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MULTIRESPONSE ROBUST ENGINEERING:

CASE WITH ERRORS IN FACTOR LEVELS

Elena Koleva, Ivan Vuchkov, Kamen Velev

The model-based robust approach for improving the quality of the process
is successfully applied to different industrial processes. In the case of multi-
ple correlated responses the estimation of the mean and variance models of
the quality characteristics in production conditions, taking into account the
correlation between the multiple responses, together with the heteroscedas-
ticity of the observations due to errors in the factor levels is considered at
multivariate regression fit, robust engineering modeling and the optimiza-
tion stages. The application of the proposed method gives the possibility to
use raw industrial data for mean and variance models estimation and leads
to reduction of the predicted variance of the responses in production con-
ditions. The proposed approach is applied for electron beam melting and
refining experiments.

1. Introduction

The Robust Parameter Design (RPD) is an issue of numerous papers in the liter-
ature since 1990 [1, 2], but there are much less of them in the area of application
of RPD [3, 4] for multiple responses. Some of these articles consider the mul-
tiresponse case, when replicated observations are available [5], while others are
focused on formulation of appropriate optimization criteria. Examples for such
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criteria are: (i) a criterion, representing an appropriate compromise between both
the process economics and the correlation structure among responses [6], (ii) a
new loss function, incorporating small bias, high robustness and high quality of
predictions [7].

The model-based robust approach for improving the quality of the process
[4, 8] can be successfully applied to different industrial processes. For each of
the quality performance characteristics, using their regression models, two other
models are estimated – for their mean values and their variances. The quality
improvement is performed using some overall criterion or simply by the perfor-
mance characteristic variance minimization, while keeping the mean values close
to their target values. The model of the mean value of the performance char-
acteristic, which is a function of process parameters that are subject to errors
during the industrial production process, is [4]:

(1) ỹ(p) = E[y(z)] = η(p) + θ̂′E(g)

where η(p) is a model of the quality performance characteristic, for example
a polynomial regression model, obtained by the response surface methodology.
The second term takes into account the bias caused by the errors transmitted
from the process parameters p to the performance characteristic ỹ(p), where θ̂′

is the vector of the estimates of the regression coefficients in the model η(p).
E(g) stands for the mathematical expectation of g = h − f, h is a vector of the
regressors z in the regression model, considered as containing errors e (for any
process parameter – zi = pi + ei) and f is the regressors vector of the process
parameters p.

The model for the variance of the quality performance characteristic that
is due to errors in factor levels, if the bias that comes from the precision of the
estimation of the regression model (negligible in many cases) is taken into account
(by the second term), is [4]:

(2) ŝ2 = s̃2 − tr[Ψ V(θ̂)] = θ̂′Ψθ̂ + s2ε



1 −
k

∑

i=1

ψiicii − 2
k−1
∑

i=1

k
∑

j=i+1

ψijcij





where ψ = g − E(g), is defined on the basis of the variances for each process
parameters p, which can be calculated using the tolerance limits of the process
parameters or on the base of replicated observations, Ψ = E(ψψ′) depends on
the structure of the regression model and the experimental design, s2ε is the es-
timate of the random error of the performance characteristic; ψii and ψij are
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correspondingly the diagonal and non-diagonal elements of Ψ, cii and cij are the
diagonal and non-diagonal elements of the variance-covariance matrix, which be-
come smaller with the growth of the number N of the experiments (observations),
and k is the number of terms in the regression model. With s̃2 is denoted the
variance of the quality performance characteristic, which is due to the errors in

factor levels (θ̂
′

Ψθ̂) and the random error s2ε . For a big number of observations
or small values of s2ε the bias is negligible.

This paper considers estimation of the models of the means and the variances
in the typical for an industrial process case of multiple correlated responses, when
heteroscedasticity of the observations and errors in the factors levels are present.
The parameter estimation, when there are correlations between the multiple re-
sponses [9, 10] and errors in the factors levels in the production stage (there is
heteroscedasticity [4, 8] by applying of a new combined method [11, 12] is con-
sidered. Both the correlation and the heteroscedasticity should be taken into
account in order to improve the accuracy of the estimated models. A big advan-
tage of the proposed method is the possibility to use raw industrial experimental
data, instead of the necessary very precise parameter estimation of the regres-
sion models without errors in the factor levels, done for example in laboratory
conditions.

2. Combined method for regression parameter estimation

The multiresponse approach [9] gives as a result estimates of the regression coef-
ficients that take into consideration the correlation between the responses, which
is usually the case. They can be estimated through a two-stage Aitken estima-
tor [13]. The heteroscedasticity of observations can be considered through the
application of the weighted least square estimates [4] The two approaches are
combined and a new combined method for regression parameter estimation is
applied here [11, 12]. Using this method, the parameter estimates are calculated
iteratively in several stages [11]:

Step 1. The ordinary least squares estimates (OLSE) b0 are found for each
of the responses:

b0,i = (X′

i Xi)
−1X′

iYi,

where Xi are the matrices of known functions f (regressor vectors) of the process
parameters p, defined by the regression models and the performed experiments
for each of the responses Yi, i = 1, 2, . . ., r.
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Step 2. An estimate of the random error can be found by:

s2ε,i =
1

N − ki

N
∑

u=1

(yu,i − ŷu,i)
2.

Step 3. The models for the mean eq.(1) and the variance eq.(2) are estimated
for each of the performance characteristics.

Step 4. The matrix Σ̃h,i is estimated:

(3) Σ̃h,i =







σ̃2
1 · · · 0
...

. . .
...

0 · · · σ̃2
N







by calculation of the estimates of the variances σ̃2
i,u at each experimental run

u = 1, . . ., N for each of the i = 1, . . . , r responses, using eq. (2). The matrices
Σ̃h,i estimates the heteroscedasticity of the observations.

Step 5. The variance-covariance matrix Σ̃m of the random error of all perfor-
mance characteristics takes into account also their correlation. If it is unknown,
its elements (σ̂ij) can be estimated by [9]:

Σ̃m = (σ̂ij),

σ̂ij = Y′

i[IN − Xi(X
′

iXi)
−1X′

i][IN −Xj(X
′

jXj)
−1X′

j ] Yj/N,

for i, j = 1, 2, . . ., r.

Step 6. The combined method variance-covariance matrix is:

(4) ∆̃ =
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where ∆̃ is calculated with elements:
{

˜̂σii,u = σ̂iiσ̃
2
i,u

˜̂σij,u = σ̂ij σ̃i,uσ̃j,u
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where σ̃2
i,u and σ̂ij are elements of the variance-covariance matrices Σ̃h,i and

Σ̃m correspondingly. One (Σ̃h,i) takes into account the heteroscedasticity of
observations (the difference in variances at each experimental run) and the other
(Σ̃m) takes into account the correlation between the responses.

Step 7. A combined method parameter estimates are calculated by:

(5) b̃ = (Z′∆̃
−1

Z)−1Z′∆̃−1Y,

where Z=diag(X1,. . . ,Xr) is a block-diagonal matrix with diagonal elements –
the matrices Xi; and Y=[Y′

1,. . . ,Y
′

r]
′ is a vector, consisting of the observations

for each of the r responses.

Step 8. The criterion Crj is calculated by:

(6) Crj =
k

∑

i=1

(

θ̃j,i − θ̃j−1,i

)2

θ̃2
j,i

,

where k = k1 + k2 + · · · + kr is the sum of the regression coefficients in the
regression models for each of the r responses. The criterion Crj is calculated for
j-th iteration, using the coefficients from jth and (j − 1)th iterations.

Step 9. The procedure is iterative and continues from Step 2, until Crj ≤
δ, where δ is a small positive number. For initiation of the procedure initial
estimates of the regression coefficients are needed. For that purpose the ordinary
least squares estimates (OLSE) b0 are found for each of the responses.

The proposed procedure for regression parameter estimation takes into ac-
count both the heteroscedasticity of the observations and the correlation between
the multiple responses. This is an iteration procedure, the convergence of which
depends on the accuracy of the initial regression OLSE parameter estimates, non-
linearity of the estimated model, as well as the magnitude of the errors in factors
variances, transmitted to the performance characteristics. The proposed method
can be applied with row industrial data (when there are errors in factor lev-
els) for the regression parameter estimation needed for the model-based robust
engineering approach. The usual approach includes obtaining of experimental
data without errors in factor levels (for example in laboratory conditions) for the
regression parameter estimation.
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3. Models of the mean and the variance in the case of multiple

responses and errors in the factors levels

The regression model in the multiresponse case can be presented as [10]:

Y(z) = Zβ + ε,

where:

Z =







f1 · · · 0
...

. . .
...

0 · · · fr






and β =







β1 · · · 0
...

. . .
...

0 · · · βr






.

Z is a r×k vector-diagonal matrix of the regressors f i, which are known functions
of the factors p and β is a r×k vector-diagonal matrix of the regression parameters
for each of the responses i = 1, . . . , r.

If there are errors in the factor levels z = p + e, then [4]:

Y(z) = Zβ + Gβ + ε,

where the matrix G is:

G =







g1 · · · 0
...

. . .
...

0 · · · gr






=







h1 (p + e) − f1 (p) · · · 0
...

. . .
...

0 · · · hr (p + e) − fr (p)






,

where the vectors gi = hi− fi, hi are vectors of the regressors z in the regression
models, considered as containing errors e (for any process parameter) and fi
are the regressors vectors of the process parameters p, for each of the responses
i = 1, . . ., r.

Then the model for the mean value of the performance quality characteristics
in the correlated multiple responses case when there are errors in factor levels,
after substitution of the parameters βi with their estimates (for example the
combined method estimates b̃), is:

(7) Ỹ(p) = Ẽ[Y(z)] = Zb̃ + E(G)b̃.

This equation is an analogue of eq. (1) for multiple correlated responses. Let us
accept the following notations: φ = G − E(G) is a r × k matrix of errors and
Φ = E[φ′φ] is a k × k matrix.

The variance model of the performance quality characteristics, in the mul-
tiresponse case when there are errors in the factor levels, taking into account
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both the variances of the responses and their correlations, and assuming that the
errors e and ε are non-correlated: cov(e, ε) = 0 and cov(Gβ, ε) = 0, is:

(8) s̃2 = ˜var[Y(z)] = σ2(Zβ)+σ2(Gβ)+σ2(ε) = b̃′E[φ′φ]b̃+Σε = b̃′Φb̃+Σε,

where Σεis of the variance-covariance matrix of the random errors of all perfor-
mance characteristics. The matrix Σ̃m can be used as an estimate of Σε. If the
bias due to the inaccuracy of estimation of the regression model is taken into
account, then the variance model is:

(9) s̃2= ˜var[Y(z)] = b̃′Φb̃ + (1 − tr(Φ V(b̃))Σε,

where V(b̃) = var(b̃) = (Z′∆̃
−1

Z)−1 is the variance-covariance matrix of the
parameter estimates b̃.

The optimization task can be formulated generally as:

minf( ˜var(Y)),

under the restriction condition:

l ≤ Ẽ(Y) ≤ u,

where l and u are k×1 vectors, of the lower and the upper limit requirements for
all the responses. The optimization criterion f(·) should be formulated depending
on the level the correlation should be taken into account. It could be one of
the following: trace( ˜var(Y)); the determinant |( ˜var(Y))|; trace( ˜var(Y)2); the
difference between the eigenvalues λmax −λmin, etc. If the determinant is used as
a criterion, the covariance between the multiple responses is taken into account,
while the trace considers the change mainly of the individual variances.

4. Experimental application

The proposed approach for multiple robust engineering is applied to an industrial
experiment. Electron beam melting and refining (EBMR) of highly oxidized Ti
wastes [14] was performed using 60 kW equipment with horizontal feeder and the
drip molten metal crystallized in a water-cooled copper crucible with diameter 60
mm. The vacuum pressure in the melting chamber was in the range 5− 8× 10−3

Pa.
The surface temperature in the crucible was measured by an optical pyrom-

eter. As a feeding material waste rods with diameter 45 mm were used. The
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values of the process parameters changed during the experiments are: the elec-
tron beam power P, the surface temperature of the molten metal in the crucible
T, the casting velocity vC and the refining time τ . The initial and the final im-
purities concentrations were determined by a chemical analysis. In Table 1 are
presented the process parameter conditions of the performed experiments. Qual-
ity performance characteristics that are considered are the concentrations of the
impurities (O, Al, Fe, Si, Ni and Cr) after EBMR of Ti.

The obtained experiments are taken directly from production. In order to
optimize the quality of the produced Ti ingots the minimization of the residual
oxygen concentration, together with the variances of all the impurity concen-
trations at production conditions is performed. This means that the produced
ingots will have fewer variations in their characteristics, which corresponds to
better quality production without any investments.

In order to fulfil this, first regression models need to be estimated. The
combined method is applied for this purpose. Initial ordinary least squares para-
meter estimates are found and given in Table 2. They are used for applying the
combined method for parameter estimation.

Table 1: Experimental process parameter conditions.

Factors Dimensions
Coded
factors

Min Max p̃io ωi
Tolerance

limits

P-p̃1 kW p1 11.25 18.75 15 3.75 P ± 2%

vc − p̃2 mm/s p2 0.05 0.15 0.1 0.05 vc ± 3%

τ − p̃3 min p3 2.78 11.85 7.315 4.535 τ ± 4%

Table 2: Ordinary least squares parameter estimation

ln(CO) = 6.65 + 0.157x1 + 0.253x3 − 0.256x2
1 − 0.330x2

2 + 0.959x2
1x2 + 1.05x2

1x3

ln(CAl) = 5.85 − 0.0738x1 − 0.0260x3 + 0.0996x1x3 + 0.0788x2
1 + 0.345x2

3

+0.133x2
1x3 + 0.359x1x

2
3

ln(CFe) = 6.74 − 0.0522x1 − 0.307x2 − 0.287x3 + 0.0792x1x2 + 0.0588x1x3

−0.0864x2x3 + 0.176x2
1

ln(CSi) = 5.30 − 0.347x1 − 0.173x1x2 − 0.231x2
1 − 0.173x2

1x2 + 0.173x1x
2
2

ln(CNi) = 5.52 − 0.0400x1 + 0.0435x2 − 0.0320x1x2 − 0.0767x2
2 − 0.0532x2

1x2

+0.0720x1x
2
2

ln(CCr) = 4.95 − 0.0943x1 + 0.556x2 + 0.567x3 − 0.130x2
1 − 0.498x2

1x2 − 0.651x2
1x3
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The variance-covariance matrix Σ̃m of the random error of all performance
characteristics that takes into account their correlation in this case is:

Σ̃m = 10−4





















0.3798 −0.0089 −0.0017 −0.0204 −0.0014 −0.0381

−0.0089 0.0122 −0.0149 0.5498 0.0245 −0.2349

−0.0017 −0.0149 0.0368 −0.6848 −0.0461 0.5199

−0.0204 0.5498 −0.6848 44.4868 0.9822 −5.2927

−0.0014 0.0245 −0.0461 0.9822 0.1694 −1.5363

−0.0381 −0.2349 0.5199 −5.2927 −1.5363 15.5429





















The matrices Σ̃h,i for each of the i = 1, . . ., r responses, which estimate the het-
eroscedasticity of the observations, have the elements, presented in Table 3. They
are estimated using eq.(2) on the base of the ordinary least squares parameter
estimates. Then the combined method iterative procedure is applied and 14 it-
erations are performed for obtaining the combined method parameter estimates
(see Table 4). The convergence of the combined method is illustrated on Fig.
1, using the criterion Cr (eq.(6)). It can be seen that after 5–6 iterations it has
already a sufficiently small value.

Table 3: Variances of concentrations at each experimental run (heteroscedasticity) –
initial values.

Σ̃h,i 104σ̃2
1 104σ̃2

2 104σ̃2
3 104σ̃2

4 104σ̃2
5 104σ̃2

6 104σ̃2
7 104σ̃2

8 104σ̃2
9

Σ̃h(O) =diag(σ̃2
u) 25.90 18.27 6.22 2.93 2.01 5.83 31.00 38.96 5.09

Σ̃h,Al =diag(σ̃2
u) 0.12 0.17 0.12 2.23 0.47 0.70 11.32 0.89 1.15

Σ̃h,Fe =diag(σ̃2
u) 1.59 1.11 1.54 0.29 0.03 0.26 0.63 0.534 1.13

Σ̃h,Si =diag(σ̃2
u) 133.4 133.4 134.8 133.5 134.3 134.3 133.6 140.9 147.4

Σ̃h,Ni =diag(σ̃2
u) 0.87 0.77 1.48 0.83 0.78 0.87 1.08 0.79 0.90

Σ̃h,Cr =diag(σ̃2
u) 3.59 4.43 3.37 6.33 4.87 6.34 3.85 8.67 3.11

On Fig. 2 are presented the contour lines of the mean value (solid lines)
and the variance (dashed lines) of the oxygen concentration, using the estimated
individual response approach and the combined method parameter estimates. It
can be seen a big region of minimum variance values ŝ2(p) (below 0.0005, eq.
(2)), which coincide with the highest oxygen concentration mean values after
EBMR. The obtained results are similar to that, obtained by the application of
the individual response approach using the ordinary least squares for parameter
estimation estimated in laboratory conditions. This confirms that the combined
method can be used for parameter estimation with raw industrial experimental
data.
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Table 4: Combined method parameter estimation

ln(CO) = 6.6515 + 0.1689x1 + 0.2553x3 − 0.2501x2
1 − 0.3375x2

2 + 0.9812x2
1x2

+1.0757x2
1x3

ln(CAl) = 5.8467− 0.0722x1 − 0.0245x3 + 0.0989x1x3 + 0.0747x2
1 + 0.3452x2

3

+0.1260x2
1x3 + 0.3502x1x

2
3

ln(CFe) = 6.7371− 0.0509x1 − 0.3017x2 − 0.2792x3 + 0.0781x1x2 + 0.0571x1x3

−0.0861x2x3 + 0.1766x2
1

ln(CSi) = 5.9582− 0.3861x1 − 0.1419x1x2 − 1.2400x2
1 − 0.19410.173x2

1x2

+0.1615x1x
2
2

ln(CNi) = 5.5232− 0.0417x1 + 0.0431x2 − 0.0308x1x2 − 0.0802x2
2 − 0.0525x2

1x2

+0.0738x1x
2
2

ln(CCr) = 4.7514− 0.0015x1 + 0.2750x2 + 0.2185x3 − 0.1787x2
1 − 0.1024x2

1x2

−0.1496x2
1x3

Then the models of the mean and the variance in the case of multiple responses
and errors in the factors levels described by eq. (7) and eq. (9) are estimated. The
variance-covariance matrices Σ̃h,i and Σ̃m and the combined method parameter
estimates, obtained after 14 iterations, are used for that purpose. The matrix of
the mathematical expectations E(G) has the following matrix-diagonal elements
E(gi):

E(g1) = [0, 0, 0, σ2
1 , σ

2
2 , p2σ

2
1, p3σ

2
1 ]; E(g2) = [0, 0, 0, 0, σ2

1, σ
2
3 , p3σ

2
1, p1σ

2
3 ];

E(g3) = [0, 0, 0, 0, 0, 0, 0, σ2
1 ]; E(g4) = [0, 0, 0, σ2

1 , p2σ
2
1 , p1σ

2
2 ];

E(g5) = [0, 0, 0, 0, σ2
2 , p2σ

2
1 , p1σ

2
2]; E(g6) = [0, 0, 0, 0, σ2

1 , p2σ
2
1 , p3σ

2
1 ].

The variances of the factors are estimated on the base of the tolerance limits
and are given in Table 5.

Table 5: Coded variances of the factors, calculated using the tolerance limits

Factors Variances Coded variances σ2
i

p1 σ2
1 0.0007111 + 0.00035556 p1 + 0.00004444 p2

1

p2 σ2
2 0.0004 + 0.0004p2 + 0.0001 p2

2

p3 σ2
3 0.000462542 + 0.000573515p2 + 0.0001778p2

2

The oxygen concentration in the Ti ingots is critical for most applications;
therefore, the optimization task here is formulated to search a compromise (Pareto
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Figure 1: Convergence of the combined method

Figure 2: Contour lines of the mean value (solid lines) and the variance (dashed lines)
of the oxygen concentration by individual response approach and the combined method

parameter estimates

optimal) solution, which minimizes both the variance of the responses and the
oxygen concentration. The final concentrations of the other impurities can be
used as additional constraints, depending on the specific material application re-
quirements. In order to perform such optimization the multiple responses robust
engineering approach is applied and the models for the means and the variances
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are estimated.
The chosen criterion for the variance minimization is the determinant

|(vãr(Y))|. The obtained optimal solution for the mean values of the responses
is:

Ỹ(p) = diag(5.5229, 5.9905, 7.1368, 5.1007, 5.5656, 4.7446),

which after inverse transformation presents the following impurities concentra-
tions: CO = 250.4 ppm; CAl = 399.6 ppm; CFe = 1257.4 ppm; CSi = 164.1 ppm;
CNi = 261.3 ppm; CCr = 115.0 ppm. The variance matrix is (eq.(9)):

s̃2 (p) = 10−4





















20.1087 −0.0089 −0.0017 −0.0204 −0.0014 −0.0381

−0.0089 0.0129 −0.0149 0.5498 0.0245 −0.2349

−0.0017 −0.0149 1.3941 −0.6848 −0.0461 0.5199

−0.0204 0.5498 −0.6848 62.3455 0.9822 −5.2927

−0.0014 0.0246 −0.0461 0.9822 0.1745 −1.5363

−0.0381 −0.2392 0.5199 −5.2927 −1.5363 16.0856





















.

The obtained minimal values of the determinant and the oxygen concentration
are: |(vãr(Y))| = 3.665 ∗ 10−24 and CO = 250.4 ppm, obtained at p1 = −1;
p2 = 0.08; p3 = −0.59 or in natural units the values of the process parameters
are: P = 11.25 kW; v = 0.104 mm/s; τ = 4.64 min.

5. Conclusions

This article presents a new combined method for parameter estimation, which
gives the possibility to consider the correlation between the multiple responses,
together with the heteroscedasticity of observations. A big advantage of the
method is the possibility to use raw industrial experimental data, instead of the
necessary very precise parameter estimation of the regression models without
errors in the factor levels, done for example in laboratory conditions. This new
method is applicable in both cases: when there are replicated observations at
each experimental run and when there are no such replications. If there are no
replicated observations the variance estimation for each experimental run can be
done through the tolerance intervals of the factors in the industrial (or laboratory)
production process.

Models for the mean and the variance for the case of multiple responses and
errors in factor levels are presented. The proposed methodology together with
the combined method for parameter estimation is applied successfully for the
refining of Ti wastes by electron beam melting. Optimal conditions are found,
that minimize the response variances and the oxygen concentration.
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