only write
ZTn(Ω). Denote also {Xt(Ω)} the individual-based branching process; Xt(Ω) takes
values in X = {{(Pl)}l∈S(L)}S(L), where Pl ∈ P, for any l, S(L) is any finite set
of labels, and Xt(Ω) is defined by

Xt(Ω)
def.
= Xnt(Ω)(44)

nt(Ω)
def.
=

∑

ωl∈Ωnt−1(Ω)

mp,l,t(ωl)(45)

mp,l,t(ωl)
def.
= sup{m : T (p,l)

m (ωl) ≤ t}, ωl ∈ Ωnt−1(Ω)(46)

Xnt(Ω)
def.
= {X(B,l)

mp,l,t
(ωl)}ωl∈Ωnt−1(Ω)(47)

X(B,l)
mp,l,t

(ωl)
def.
= {X(p,l)

mp,l,t
(ωl) 6= R, {X

(p,l′)
0 (ωl′) 6= R}

ωl′∈
�

Ynt,l
}(48)

T
(p,l′)
0 (ωl′)

def.
= T (p,l)

mp,l,t
(ωl), ωl′ ∈ Ỹnt,l, ωl ∈ Ωnt−1(Ω)(49)

Tnt(Ω)
def.
= sup

ωl∈Ωnt−1(Ω)
{T (p,l)

mp,l,t
(ωl)}.(50)

Of course Ωnt(Ω) which is the set of individuals alive at Tnt(Ω) is not constant

since an individual born at T
(p,l)
0 (ωl) exists only from his birth date T

(p,l)
0 (ωl)

until his removing time. Assuming that the set of individual transitions defined

by {X
(p,l)
m , T

(p,l)
m }m,l satisfies (A1) to (A3) and that (A4) is checked, then the ker-

nel of the process is given by (22), where F
(l)
il|I,jl

(.) is replaced by F
(B,l)

i
p

l
|I,jB

l

(.) and

P (l)(il|I, jl) is replaced by P (B,l)(ipl |I, jB
l ). When ipl → jB

l concerns the transition

from pregnant to not pregnant, then F
(B,l)

i
p

l
|I,jB

l

(.) = F
(B,l)
pregnant,not pregnant(.) (cdf of

the pregnancy period), and P (B,l)(ipl |I, jB
l ) is the probability for ωl to give birth to

Ỹn,l newborns at his next “jump” among the states {alivewith Ỹ newborns} �

Y
, R}.

When the transition is pregnant → R, then F
(B,l)

i
p

l
|I,jB

l

(.) = F
(B,l)
pregnant,R(.) (cdf of the
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time in the pregnancy state before dying or emigrating), and P (B,l)(ipl |I, jB
l ) is

the probability for ωl in pregnancy to be removed at his next “jump” among the
possibilities {alivewith Ỹ newborns} �

Y
, R}, and in a similar way for the other pos-

sible transitions, when ipl 6= pregnant. Then {Xt(Ω)} is a semi-semi-Markovian
branching process.

4.2. Spread of a disease in a branching population structured in groups

We consider the case of a population of marked individuals undergoing three
random characteristics, the previous branching one B, the health state H, and
the membership group G. An example of this process is given in ([17]) where the
authors study the spread of the bovine viral diarrhoea within a dairy herd. The
R state is considered here as an exit group called R meaning that the animal
is removed from its current group. The process is defined in the same way as
the previous simple branching process with (47), (48), (49) replaced by (when
forgetting the notations (ωl) and (ωl′)):

Xnt(Ω)
def.
= {(X(B,l)

mp,l,t
, X(h,l)

mh,l,t
, X(g,l)

mg,l,t
)1

{X
(g,l)
mg,l,t

6=R}
}ωl∈Ωnt−1(Ω)

X(B,l)
mp,l,t

def.
= {X(p,l)

mp,l,t
, {(X

(p,l′)
0 , X

(h,l′)
0 , X

(g,l′)
0 )1

{X
(g,l′)
0 6=R}

}
ωl′∈

�

Ynt,l
}},

ωl ∈ Ωnt−1(Ω)

T
(c,l′)
0

def.
= T (p,l)

mp,l,t
, ωl′ ∈ Ỹnt,l, ωl ∈ Ωnt−1(Ω), c ∈ {p, h, g}

where, when Ỹnt,l = 0, the transition is defined in the same way as in a closed

population, and when there exists ωl ∈ Ωnt−1(Ω) such that Ỹnt,l 6= 0, general-
izing the definition of the previous simple branching SSMP, we must define the
state of the newborns for each of the three characteristics and not only for the
physiological state.

Assuming that (A1) to (A4) are checked, then the kernel of the process is

given by (22), where as previously, when c = B, F
(c,l)
il|I,jl

(.) and P (c,l)(il|I, jl) are

replaced by F
(B,l)

i
p

l
|I,jB

l

(.) and P (B,l)(ipl |I, jB
l ) in which jB

l = {jp
l , {jp

l′ , j
h
l′ , j

g
l′}l′∈

�

Yn,l
}.

When c = g, F
(c,l)
il|I,jl

(.) and P (c,l)(il|I, jl) concern the transitions between groups
that may depend on the initial physiological status of the individual l, and when
c = h, they concern the health state changes that may depend on the number of
infectives in each group and on the possibility of transmission of these infectives
to ωl.



Semi-Semi-Markov Processes 143

The memory s
(c,l)
n of the sojourn time of the characteristic (c, l) in the current

state il until tn is the sojourn time of the individual, already spent in his current
physiological status (for example pregnant) until tn, when c = p. It is the sojourn
time already spent by l in his current group c until tn, when c = g, and it is the
sojourn time already spent by l in his current health state c, when c = h.

4.3. Branching bisexual (two-sex) population

Bisexual processes which concern sexual reproduction take into account the mat-
ing process in the evolution of the population. They have been introduced in
discrete time by [5] and in continuous time by [2] and [16]. In these models,
the pregnancy period is not taken into account. We may build as previously an
individual-based generalization of these processes, allowing to take into account
waiting times such as the waiting time before forming a couple and the pregnancy
period. A state of the process may be described by the set of characteristics of
each individual and the set of characteristics of each potential couple. A transi-
tion may concern an individual (mortality) or a couple of individuals (formation
of a couple, mortality of a couple, pregnancy of a couple).
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