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SENSITIVITY ANALYSIS OF SOME APPLIED

PROBABILITY MODELS

Ekaterina V. Bulinskaya 1

The aim of the paper is two-fold, namely, to give a brief survey of sensitivity
analysis methods and to use them for investigation of two input-output
models arising in applied probability.

1. Introduction

The paper treats the stability problems for various stochastic models. We provide
a brief survey of different approaches and methods. After that we concentrate on
the sensitivity analysis of two important models arising in inventory theory and
insurance.

First of all we recall the following well-known facts:
1. In order to study a real-life process or a system it is useful to construct its

mathematical model.
2. There are a lot of models describing more or less precisely a given system.
3. The same model can describe the processes arising in different research

domains.

A crucial question in all investigations pertaining to decision making is how to
choose an appropriate mathematical model. The usual procedure is given by the
scheme of Fig. 1.
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Use model to explain, predict, de-
cide, design

↑
Formulate the ”real”
problem

Validate model

↓ ↙ ↑
Assumptions made Interpret solution

↓ ↑
Formulate the mathematical
problem

−→ Solve the mathematical prob-
lem

Fig. 1. Decision making

As Bellman emphasized in [?], it is necessary to avoid oversimplification and
excessive complexification. Although it is not difficult to solve a simple math-
ematical problem, the solution may not describe precisely the system’s perfor-
mance. Hence, the poor model fit is the first source of decision errors.

On the other hand, a complex model depending on a great number of pa-
rameters and giving a rather precise system description can also be the source of
decision errors. In fact, it is often impossible to obtain an explicit form of the
solution, so one has to use a numerical one. The high speed of modern computers
lets to get it without problems, if all the parameters are known exactly. Thus,
along with computational errors, the parameters variability (and necessity of their
estimation on the base of previous system observations) is the second source of
decision errors, the third one being perturbations of the underlying processes.
Therefore the model stability is a must and before making a decision applying
some mathematical model it is desirable to perform its sensitivity analysis.

We are interested in input-output models, arising in such applications as in-
surance, finance, inventory, queueing, storage, reliability theory and many others.
They can be described by a five-tuple (Z,Y,U,Ψ,L), a scheme is given by Fig. 2.
Here Z = {Z(t), t ≥ 0} and Y = {Y (t), t ≥ 0} are input and output processes,
respectively, U = {U(t), t ≥ 0} is a control, Ψ reflects the system’s configuration
and performance mode, whereas L is an objective function (valuation criterion,
risk measure). One takes also into account the planning horizon T ≤ ∞ and the
system state X = Ψ(Z,Y,U), a function in t as well, for details see, e.g. [?].
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U
↓

Z → X = Ψ(Z,Y,U) → Y

↓
L

Fig. 2. Input-output model

Table 1. Interpretation of systems elements

Research field Input Output System state

Insurance Premium Indemnity Reserve

Inventory Supply Demand Inventory level

Queueing Arrival Departure Queue length

Storage Inflow Outflow Water level

Finance Income Expenses Capital

Reliability New units Defective units Working units

Population Birth, Death, Population

growth Immigration Emigration size

This general description is useful for models classification, making obvious the
similarity of different research fields as well. Another interpretation of model
”elements” leads to another research field, as shown by Table 1.

Thus, the methods useful in one research field may be of interest in others.
For example, distribution of a random walk maximum can be interpreted either
as a distribution of waiting time in a one-server queueing system G|G|1 or as a
ruin probability in the Sparre Andersen insurance model, see e.g. [?].
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RISK
↙ ↘

speculative pure

↙ ↙ ↘ ↘
gamble exchange physical moral

Fig. 3. Risk classification

2. Risk measures

The systems investigation is usually aimed at optimization of their performance,
thus eliminating or minimizing the risk.

Risk, as defined by the Concise Oxford English Dictionary, is ”a hazard,
a chance of bad consequences, loss or exposure to mischance”. The basic risk
classification is given by Fig. 3.

Pure risk (physical or moral), pertaining mainly to insurance, entails loss
only, whereas speculative one, connected in particular with finance, can entail
profit as well as loss.

Risk management is a discipline for living with the possibility that future
events may cause adverse effects. That means one needs (quantitative) risk mea-
surement, see, e.g. [?], [?]. Risk is usually associated with uncertainty, hence risk
management may be considered as decision making under uncertainty, see, e.g.
[?].

Risk measures (or objective functions) are based on loss distributions or their
functionals, such as mean, variance, quantile, premium principle etc.

The choice of objective function determines the approach used by a researcher.
The most well known approaches are cost and reliability ones. The cost approach
was used in inventory theory from the beginning, see, e.g. [?]. On the other hand,
the reliability approach was typical for actuarial sciences, see, e.g. [?]. Nowadays,
both are used, more or less frequently, in all the research domains mentioned in
Table 1, see, e.g. [?].

In the framework of the cost approach one can choose as an objective func-
tion total expected costs during the planning period, total discounted expected



Sensitivity Analysis of Some Applied Probability Models 61

costs, see, e.g. [?], [?], long-run average cost per unit time, net present value, see,
e.g. [?], [?], internal rate of return, see, e.g. [?], etc. Thus, an objective function
can depend on some scalar parameters (such as order and holding costs, penalties
for delays, inflation and interest rates etc.) as well as distributions of underlying
processes (for example demand and supply) if they are stochastic. The main goal
is cost minimization (or profit maximization).

We remind here some definitions which will be needed in Section 4. Although
the objective function LT (Z,Y,U) we are going to use a simpler notation LT (UT )
denoting by UT a class of feasible controls UT = {U(t), t ∈ [0, T ]}, for a given
planning horizon T . A collection of controls U = {UT , T ≥ 0} is called a policy.
Further we assume the distributions of underlying (stochastic) processes Y and
Z and all the parameters to be known.

Definition 1. An optimal control U ∗
T , if exists, is determined by the formula

LT (U∗
T ) = inf

UT∈UT

LT (UT ),

whereas U ∗ = (U∗
T , T ≥ 0) is an optimal policy.

Definition 2. A policy Û = (ÛT , T ≥ 0) is asymptotically optimal if it sat-

isfies the following relation

lim
T→∞

T−1LT (ÛT ) = lim
T→∞

T−1LT (U∗
T ).

Definition 3. A policy U = (UT , T ≥ 0) is stationary if, for all S, T ≥ 0,

UT (t) = US(t), t ≤ min(S, T ).

Although the reliability approach will not be used in the paper, we men-
tion, for completeness sake, that, in the framework of such an approach, the most
frequently chosen objective functions are ruin probability [?], [?] (probability of
system failure [?]), expected time until failure [?], value at risk, expected shortfall
(conditional value at risk), upper and lower partial moments [?]. During the last
decade, coherent risk measures became popular in finance and insurance, details
can be found in [?].

3. Sensitivity analysis

The objective of sensitivity analysis (SA) is to ascertain how a model depends on
its parameters and distributions of underlying processes and establish its stability
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(or instability) with respect to small deviations of parameters or perturbations
of processes.

There are a lot of methods for investigation of systems stability. One can
mention the Lyapunov stability in differential equations theory. An interesting
research direction in transportation networks is connected with stability of dy-
namic systems, see, e.g. [?]. The effects of perturbations in inventory networks
were considered e.g. in [?], [?].

The study of stochastic models stability using the probability metrics was ini-
tiated by V.M. Zolotarev in 1970s, see [?], [?], [?], [?], [?] and references therein.
The probability metrics are useful to measure the systems response to perturba-
tions of underlying stochastic processes, see, e.g. [?].

Here, giving a brief survey far from completeness, we concentrate on the so-
called local and global SA techniques appropriate for uncertain scalar parameters.
Their applications will be considered in Section 4.

Denote by R = g(a) a valuation criterion (objective function, decision made
or optimal control), a = (a1, a2, . . . , an) being a vector of model parameters.
From now on, as usual in SA, R will be called the system output, g(·) the model
and ai the i-th input parameter (or factor).

The local SA school studies the local response obtained by varying input
factors one at a time, while others are fixed at a nominal (or base-case) value.

The global SA school explores the space of input factors within finite (or
infinite) region, and variation of output is usually averaged over variation of all
the factors.

3.1. Local techniques

Let R0 = g(a0), a0 being the base-case value of parameters. Such values reflect
the decision maker (researcher) knowledge of assumptions made. Sensitivity of
model to changes in input parameters is usually tested through the so-called ”one-
way” or a combined SA scheme. That is, the change ∆R = R −R0 is registered
when a parameter (or a combination of parameters) is varied within a rationally
chosen range in order to draw conclusions on the consistency and correctness of
the valuation model, see [?] for description of the classical ”Tornado diagram”.
However this SA scheme should not be used to infer parameter importance, since
parameter changes ∆ai are not taken in consideration, see, e.g. [?]. Several local
SA techniques were developed to establish parameters importance, see e.g. [?],
[?], [?], [?] and [?].
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Differential importance measure (DIM) for the input as is defined as
follows

(1) Ds(a
0, da) = g′as

(a0) das




n∑

j=1

g′aj
(a0) daj




−1

(= dgs(a
0)/dg(a0).

DIM produces importance of parameters, for small deviations of their value
from the base-case value, under the assumptions: g is differentiable at a0 and
dg(a0) 6= 0, see, e.g. [?]. Thus DIM technique enables the researcher to distin-
guish the more influential factors. It is possible to consider either uniform or
proportional parameters changes.

(H1) Uniform parameters changes: das = h, for all s, whence

D1s(a
0) = g′as

(a0)

/ n∑

j=1

g′aj
(a0).

(H2) Proportional parameters changes: das/a
0
s = 1/w, for all s and some

w 6= 0, whence

D2s(a
0) = g′as

(a0)a0
s

/ n∑

j=1

g′aj
(a0)a0

j .

DIM technique generalizes other local methods such as applying Fussel-Vesely
importance measure and local importance measures based on normalized partial
derivatives, also known as measures of criticality importance or elasticity.

Elasticity of R0 with respect to the s-th parameter is given by

Es(a
0) = g′as

(a0)a0
s/R

0,

thus

D1s(a
0) = (Es(a

0)/a0
s)




n∑

j=1

Ej(a
0)/a0

j




−1

,

D2s(a
0) = Es(a

0)




n∑

j=1

Ej(a
0)




−1

.



64 Ekaterina V. Bulinskaya

In case (H1) Elasticity and DIM produce, in general, different ranking and no
definitive conclusions can be inferred using Elasticity, see [?].

In case (H2) Elasticity and DIM differ by a normalization factor.
If

∑n
j=1Ej(a

0) > 0, parameters are ranked in the same order,

and if
∑n

j=1Ej(a
0) < 0, the order is reversed.

DIM was used for analysis of investment projects by Borgonovo and Peccati,
see [?]. They considered NPV (net present value) of CF(cash flow)

R0 =

n∑

s=0

bsa
0
s(1 + α)−s

and IRR (internal rate of return) determined by

n∑

s=0

bsas(1 + IRR)−s = 0,

here bs is the non-extinction probability and α is the discount rate.

Since

D1s(a
0) = bs(1 + α)−s

/ n∑

j=0

bj(1 + α)−j ,

the importance of CF (determined only by the CF profile) is independent of CF
magnitude. Furthermore, D1s(a

0) > D1s+1(a
0), for all s, iff bs > bs+1/(1 + α)

for all s. Therefore if bs = 1 for all s, CFs near in time are more important than
CFs at later times.

For a review of local methods see also Turanyi [?].

3.2. Global techniques

The main goals of global sensitivity analysis are the following:

1. Understanding of the model dependence on the (uncertain) input parameters,
say, to make sure whether the output is determined by individual parameters or their
groups.

2. Determination of the global importance of parameters. This information can
be used to direct data collection and parameters estimation.

A qualitative type of global SA analysis is offered by some screening methods
aimed at identifying the active factors of a model at low computational costs and
ranking the input parameters in order of their importance, see [?], [?]. Monte



Sensitivity Analysis of Some Applied Probability Models 65

Carlo regression and correlation methods, scatterplots, standardized regression
coefficients, Pearson correlation measures, partial correlation coefficients, Spear-
man correlation etc. were used for global SA, see the review by Helton [?].

Now the most popular ones are two ANOVA (analysis of variance) type meth-
ods, namely, the Sobol’ decomposition and FAST (Fourier Amplitude Sensitivity
Test). They are reminded below.

3.2.1. SOBOL’ decomposition

Although the systems parameters are some (often unknown) constants it is useful
to treat them as r.v.’s. Assume that A = (A1, . . . , An) is uniformly distributed
in Kn = [0, 1]n and the function g(a), a ∈ Kn, is integrable. Put

g0 = ER =

∫

Kn

g(a) da,

gi(ai) =

1∫

0

. . .

1∫

0

g(a)
∏

k 6=i

dak − g0,

gi,j(ai, aj) =

1∫

0

. . .

1∫

0

g(a)
∏

k 6=i,j

dak − (g0 + gi(ai) + gj(aj)),

. . . . . . .

The Sobol’ method is based on the important result proved in [?].

Theorem 1 (Sobol’) For any a ∈ Kn, the following decomposition of g(a)
is unique:

g(a) = g0 +

n∑

i=1

gi(ai) +

n∑

i<j

gi,j(ai, aj) + . . .+ g1,...,n(a1, . . . , an).

Moreover, for any 1 ≤ i < . . . < s ≤ n,

1∫

0

. . .

1∫

0

gi,...,s(ai, . . . , as)
∏

k=i,...,s

dak = 0

and if (i, j, . . . ,m) 6= (k, l, . . . , p), then
∫

Kn

gi,j,...,m · gk,l,...,p da = 0.
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Corollary 1. The following decomposition of variance holds for a square in-

tegrable random variable R = g(A):

(2) V [R] =

n∑

i=1

Vi +
∑

i<j

Vi,j +
∑

i<j<k

Vi,j,k + . . . + V1,2,...,n,

where V [R] =
∫

Kn

g2(a) da − g2
0 and partial variances are calculated by way of

(3) Vi1,...,is =

1∫

0

. . .

1∫

0

g2
i1,...,is(ai1 , . . . , ais)

∏

k=i1,...,is

dak.

Now we can formulate further definitions assuming V [R] 6= 0.

Definition 4. Sensitivity index Si1,i2,...,is for a group of parameters

(ai1 , ai2 , . . . , ais), 1 ≤ i1 < i2 < . . . < is ≤ n, is given by Vi1,i2,...,is/V [R], whereas

the sensitivity index of order s is
∑

1≤i1<...<is≤n Si1,i2,...,is .

Thus Si is the first order contribution of the i-th parameter to the output variance,
while Si1,i2,...,is represents the parameters interaction.

Definition 5. Global sensitivity index GI(ai) of parameter ai is the sum of

all indices Si1,...,is, s ≥ 1, containing i

GI(ai) = (Vi +
∑

j 6=i

Vi,j + . . .+ V1,2,...,n)/V [R].

Thus, GI(ai) represents the total contribution of parameter ai to variance of out-
put. Now we are able to answer the following questions. Which of the uncertain
input factors is so uninfluential that we can safely fix it (them)? If we could
eliminate the uncertainty in one of the input factors, which should we choose to
reduce most the variance of output? The applicability of these sensitivity indices
is related to the possibility of evaluating the multidimensional integrals such as
(??) using Monte-Carlo methods.

Remark 1. Variance decomposition (??) is valid (with obvious changes) for

any distribution of A.

In the framework of numerical experiments similar decompositions are discussed
in [?], [?], [?] and [?], for details see also [?].
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3.2.2. Fourier Amplitude Sensitivity Test (FAST)

This method of SA was introduced in the 1970s by Cukier, Fortuin, Shuler,
Petschek and Schailby, see [?], and further developed by many researchers, see,
e.g. [?], [?] and references therein. FAST computes the ”main effect” contribution
of each input factor (parameter) to variance of output, in other words, its ”im-
portance measure”, see, e.g. [?]. It is closely related to design of experiments and
ANOVA studies, see [?]. The core feature of FAST is that the multidimensional
space of input parameters is explored by a suitably chosen search curve.

Let A be a random vector with pdf p(a1, . . . , an) on Kn and R = g(A), then
(if exists)

E[Rr] =

∫

Kn

gr(a1, . . . , an)p(a1, . . . , an) da, r = 1, 2.

Using multi-dimensional Fourier transformation of g it would be possible to per-
form ANOVA-like decomposition of V [R].

A monodimensional Fourier decomposition is done along a curve defined by
a set of parametric equations

(4) ai(s) = Gi(sinωis), i = 1, n, s ∈ (−∞,+∞).

Gi(·) are transformation functions (which will be described below) and {ωi},
i = 1, n, is the set of different frequencies associated with each parameter.

The curve is space filling, that is, arbitrarily close to any point of Kn iff∑n
i=1 riωi 6= 0 for any integer ri (incommensurable frequencies). In this case one

can estimate ERr using the Weyl ergodic theorem.

Due to the finite precision of computers ωi cannot be really incommensurable.
In practice ωi are positive integers, so g(s) = g(a1(s), . . . , an(s)) is periodic, more
precisely, as shown in [?], g(s + 2π) = g(s). Therefore we may expand g(s) in a
Fourier series

R = g(s) =

+∞∑

j=−∞

(Cj cos js+Bj sin js).

Variance estimate has the form

D̂ = (2π)−1

π∫

−π

g2(s) ds− [(2π)−1

π∫

−π

g(s) ds]2
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where, by the Parseval theorem,

D̂ =
∑

j 6=0

Λj = 2

∞∑

j=1

Λj , Λj = C2
j +B2

j , j ∈ Z.

Variance estimate due to the i-th parameter is obtained by evaluating the spec-
trum for the fundamental frequency ωi and its higher harmonics pωi, namely,

D̂i =
∑

p6=0

Λpωi
= 2

∞∑

p=1

Λpωi
.

Now

SFAST
i = D̂i/D̂

is the estimate of the main effect of ai on Y . Its magnitude does not depend, in
principle, on the choice of the set of frequencies taken for computation.

We note in passing that each ai(s) in (??) oscillates periodically at the cor-
responding frequency ωi whatever Gi is. Output R shows different periodicities
combined with different frequencies ωi whatever the model g is. If the i-th factor
has the strong influence on the output, the oscillations of R at frequency ωi will
be of high amplitude.

It was shown in [?] that SFAST
i , i = 1, n, are ”equivalent” to the Sobol’ sen-

sitivity indices of the first order, as well as to ”importance measures” considered
in [?], [?], [?], [?] or ”correlation ratio” treated in [?], [?]. All these measures
estimate the same underlying statistical quantity given by V [E(R|Ai)]/V [R].

An important question is how to choose the functions Gi. It was proposed in
[?] to take

ai(s) = a0
i e

νi sin ωis

where a0
i is the nominal value of the i-th factor, νi defines the endpoints of the

estimated range of uncertainty for ai and s ∈ (−π/2, π/2). Such transformation
is suitable for a factor with long-tailed and positively skewed pdf.

Another choice, see [?], is setting

ai(s) = a0
i (1 + νi sinωis),

which is appropriate for U-shaped pdf. The transformation

(5) ai(s) = (1/2) + (1/π) arcsin(sinωis)
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considered in [?] fits well the uniform distribution. This is the solution of the
following equation introduced in [?]

π(1 − a2
i )

1/2pi(Gi)(dGi(ai)/dai) = 1,

for the case pi(ai) = const, here pi is pdf of Ai.

In FAST the model g must be evaluated at Ns equally spaced sample points
along the closed path in the interval (−π, π). According to the Nyquist principle
the minimum sample size Ns = 2Mωmax + 1 where M is the interference factor
(≥ 4) and ωmax is the largest of the frequencies ωi. It is useful to choose Ns odd
to include the point s = 0 in the symmetric set of samples, for details see, e.g.
[?].

All the transformations introduced above have a drawback, namely, as s varies
in (−π/2, π/2), they always return the same points in Kn. To make the model
evaluations used more efficiently the following modification of (??) was proposed
in [?]

ai(s) = (1/2) + (1/π) arcsin(sin(ωis+ ϕi))

where ϕi is a random phase-shift uniformly distributed in [0, 2π).

By selecting various sets {ϕ1, . . . , ϕn} different curves can be generated. This
procedure is called resampling by the authors of [?]. Let kr be the number of
curves obtained. The sample size in resampling scheme must beNs = kr(2Mωmax+
1).

An extension of FAST, to calculate the total contribution of each parameter
to the output variance, is introduced in [?] and it is compared with the Sobol’
method.

4. Applications

To illustrate the performance of the above described SA techniques we begin by
applying them to a simple inventory model introduced for the first time in 1915
by Harris [?] and rediscovered later independently by many authors, for the last
time by Wilson in 1934, see [?]. Many modifications of this model appeared since
then and are widely used in inventory management, see, e.g. [?], [?], [?].

We consider this model because it is possible to obtain an explicit form of the
global sensitivity indices, using the Sobol’ decomposition.

Remark 2. It is always possible to obtain an explicit form of global sensi-

tivity indices when parameters Ai, i = 1, n, are independent and g(a) =
∏
gi(ai)

with Eg2
i (Ai) < ∞. Moreover, for linear g(a) =

∑
gi(ai) the decomposition (??)

contains only summands of the first order.
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In the second part of this Section we introduce and study a new discrete-time
insurance model. The cost approach is used in both models.

4.1. Wilson-Harris formula for EOQ

Consider the choice of an EOQ (economic order quantity), minimizing the total
costs incurred in the following deterministic model.

Let a1 be a fixed order cost, a2 a constant demand during a planning period
and a3 a fixed holding cost per unit time, furthermore, there is no delivery lag.
Denoting by Q the order quantity we have to minimize (a1a2/Q) + (a3Q/2).
Hence

Q∗ = g(a) =
√

2ap1

1 a
p2

2 a
p3

3 , p = (0.5, 0.5,−0.5).

According to Definition ?? and Corollary ?? one has to calculate

E[Q∗] =
√

2
∏

E[Api

i ],

V [Q∗] = 2(
∏

E[A2pi

i ] − (
∏

E[Api

i ])2),

Vi = 2(
∏

j 6=i

E[A
pj

j ])2V [Api

i ],

Vs,r = 2E[Api

i ]2V [Ar]V [As], i 6= s, r,

V1,2,3 = V −
3∑

i=1

Vi − V1,2 − V1,3 − V2,3.

In the paper [?] the indices GI(ai), i = 1, 2, 3, were calculated for two par-
ticular cases (relative error in parameters estimation being 25% and 99%). More
general results are proved by the author’s students in [?]:

Theorem 2. Let Ai be uniformly distributed on [ai(1 − k), ai(1 + k)], k ∈
(0, 1). Then

1. GI(ai), i = 1, 2, 3, depend only on k,

2. GI(a1) = GI(a2) ≤ GI(a3).

Corollary 2. The same results are true if Ai has a Gamma-distribution with

EAi = ai, V [Ai] = (aik)
2.

Along with the Sobol’ method, FAST was used for ai of the form (??) and with
ω = (5, 7, 13). Parameter a3 was found the most influential, since Q∗(s) = ∞ for
s = (3π + 4πk)/2ω3, k 6= 0. For details see [?].
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4.2. Insurance company model (discrete time)

Assume that by the end of a year the company can make one of the following
decisions: I – to sell some assets (immediately), II – to borrow some money,
the loan being available by the end of the next year, III – both above decisions
simultaneously.

We take into account the following parameters: c1 is the loss incurred by
selling assets unit, c2 is the interest rate while borrowing, r is the penalty for
payment delay, p is the inflation rate, x is the initial capital (if x < 0 its absolute
value is the company debt) and ξn is the excess of claims Yn over premiums Zn

in the year n, in other words, ξn = (Yn − Zn)+.

Suppose that {ξn}n≥1 is a sequence of i.i.d. nonnegative r.v’s with a finite
mean γ = Eξn < ∞ and a density ϕ(s) > 0 for s belonging to some finite or
infinite interval of R+. The corresponding distribution function

(6) F (t) = P (ξn ≤ t) =

t∫

0

ϕ(s) ds, F (t) = 1 − F (t).

4.2.1. Known distribution

We denote by fn(x) the minimal average n years costs. According to the Bellman
optimality principle

fn(x) = min
z1≥0,z2≥0

[c1z1 + c2z2 + L(x+ z1) + Efn−1(x+ z1 + z2 − ξ1)]

where f0(x) ≡ 0 and

L(v) = p

v∫

0

(v − s)ϕ(s) ds+ r

∞∫

v

(s− v)ϕ(s) ds.

Putting v = x+ z1, u = v + z2 and

Gn(u, v) = (c1 − c2)v + c2u+ L(v) +

∞∫

0

fn−1(u− s)ϕ(s) ds

one gets

(7) fn(x) = −c1x+ min
u≥v≥x

Gn(u, v).
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To establish the optimal control we introduce the following notation

Kn(v) =
∂Gn

∂v
(u, v) = c1 − c2 + L′(v) (= K(v)),

Sn(u) =
∂Gn

∂u
(u, v) = c2 +

∞∫

0

f ′n−1(u− s)ϕ(s) ds

and

Tn(u) = Kn(u) + Sn(u) = c1 + L′(u) +

∞∫

0

f ′n−1(u− s)ϕ(s) ds.

Let v satisfy K(v) = 0, that is F (v) = (r + c2 − c1)/(r + p), moreover,

(8) Sn(un) = 0, Tn(tn) = 0, H(u) = 0,

where

(9) H(u) = c2 − c1 +

u−v∫

0

K(u− s)ϕ(s) ds

and

(10) F (t) = r/(r + p), F 2∗(û) = r/(r + p).

Theorem 3. Optimal behaviour at the first step of n-step process has the

form:

(A) If c1 ≤ c2, (l − 1)r < c1 ≤ lr, then u = v = x for n < l and u = v =
max(tn, x) for n ≥ l. The sequence {tn} is bounded, increasing, and limn→∞ tn =
t.

(B) If c2m/(m− 1) ≤ c1 ≤ min(c2 + r, c2(m− 1)/(m− 2)), m ≥ 2, (l− 1)r <
c1 ≤ lr, l ≥ 1 (hence m ≥ l and un ≥ v for n ≥ m), then u = v = x for n < l
and v = max(v, x), u = max(un, x) for n ≥ m. The sequence {un} is bounded,

increasing, and limn→∞ un = u.
If l ≤ n < m, then the optimal decision may be determined either by parame-

ters (un, v), or tn, moreover, if tn0
is optimal for some n0, then tn is also optimal

for l ≤ n < n0.

(C) If c1 > c2 + r, (k − 1)r < c2 ≤ kr, k ≥ 1, then u = v = x for n ≤ k and

v = x, u = max(un, x) for n > k. The sequence {un} is bounded, increasing, and

limn→∞ un = û.
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The proof is carried out by induction. According to (??), in order to obtain fn(x)
we have to minimize Gn(u, v) over the set {(u, v) : u ≥ v ≥ x}, see Fig. 4. The
minimum can be attained either inside this set or on its boundary. In the first
case the corresponding point is the solution of the system Sn(u) = 0, K(v) = 0
(since Kn(v) does not depend on n). In the second case there are two possibilities.
Either u = v, then one has to take the solution of Tn(u) = 0, or v = x, then it is
necessary to use the solution of Sn(u) = 0.

Fig. 4. Optimization set

0

x

x

v

u

IIII→

↗
II

Now put n = 1. Since S1(u) = c2 > 0, we have to consider T1(u) = c1 +L′(u).
In other words, the optimal behaviour is determined by t1 satisfying the relation
F (t1) = (r− c1)/(r+p), if such t1 exists, that is, for c1 ≤ r. Then one sells assets
to get (t1 − x)+ and

f1(x) =

{
−c1x+G1(t1, t1), x ≤ t1,
L(x), x ≥ t1,

f ′1(x) =

{
−c1, x ≤ t1,
L′(x), x ≥ t1.

If c1 > r then f1(x) = L(x) for all x.

Note that the solution of K(v) = 0 is given by F (v) = (r + c2 − c1)/(r + p).
Hence it exists only for c1 ≤ c2 + r, otherwise K(v) > 0. That means, for
c1 > c2 + r one always takes v = x. In other words, in case (C) it is optimal
never to sell assets and one has only to decide how much to borrow. For n = 2 it
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is easily seen that

S2(u) = c2 +

∞∫

0

L′(u− s)ϕ(s) ds = c2 − r + (r + p)F 2∗(u).

Thus, if c2 ≤ r, there exists u2 satisfying the relation F 2∗(u2) = (r − c2)/(r + p)
and

f2(x) =





−c2x+ L(x) +G2(u2, x), x ≤ u2,

L(x) +
∞∫
0

L(x− s)ϕ(s) ds, x ≥ u2,

f ′2(x) =





−c2 + L′(x),

L′(x) +
∞∫
0

L′(x− s)ϕ(s) ds.

If c2 > r then f2(x) = L(x) +
∞∫
0

L(x− s)ϕ(s) ds for all x.

Now we finish induction procedure for the case (C), namely, c1 > c2+r, under
additional assumption c2 ≤ r. Then

S3(u) = S2(u) +

∞∫

0

(f ′2(u− s) − f ′1(u− s))ϕ(s) ds

and f ′2(x)−f ′1(x) = −c2 for x ≤ u2, whence S3(u2) < 0 easily follows, so u3 > u2.
Moreover,

(11) Sn(u) =

∞∫

0

L′(x−s)ϕ(s) ds+

u−un−1∫

0

Sn−1(u−s)ϕ(s) ds ≥ −r+(r+p)F 2∗(u),

leading to conclusion un ≤ û with F 2∗(û) = r/(r + p). The sequence {un} being
bounded and nondecreasing there exists limn→∞ un and its coincidence with û is
readily deduced from (??). The other subcases of (C), (k− 1)r ≤ c2 ≤ kr, k > 1,
are treated similarly.

Next, assuming c1 ≤ c2, case (A), and c1 ≤ r, one has, for n = 2,

S2(u) = c2 − c1 +

u−t1∫

0

T1(u− s)ϕ(s) ds > 0,
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hence u = v (there is no need to borrow) and it remains to consider

T2(u) = L′(u) +

u−t1∫

0

T1(u− s)ϕ(s) ds.

From this point one proceeds in the same way as in case (C), establishing that
the sequence {tn} is bounded, nondecreasing and limn→∞ tn = t with L′(t) = 0.

Finally, in case (B), that is, c2 < c1 ≤ c2+r, there exists v satisfyingK(v) = 0.
So, for n ≥ 2, one has to choose between decision I with u = v = max(tn, x) and
decision III with v = max(v, x) and u = max(un, x).

Assume additionally, l = 1, m = 2, for n = 2, that is, 2c2 ≤ c1 ≤ r. Since

S2(u) = c2 − c1 +

u−t1∫

0

[c1 + L′(u− s)]ϕ(s) ds,

it follows easily that S2(v) < 2c2−c1 ≤ 0. Therefore there exists u2 > v satisfying
S2(u2) = 0 and decision III is optimal for n = 2. The first step of induction is
verified. Assuming the same is true for all steps up to n one gets

f ′n(x) =





−c1, x < v,
−c2 + L′(x), v ≤ x < un,
−c2 + L′(x) + Sn(x), x ≥ un.

Then Sn+1(u) = Sn(u) + (f ′n − f ′n−1) ∗ F (u) where

f ′n(x) − f ′n−1(x) =





0, x < un−1,
−Sn−1(x), un−1 ≤ x < un,
(f ′n−1 − f ′n−2) ∗ F (x), x ≥ un.

It is obvious that Sn+1(un) < 0, that is, un+1 > un. Moreover, for any n > 2,

Sn(u) ≥ H(u) = c2 − c1 +

u−v∫

0

K(u− s)ϕ(s) ds,

whence it follows un ≤ u and H(u) = 0. It is also not difficult to establish that
u = limn→∞ un.
The other combinations of l and m are treated along the same lines. �

Now recall advantages and shortcomings of dynamic programming. Equation
(??) lets to use n-fold minimization of a function of two variables instead of
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minimization of a function of 2n variables. However the planning horizon n must
be known beforehand and it cannot be changed later. Critical levels tn and un

are calculated recurrently.

Fortunately, there exists a stationary asymptotically optimal policy Π. Its form
depends on the parameters set one considers. Let xk−1 be the capital at the end
of the (k − 1)-th year, k ≥ 1, and x0 = x. Then Π prescribes:

In case (A) sell the assets to get the money amount (t− xk−1)
+.

In case (B) sell the assets to get (v − xk−1)
+ and borrow min[(u − v), (u −

xk−1)
+].

In case (C) borrow (û− xk−1)
+.

Due to the lack of space we treat below only cases (A) and (B), denoting by f̂n(x)
the n years expected costs incurred under policy Π.

Theorem 4. Stationary policy Π is asymptotically optimal, that is, for any

x ∈ R

lim
n→∞

n−1f̂n(x) = lim
n→∞

n−1fn(x).

The proof consists of two lemmas.

Lemma 1. For any x ∈ R, there exists

lim
n→∞

n−1f̂n(x) = d0,

where in case (A)

d0 =

∞∫

0

[c1s+ L(t− s)]ϕ(s) ds

and in case (B)

d0 =

u−v∫

0

[c2s+ L(u− s)]ϕ(s) ds+

∞∫

u−v

[c1s+ (c2 − c1)(u− v) + L(v)]ϕ(s) ds.

P r o o f. We consider below the more complicated case (B), the changes in case
(A) being obvious. If x ≤ u then it is easily seen that xk = u− ξk, for all k ≥ 1.
Therefore f̂n(x) = f̂1(x) + (n− 1)d0 with

f̂1(x) =

{
c1(v − x) + c2(u− v) + L(v), x ≤ v,
c2(u− x) + L(x), v < x ≤ u.
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Since f̂1(x) is finite for a fixed x ≤ u, the statement of Lemma is obvious for such
x.

If x > u nothing is done until the capital becomes less than u, therefore

xk =

{
x− ∑k

i=1 ξi, k ≤ νx,
u− ξk, k > νx,

where

νx = max

{
k :

k−1∑

i=1

ξi < x− u

}
.

It follows immediately that

f̂n(x) =
n−1∑

m=1

P(νx = m)κ(x,m, n) + P(νx ≥ n)κ1(x, n).

The functions κ(x,m, n) and κ1(x, n), being the expected conditional n years
costs under assumptions νx = m and νx ≥ n respectively, have the form

κ1(x, n) = L(x) +

n−1∑

k=1

x−u∫

0

L(x− s)ϕk∗(s) ds,

κ(x,m, n) = κ1(x,m) + κ2(x,m) + (n−m− 1)d0

with κ2(x,m) given by

x−v∫

x−u

[c2(u−x+s)+L(x−s)]ϕm∗(s) ds+

∞∫

x−v

[c1(v−x+s)+c2(u−v)+L(v)]ϕm∗(s) ds.

After some transformations one gets f̂n(x) = nd0
∑n−1

m=1 P(νx = m)+δn(x) where

−d0(2 + Eνx) ≤ δn(x) ≤ c2(u− v) + [c1γ + l(x)](1 + Eνx).

Since l(x) = maxz∈[v,x]L(z) and Eνx are finite for any x > u, the proof is com-
pleted. �

Lemma 2. For any x ∈ R, there exists

lim
n→∞

n−1(f̂n(x) − fn(x)) = 0.
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P r o o f. Let f l
n(x) denote the expected n-step costs under assumption that

(u, v)-policy is used during the first l steps and after that we apply the optimal
policy. It is obvious that fn(x) = f0

n(x) and f̂n(x) = fn
n (x). Since un → u, as

n → ∞, for any ε > 0 there exists N = N(ε) such that u ≥ un ≥ u − ε, for
n > N . Furthermore,

(12) |f r
N+r(x) − fN+r(x)| ≤

r−1∑

i=0

|f i+1
N+r(x) − f i

N+r(x)|,

and

(13) max
x

|f i+1
N+r(x) − f i

N+r(x)| ≤ max
x

|f1
N+r−i(x) − f0

N+r−i(x)|.

Hence, taking into account (??) and (??) along with maxx |f1
n(x) − f0

n(x)| ≤
dε, for n > N , and d = c1 + 2c2 +mp, if mc2 ≤ (m− 1)c1, we obtain

|f r
N+r(x) − fN+r(x)| ≤ rdε.

To finish the proof, note that |f̂N+r(x) − f r
N+r(x)| ≤ B(x) where

B(x) = max
u≤y≤max(x,u)

∞∫

0

(f̂N (y − s) + fN (y − s))ϕ(s) ds

is finite for any x. �

For the investigation of the unknown demand case, under assumptions (A)
and (B), we need also another result, namely, the stability of the policy Π with
respect to small perturbations of distribution F .

Denote by vk (resp. uk) the values of v (resp. u) obtained taking Fk(t)
instead of F (t) (tk being value of t). Moreover, set

µ(Fk, F ) = sup
t

|Fk(t) − F (t)|,

that is, µ is the Kolmogorov (or uniform) metric.

Lemma 3. Let d.f ’s Fk(t) be continuous and strictly increasing for any k ≥
1. Then vk → v, uk → u (and tk → t), provided that µ(Fk, F ) → 0 as k → ∞.

P r o o f. According to assumptions Fk(v
k) = F (v) and |Fk(vk) − F (vk)| ≤

µ(F, Fk). Hence |F (v) − F (vk)| ≤ µ(F, Fk). That means vk → v, as k → ∞.
Similarly tk → t.
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In order to establish the result concerning uk and u it is sufficient to verify
that µ(Hk,H) → 0, as k → ∞. It is not difficult to see that µ(Hk,H) ≤ (r+ c2−
c1)µk1+(r+p)µk2 with µk1 = µ(Fk, F )+w(|v−vk|), µk2 = 2µ(Fk, F )+w(|v−vk|)
and w(t) = sup|s1−s2|<t |F (s1)− F (s2)|. Since a continuous distribution function
is uniformly continuous, w(t) → 0, as t → 0, ensuring µ(Hk,H) → 0 as k → ∞.
�

4.2.2. Unknown distribution

In the most practical cases there is no a priori information concerning the distri-
bution F .

Let ξi, i = 1, k, be loss observations during k years. The ordered sample
η1 = min1≤i≤k ξi ≤ η2 ≤ . . . ≤ ηk max1≤i≤k ξi is used for calculation of empirical
distribution function and its continuous analogue:

F̃k(t) = νk(t)/k, F̂k(t) = k−1
k∑

i=1

φkl(t),

where νk(t) = max{i : ηi ≤ t}, φkl(t) is a d.f. of a r.v. uniformly distributed on
(ηl−1, ηl), l = 1, k, η0 = 0.

Lemma 4. Let tk, uk and vk be the values of tk, uk and vk corresponding to

Fk(t) = F̂k(t). Then almost surely µ(Fk, F ) → 0, tk → t, uk → u and vk → v, as

k → ∞.

As previously, let xk−1 be the capital at the beginning of the k-th step.

The empirical asymptotically optimal policy (EAOP) Π̂ is described as follows:
at the first step do nothing, for k ≥ 2 in case (A) sell assets to get (tk−1−xk−1)

+ and
in case (B) sell assets to get (vk−1−xk−1)

+ and borrow min[(uk−1−vk−1), (uk−1−
xk−1)

+].
The costs associated with Π̂ are

ψ̂1 = p(x− ξ1)
+ + r(ξ1 − x)+, x0 = x,

and, for n > 1, in case (A)

ψ̂n = p(zn − ξn)+ + r(ξn − zn)+ + c1(tn−1 − x)+,

with zn = max(x, tn−1), whereas in case (B), ψ̂n =

p(yn−ξn)++r(ξn−yn)++c1(vn−1−xn−1)
++c2 min[(un−1−vn−1), (un−1−xn−1)

+],

yn = max(xn−1, vn−1) being the capital after assets selling. Then Gk(x) =∑k
n=1 Eψ̂n represents the k steps expected costs under policy Π̂.



80 Ekaterina V. Bulinskaya

Theorem 5. The policy Π̂ is asymptotically optimal.

In view of Lemma ?? it is enough to verify

lim
n→∞

n−1Gn(x) = d0.

In case (B) the proof is based on the following two results.

Lemma 5. For any ε > 0 there exist a subset Ωε and positive N(ε) such that

P(Ωε) > 1− ε and |u−un| < ε, |v− vn| < ε, xn < u+ ε on Ωε, for all n ≥ N(ε).

Lemma 6. A sequence Eψ̂n converges to d0 as n→ ∞.

The hard part of the proof is to establish xn < u + ε, for all n ≥ N(ε), on Ωε.
Analogous statement is proved in [?].

Thus we have proposed the following algorithm for construction of EAOP which
can be used in other applications as well:

1. The first step is to establish the optimal policy for the known distributions
of underlying processes.

2. The second step is to construct a stationary asymptotically optimal policy
under the same assumptions about distributions of underlying processes.

3. The third step is to find an empirical asymptotically optimal policy (EAOP).

4.2.3. Sensitivity analysis of the model

The results of Theorem ?? can be written in the compact form as follows:

(A) ⇐⇒ I, (B) ⇐⇒ III, (C) ⇐⇒ II,

where decisions I, II and III were introduced at the beginning of Section 4.2. Fig. 5
shows clearly the stability domains, that is, the sets of parameters c1, c2 with the
same type of optimal policy.

Now we study the system response to parameters variations. Namely, we
are interested in the behaviour of critical levels t, u, v and û determining the
asymptotically optimal policy for the cases (A), (B) and (C) respectively.

Note that in the case (B), for any fixed r and p, critical levels u, v depend on
b = c1 − c2 only. From (??)-(??) it is not difficult to obtain the following result.

Corollary 3. If b increases from 0 to r the function v(b) decreases from t to

0, and the function u(b) increases from t to û.
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Fig. 5. Stability domains
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Hence, although on the boundary c2 = c1, between (A) and (B), one smoothly
switches from policy of type I to that of type III (v(0) = u(0) = t), on the other
boundary c2 = c1 − r, between (B) and (C), there is a ”jump”, since switching
from type III to type II means, in fact, choosing v = −∞.

Next we use the local SA calculating the differential importance measure
(DIM) defined by (??). Recall that, according to (??), t (resp. û) are implicit
functions g(a) of parameters a1 = r and a2 = p, whereas u and v are functions
of three parameters, that is, a1, a2 and a3 = b.

Theorem 6. Under assumptions (A), (B) and (C) the differential impor-

tance measures for all parameters do not depend on distribution F introduced by

(??).
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P r o o f. Since F (t) = h(a1, a2) with h(a1, a2) = a1/(a1 + a2), one gets

(14)
∂g

∂ai
= ϕ(t)

∂h

∂ai
, i = 1, 2,

whence the statement of Theorem for t is obvious. The same is true for û, since
instead of ϕ(t) one has to put ϕ2∗(û) in (??).

Moreover, F (v) = h(a1, a2, a3) with h(a1, a2, a3) = (a1−a3)/(a1+a2). There-
fore expressions (??) can be written for v as well, i = 1, 2, 3.

On the other hand, from (??) and (??) one concludes that

u−v∫

0

K(u− s)ϕ(s) ds = a3.

Thus, for i = 1, 2,

[
∂u

∂ai
− ∂v

∂ai

]
K(v)ϕ(u− v) +

∂u

∂ai

u−v∫

0

K ′(u− s)ϕ(s) ds = 0.

Taking into account that K(v) = 0 and ϕ is strictly positive one gets ∂u/∂ai = 0,
i = 1, 2. In a similar way

∂u

∂a3
=


(a1 + a2)

u−v∫

0

ϕ(u− s)ϕ(s) ds



−1

.

Therefore DIMs of u with respect to parameters a1 and a2 are equal 0, while for
parameter a3 it is equal to 1. Hence, the parameter a3 is the most influential and
DIM’s do not depend on the distribution F . �

Now we calculate DIMs when g represents t, for graph of D11(a
0) see Fig. 6.

It follows from (??) that, under uniform parameters changes, DIMs for t and
û are given by

(15) D11(a
0) =

a0
2

a0
2 − a0

1

, D12(a
0) = − a0

1

a0
2 − a0

1

= 1 −D11(a
0),

that is, they are well defined for a0
1 6= a0

2. Moreover, D11(a
0) > 1, D12(a

0) < 0
for a0

2 > a0
1 and D11(a

0) < 0, D12(a
0) > 1 for a0

2 < a0
1. On the other hand, for
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Fig. 6. D11(a
0) for t

proportional parameters changes DIMs do not exist for all (a0
1, a

0
2) ∈ K2.

Furthermore, for v, under uniform parameters changes,

D11(a
0) =

a0
2 + a0

3

2(a0
3 − a0

1)
, D12(a

0) =
1

2
, D13(a

0) = − a0
2 + a0

1

2(a0
3 − a0

1)
,

that is, they are well defined for a0
3 6= a0

1 (in other words, except the boundary
between (B) and (C)). However, for proportional parameters changes, DIMs do
not exist.

Now we turn to global SA. Using Corollary ?? and Definition ?? one can
write

IG(a1) = 1 − V2

V
, IG(a2) = 1 − V1

V
.

Suppose the i-th parameter to be uniformly distributed on (a0
i (1− k), a0

i (1+ k)),
0 < k < 1, i = 1, 2. The aim is to obtain the global sensitivity indices as func-
tions of k. Unfortunately, even for simplest distributions F , such as uniform or
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exponential, it turned out impossible to get the explicit form of IG(ai). However,
using for example Maple 8, it is not difficult to draw the graphs desired.

Moreover, in contrast to local SA, it is possible to study the case a0
1 = a0

2.
Thus, Fig. 7 gives the form of global indices as functions of k (for g(a) = t
and a0

1 = a0
2 = 0.5). It is easily seen that IG(a1) decreases, whereas IG(a2)

increases, as k increases, the parameter a2 being more influential. For k = 0.25
one has IG(a1) = 0.4949060035 and IG(a2) = 0.5077327062, that means, even
if the relative error in parameters estimation is 25%, the model behaves ”almost
additively”, V12 giving only 0.2% of total variance. Moreover, for k = 0.5 one
has IG(a1) = 0.4775592923 and IG(a2) = 0.5334429254 and V12 gives 1.1% of
total variance. Hence, parameters interaction is higher for larger errors in their
estimation.

Using transformation (??) with ω = (11, 5) expression of t was plotted as a
function of s for exponential distribution function F (t) = 1−e−t, t ≥ 0, see Fig. 8
which shows also that parameter a2 is more influential than a1.
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5. Conclusions

We have recalled the Differential Importance Measure and two global sensitivity
analysis techniques (the Sobol’ decomposition and FAST) and applied them to
the classical Harris-Wilson EOQ formula and a discrete-time insurance model.

It turned out that for the first model it is possible to get the explicit form
of global sensitivity indices. Moreover, it was established that for uniform and
Gamma distributions of parameters these indices do not depend on the base
values.

The second model is a new one. In contrast to usual practice in insurance
theory where the time is assumed to be continuous and the objective function
is a ruin probability we consider a discrete-time model in the framework of cost
approach. Since the reserves are formed by the end of the year, as well as rein-
surance treaties have the one year length, the decisions being also made by the
end of the year, it is reasonable to study the company behaviour by the end of
the year. It is interesting to mention that in the context of dividends payment
some authors also began to study the company behaviour ”after the ruin”. That
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means that shareholders can use their money to raise the company capital to
some positive level, see, e.g. [?]. Here we suppose that, having doubts whether
the cash available will suffice to pay the indemnity, the company may decide to
sell some assets or to borrow money.

At first we studied the optimal behaviour using the dynamic programming.
The existence of stationary asymptotically optimal policy was established under
the assumption of known loss distribution. The last step was construction of
empirical asymptotically optimal policy in case of incomplete information or when
nothing is known about the distribution of loss. Thus, we proposed an algorithm
of obtaining EAOP which may be useful in other research fields.

At last we studied the model dependence on cost parameters using the above
mentioned techniques. It is interesting to note that DIMs for all critical levels do
not depend on distribution. Since it is impossible to obtain the explicit formula
for global indices, the numerical calculations were performed.
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