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FUNCTIONAL TRANSFER THEOREMS

FOR MAXIMA OF STATIONARY PROCESSES∗

Pavlina Kalcheva Jordanova

In this paper we discuss the problem of finding the limit process of sequences
of continuous time random processes, which are constructed as properly
affine transformed maxima of random number identically distributed random
variables.

The max-increments of these processes are dependent.

First we work under the well known conditions D(un) and D′(un) of
Leadbetter, Lindgren and Rootzen, (1983).

Further we investigate the case of moving average sequence. The distrib-
ution function of the noise components is assumed to have regularly varying
tails or is subexponential and belongs to the max-domain of attraction of
Gumbel distribution or belongs to the max-domain of attraction of Weibull
distribution.

We work with random time-components which are a.s. strictly increasing
to infinity. In particular their counting process is a mixed Poisson process
or a renewal process with regularly varying tails with parameter β ∈ (0, 1).

Here is proved that such sequences of random processes converges weakly
to a compound extremal process.
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1. Introduction

In 1987 using point processes technics, Davis and Resnick (see e.g. S. Renick [14])
showed that under certain conditions the study of the extremes of moving average
sequence could be reduced to the study of the extremes of the sequence of inde-
pendent identically distributed (iid) innovations. They obtained that Lamperty’s
Invariance principle for maxima remains valid for moving average sequence with
innovations in the max-domain of attraction of Frechet distribution. In this case
the right normalizations for the maxima of moving average sequence coincide with
the appropriate normalizations for the maxima of sequence of iid innovations.

In 1991, in terms of minima, Davis and Resnick [4] investigated the extremes
of moving averages of random variables (rv’s) with finite endpoint. In their
paper they mentioned that their results can be adapted to study of minima of
moving average with noise components in the max-domain of attraction of Weibull
distribution.

In 1997 P. Embrechts et al. [6] proved an analogous result for moving average
sequence with subexponential noise in the max-domain of attraction of Gumbel
distribution.

Using the results of Davis and Resnick [4], in 2008 P. Jordanova [8] obtained
Invariance principle for maxima for finite or infinite moving average with inno-
vations in the max-domain of attraction of Weibull distribution.

The proofs of all of above results pass through the following three steps:

• to obtain convergence of generating point processes;

• to prove continuity of the mapping between the generating point processes
and corresponding extremal process;

• to use the Continuous mapping theorem.

It is well known that the following conditions Dr(un) and D′(un) (See Lead-
better et al. (1983) [10]) guaranty that we do not go faraway from iid case.

We denote by un the vector (un(x1), un(x2), . . . , un(xr)).
Condition Dr(un): The sequence of random variables X1,X2, . . . is such

that for any integers k, s and 1 ≤ i1 < · · · < ik < j1 < · · · < js ≤ n such that
j1 − ik > l(n) we have

|P (Xi1≤un(xi1),Xi2≤un(xi2), . . . ,Xik≤un(xik),Xj1≤un(xj1),Xj2≤un(xj2),

. . . ,Xjs ≤ un(xjs)) − P (Xi1 ≤ un(xi1),Xi2 ≤ un(xi2), . . . ,Xik ≤ un(xik)).

.P (Xj1 ≤ un(xj1),Xj2 ≤ un(xj2), . . . ,Xjs ≤ un(xjs))| ≤ αn,l(n),
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where {xi1 , xi2 , . . . , xik , xj1 , xj2 , . . . , xjs , } are in the set {x1, x2, . . . , xr} and
αn,l(n) → 0 as n → ∞ for some sequence l(n) = o(n).

Condition D′(un): The sequence of random variables X1,X2, . . . is such
that the relation

lim sup
n→∞

n

[ n
k
]∑

j=2

P (X1 > un,Xj > un) → 0

holds as k → ∞.
They mean correspondingly that large value exceedances of the sequence

{Xn}n∈Z are asymptotically independent and separated in time. (See [6].) That
is why we have no multiplicities of the limiting point process and it is Poisson
and simple in time. These give us possibility to obtain the Invariance principle
for maxima for strictly stationary sequences. See Lemma 3.1.

In this paper we consider conditions, providing the transfer of convergence
property from the maxima of non-random number of dependent and identically
distributed random variables to the maxima of random number. Having in mind
Dobrushin’s Theorem (Theorem 3.1.2 in [5]), we call these theorems Transfer
theorems.

The case of iid rv’s is investigated in series of papers of Pancheva and Jor-
danova (See e.g. [7] and [12]). Independently of them Satheesh et al. [14]
investigate the properties of Λ-extremal processes. In [13], Pancheva et al. ob-
tain necessary and sufficient condition for a compound extremal process to has
independent max-increments and obtain some other properties of these processes.
They also interpret their mathematical model as a particular insurance business
and obtain upper and lower boundaries for probability of ruin.

The paper is organized as follows: in Section 2 we describe common conditions
in our results, in Section 3 we discuss the case when the sequence of space points
satisfy conditions D(un) and D′(un), in Section 4 we consider the case of moving
average sequences.

Along the paper
fdd
−→
n→∞

stands for weak convergence of the finite dimensional

distributions (fdd) of the random processes, and
d

−→
n→∞

for weak convergence of

their one dimensional marginals. We denote by
fdd
= equality of all fdd’s, by

d
=

equality in distribution and by x0 = inf{x ∈ R : H(x) > 0}, where H is a
distribution function (df).

When the sequence of random processes {ηn}n∈N in a metric space S con-
verges weakly in the corresponding topology to a stochastic process η, we will
write ηn =⇒ η in S.
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We denote by M∗([0,∞)) the space of non-decreasing, right-continuous func-
tions y(t) : [0,∞) → [0,∞), with finite left limits on (0,∞), endowed with the
Skorokhod topology and by M([0,∞)) ⊂ M∗([0,∞)) containing only strictly
increasing functions.

Because the extremal processes have non-decreasing sample paths the weak
convergence of sequences of such random processes as random elements in
M∗([0,∞)) coincides with convergence in J1-topology of Skorokhod. See e.g
[18].

When we need to prove weak convergence of extremal processes the next two
lemmas are very useful. The proof of the first of them could be found in [2].
The second one describes a particular case when composition is a continuous
mapping. It is an immediate consequence of Theorem 13.2.4 of [18]. Another
comprehensive treatment on this matter is [17].

Lemma 1.1. Let {Zn}n∈N be a sequence of stochastic processes, whose path
functions lie in M∗([0,∞)). If

a) Zn
fdd
−→
n→∞

Z and

b) Z is stochastically continuous,

then Zn =⇒ Z in M∗([0,∞)), in the Scorokhod J1-topology.

Lemma 1.2. For n ∈ N let Zn, Z, θn, and θ be random processes with
a.s. sample paths in M∗([0,∞)). Let Zn =⇒ Z in M∗([0,∞)), where Z is
stochastically continuous and θn =⇒ θ in M∗([0,∞)). Assume that for all n ∈ N,
Zn and θn are independent, for all t > 0,

P (∀ǫ > 0, θ(t − ǫ) < θ(t + ǫ)|Z(θ(t)−) < Z(θ(t))) = 1 and

(1) P (θ(t−) = θ(t)|Z(θ(t)−) < Z(θ(t))) = 1.

Then Zn ◦ θn =⇒ Z ◦ θ, in M∗([0,∞)), n → ∞.

If the process θ has almost surely (a.s.) continuous and strictly increasing
sample paths, conditions (1) are automatically satisfied.

The statements are formulated in R1 but it is not difficult to extend them in
multidimensional case.
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2. Description of the model

Let (Ω,A, P ) be a complete probability space with filtration (At)t≥0 and all P -
null sets of A are added to A0.

We assume that all discussed random elements here are defined on (Ω,A, P ).
Suppose {Xn}n∈N is a strictly stationary sequence with common distribution

function F .
We denote by Mn = max(X1, . . . ,Xn) the maxima of X1,X2, . . . ,Xn and by

Yn the following continuous time process

(2) Yn(t) =





M[nt] − an

bn
t ≥ n−1

X1 − an

bn
0 < t < n−1

, t > 0,

where an ∈ R, bn > 0, n ∈ N and [s] stands for the biggest integer, less than s.
Let

Nn =

{(
i

n
,
Xi − an

bn

)
, i ∈ N

}
,

T0 = 0 and 0 < T1 < T2 < · · · be a.s. strictly increasing to infinity with counting
process

N(t) = max{n ≥ 0 : Tn ≤ t}.

We assume that the sequences {Xn}n∈N and {Tn}n∈N are independent, ãn ∈
R, b̃n > 0, n ∈ N and discuss the convergence of the following sequence of
extremal processes with dependent max-increments

(3) Ỹn(t) =





MN(nt) − ãn

b̃n

t ≥
T1

n

X1 − ãn

b̃n

0 < t <
T1

n

, t > 0,

associated with the point process

(4) Ñn =

{(
Tk

n
,
Xk − ãn

b̃n

)
: k ∈ N

}
.

We denote by
Eβ(t) = inf{x ≥ 0 : Sβ(x) > t}

the hitting time process of the strictly stable Levy motion {Sβ(t)}t≥0, with

EeiuSβ(1) = e−iuβΓ(−β)cos πβ

2 .
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3. The case when conditions Dr(un) and D
′(un) are satisfied

Additionally to the description of our model in Section 2 we assume that there
exist constants bn > 0 and an ∈ R such that

(5) lim
n→∞

nF̄ (an + bnx) = − ln H(x), x > x0,

where H is an extreme value distribution.
In 1983 Leadbetter et al. [10] prove the following result about the weak

convergence of point processes.
Leadbetter’s theorem 5.7.2 in [10]. Suppose {Xn}n∈N is a strictly sta-

tionary sequence with common distribution function F and there exist constants
bn > 0 and an ∈ R such that condition (5) holds.

Let un(x) = an + bnx. Assume that condition D′(un(x)) holds for all x ∈ R

and for all r ∈ N and (x1, x2, . . . , xr) ∈ R
r condition Dr((un(x1), un(x2), . . . ,

un(xr))) is satisfied.
Then Nn =⇒ N∞ in Mp((0,∞)× (x0,∞]), where Mp((0,∞)× (x0,∞]) is the

space of all point measures on (0,∞) × (x0,∞] equipped with an appropriate σ-
algebra Mp((0,∞)× (x0,∞]), x0 = inf{x : H(x) > 0} and N∞ is a homogeneous
Poisson random measure on (0,∞) × (x0,∞] with intensity µ∞, such that

µ∞((0, t) × (x,∞]) = −t ln H(x), for all x > x0.

In the following lemma we obtain that the Invariance principle for maxima
[14] remains valid for such strictly stationary sequences.

Lemma 3.1. Suppose {Xn}n∈N is a strictly stationary sequence with com-
mon distribution function F and there exist constants bn > 0 and an ∈ R such
that condition (5) holds.

Let un(x) = an + bnx. Assume that condition D′(un(x)) holds for all x ∈ R

and for all r ∈ N and (x1, x2, . . . , xr) ∈ R
r condition Dr((un(x1), un(x2), . . . ,

un(xr))) is satisfied.
Then Yn =⇒ Y in M∗([0,∞)), where Y is an H-extremal process.

P r o o f. The main tool used in this proof is the Continuous mapping theorem
[1].

Resnick [14] proved that the mapping T1 : Mp([0,∞)×(x0,∞]) → M∗((0,∞))
defined by (

T1

∑

k

ε(tk ,yk)

)
(t) =





∨k:tk≤t yk t ≥ t∗

y1 0 < t < t∗
,
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where t∗ = sup

{
s > 0 :

∑
k

ε(tk ,yk)((0, s] × (x0,∞]) = 0

}
, is a.s. continuous w.r.t.

PRM(dt × dν), ν((x,∞]) = − ln H(x), x > x0.
Now we use Leadbetter’s theorem, Continuous mapping theorem and the

right continuity of the processes at zero and obtain that for all x > x0,

(T1Nn)(·) =⇒ (T1N∞)(·), in M∗((0,∞)),

where N∞ is a homogeneous Poisson random measure on (0,∞) × (x0,∞) with
intensity µ∞, such that

µ∞((0, t) × (x,∞]) = −t lnH(x), for all x > x0.

The last means that

Yn(·) =⇒ Y (·), in M∗((0,∞)),

where Y is an H-extremal process. �

Now we are ready to transfer the convergence property from the maxima
of non-random number of affine transformed moving averages to the maxima of
random number. We obtain the following theorem.

Theorem 3.1. Suppose that the stationary sequence {Xn}n∈N , an and bn >

0, n ∈ N are such that conditions D(an + bnx) and D′(an + bnx), x ∈ R hold.

If there exists a random process θ with a.s. continuous and strictly increasing
sample paths, such that

N(nt)

n
=⇒ θ(t), in M([0,∞)), n → ∞,

then

Ỹn(·) =⇒ Y (θ(·)), in M∗([0,∞)),

where Y is an extremal process, generated by H.

P r o o f. Conditions of Lemma 3.1 are satisfied, so Yn(·) =⇒ Y (·), in
M∗((0,∞)), where Y (t) is an H-extremal process. Because of θ has a.s. con-
tinuous and strictly increasing sample paths, we can apply Lemma 1.2 and we
complete the proof. �

Because of the limiting process is the same as in iid case its properties are
investigated for example in [12], [13] and [15].
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Corollary 3.1. Let Ñn be the point processes, defined in (4) and the counting
process N , be a mixed Poisson process with random intensity θ and Eθ < ∞.
Then

Ỹn(·) =⇒ Y (θ·) in M∗([0,∞)),

where Y is an H-extremal process.

P r o o f. Because of the counting process N is a mixed Poisson then

N(n·)

n
=⇒ θ·, n → ∞ in M([0,∞)).

The random process θ(t) = θ.t, t > 0 has continuous and strictly increasing
sample paths, so conditions of Theorem 3.1 are satisfied and we complete the
proof. �

If the time-points T1, T2, . . . constitute a renewal process, with time between
renewals J1, J2, . . . , with finite mean EJ1 < ∞, then the counting process N

could be interpreted as mixed Poisson with constant intensity θ =
P (J1 > 0)

EJ1
.

An immediate consequence of Renewal theory and this result is that the limiting

process in Corollary 3.1 is Y

(
tP (J1 > 0)

EJ1

)
. It is self-similar and max-stable.

When EJ1 is not finite, we can not apply the above theorem. Analogously
to Theorem 4.2 c) in [7], where the iid case is considered, we obtain the following
theorem.

Theorem 3.2. Let Ñn be the point processes, defined in (4) with time-points
T1, T2, . . . that constitute a renewal process with time between renewals J1, J2, . . .

with df J and counting process N . Assume that 1 − J ∈ RV−β, β ∈ (0, 1). Then

a)

Ỹn(·) =⇒ Ỹ = Y (Eβ(·)) in M([0,∞)),

where Y is an H extremal process, ãn ∼ a(1−J)−1(n), b̃n ∼ b(1−J)−1(n).

b) For all fixed t > 0

P (Ỹ (t) < x) =
∞∑

n=0

(ln H(x).tβ)n

Γ(1 + nβ)
, x > 0.

P r o o f. a) By Lemma 3.1, Yn(·) =⇒ Y (·) with an H-extremal process Y .
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This means that for b∗n ∼
1

1 − J(n)
∈ RVβ,

Yb∗n(·) =⇒ Y (·).

By Theorem 3.6 [11] of Meerschaert and Scheffler

N(n·)

b∗n
=⇒ Eβ(·), n → ∞,

where b∗n ∼
1

1 − J(n)
∈ RVβ.

The sample paths of the processes
N(n·)

b∗n
and Eβ(·) are in M∗[0,∞), but

the sample paths of Eβ(t) are not a.s. strictly increasing. That is why we
have to check condition (1). This means that Eβ should be a.s. continuous
and strictly increasing in every point t0 > 0, such that Eβ(t0) is a point of
discontinuity of Y . When we interpret this for Sβ and Y , they a.s. should not
have simultaneous jumps. This is obviously true, because these processes are
independent and stochastically continuous. So, condition (1) is satisfied. Now
we apply Lemma 1.2. and complete the proof.

b) Let t > 0 and x > 0,

P(Y ◦ Eβ(t) < x) = P(Y (tβEβ(1)) < x) =

=

∫ ∞

0
P(Y (tβz) < x)dP(Eβ(1) < z) =

=

∞∫

0

Htβz(x)dP(Eβ(1) < z) =

= E exp{−(− ln H(x))tβEβ(1)}

= E exp{−(− ln H(x))tβ(Sβ(1))−β},

where the last equality follows by Corrolary 3.2,(a) in [11].

In [3] is shown that (Sβ(1))−β is Mittag-Leffler distributed.

So, we complete the proof. �

Remark. In b) for β = 1 we get Y (Eβ(·))
fdd
= Y (·).
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4. The moving average sequence case

Further we suppose that the random variables {Xn}n∈N in the point process (4)
have linear process representation.

Assume that there exists sequence {ξi}i∈Z of iid rv’s with df F such that
{Xn}n∈N have representations as a linear processes, i.e.

(6) Xn =

k∑

j=−k

cjξn−j, n ∈ N, k ≤ ∞.

The sequence {ci}i∈Z of real numbers will be specified later.
If k = ∞ and this series is a.s. convergent, then the sequence {Xn}n∈N is

strictly stationary.

Case A) First we consider the case when k = ∞ and the noise components
in (6) have df in the max-domain of attraction of the Frechet distribution.

Suppose that the tails of F are balanced in the sense that there exists p ∈ (0, 1]
and α > 0, such that

(7) lim
x→∞

P (ξ1 > x)

P (|ξ1| > x)
= p, lim

x→∞

P (ξ1 ≤ −x)

P (|ξ1| > x)
= 1 − p

and

(8) P (|ξ1| > x) ∈ RV−α.

We set q = 1 − p.
We assume that the sequence {ci}i∈Z, of real numbers satisfies the following

condition: There exists δ ∈ (0, α ∧ 1) such that

(9)
∞∑

j=−∞

|cj |
δ < ∞.

We will use the following notations

c+ = max{cj ∨ 0, j ∈ Z} and c− = max{−cj ∨ 0, j ∈ Z}.

The weak limit behaviour of various quantities related to the extremes of
{Xn}n∈N is discussed for example in [10] and [14].

By the Invariance principle for the maxima of a linear process with noise in
the max-domain of attraction of the Frechet distribution (See e.g. Proposition
4.28 in [14]) we have that if either c+p > 0 or c−q > 0 then

(10) Yn =⇒ Yα in M∗([0,∞)),
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where {Yα(t)}t≥0 is an extremal process generated by the extreme value distrib-
ution

(11) Gα(x) = exp{−(cα
+p + cα

−q)x−α}, x > 0.

Moreover an ∼ 0 and bn ∼ F←
(

1 −
1

n

)
, n → ∞.

Theorem 4.1. Let T1, T2, . . . be time-points with counting process N . We
suppose that {Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z are iid and
satisfy conditions (7) and (8) and the sequence of real numbers {ci}i∈Z satisfies
condition (9) and either c+p > 0 or c−q > 0.

Assume that there exists a random process θ, with a.s. continuous and strictly
increasing sample paths, such that

N(n·)

n
=⇒ θ(·), n → ∞ in M([0,∞)).

Then
Ỹn(·) =⇒ Yα(θ(·)) in M∗([0,∞)),

where Y is an extremal process, generated by the extreme value distribution Gα,
defined in (11).

Moreover ãn ∼ 0 and b̃n ∼ F←(1 − 1
n), n → ∞.

P r o o f. By Proposition 4.28 in [14], under the conditions on {Xn}n∈N we
have

Yn(·) =⇒ Yα(·) in M∗([0,∞)),

with Yα, which is an extremal process, generated by the extreme value distribution
(11), an ∼ 0 and bn ∼ F←(1 − 1

n), n → ∞.
Because of θ, with a.s. continuous and strictly increasing sample paths we

can apply Lemma 1.2 and complete the proof. �

Analogously to Corollary 3.1 we obtain the following result.

Corollary 4.1. Let T1, T2, . . . be time-points with counting process N , which
is a mixed Poisson process with random intensity θ and Eθ < ∞. The sequence
{Xn}n∈N has representation (6) where k = ∞, {ξi}i∈Z are iid and satisfy con-
ditions (8) and (7) and the sequence of real numbers {ci}i∈Z satisfies condition
(9) and either c+p > 0 or c−q > 0. Then

Ỹn(·) =⇒ Yα(θ·) in M∗([0,∞)),
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where Yα is an extremal process, generated by the extreme value distribution Gα,

defined in (11), ãn ∼ 0 and b̃n ∼ F←
(

1 −
1

n

)
, n → ∞.

Theorem 4.2. Let T1, T2, . . . be a renewal process with time between re-
newals J1, J2, . . . with df J and counting process N . Suppose that 1− J ∈ RV−β,
β ∈ (0, 1). Assume that {Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z

are iid and satisfy conditions (7) and (8) and the sequence of real numbers {ci}i∈Z

satisfies condition (9) and either c+p > 0 or c−q > 0. Then

Ỹn(·) =⇒ Ỹ (·) = Yα(Eβ(·)) in M([0,∞)),

where Yα is an extremal process, generated by the extreme value distribution Gα,
defined in (11), ãn ∼ 0 and b̃n ∼ F←(J(n)) ∈ RVβα−1 .

Moreover, for all fixed s > 0, Ỹ (st)
fdd
= sβ/αỸ (t) and

P (Ỹ (t) < x) =

∞∑

n=0

(−x−αtβ)n

Γ(1 + nβ)
, x > 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

alpha = 0.2, beta = 0.5 

alpha = 0.2, beta = 0.2 

alpha = 0.5, beta = 0.5 

alpha = 0.8, beta = 0.2 

Figure 1: Distribution functions of Ỹ (1) for different parameters α and β

P r o o f. By Proposition 4.28 in [14],

Yb∗n
(·) =⇒ Yα(·)

with Yα, which is an extremal process, generated by the extreme value distribution

(11) and b∗n ∼
1

1 − J(n)
∈ RVβ. As in the proof of Theorem 3.2 a), we apply
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Theorem 3.6 [11] of Meerschaert and Scheffler and Lemma 1.2 and complete the
proof. �

The properties of the limiting process follow by Theorem 2.1 in [7].

Case B) Now we suppose that k = ∞ and {ξi}i∈Z is subexponential noise
with df F , which belongs to the max-domain of attraction of the Gumbel distri-
bution

G(x) = exp{−e−x}, x ∈ R.

We will use the tail-balance condition: there exists p ∈ (0, 1] such that

(12) lim
x→∞

P (ξ1 > x)

P (|ξ1| > x)
= p, lim

x→∞

P (ξ1 ≤ −x)

P (|ξ1| > x)
= 1 − p.

But we will not use condition (8), in the case of regularly varying tails.
Condition (9) will be substituted by the following condition:
There exists δ ∈ (0, 1) such that

(13)

∞∑

j=−∞

|cj |
δ < ∞.

Without lost of generality we assume that

(14) max
j

|cj | = 1

and we define the following quantities k+ = card{j : cj = 1} and k− = card{j :
cj = −1}.

We denote by Y + the extremal process associated with the Poisson point
process

N+ = {(t+i , η+
i ) : i ∈ {0, 1, . . . }}

with the mean measure µ+((0, t]× (x,∞)) = te−x and by Y − the independent of
it extremal process associated with the Poisson point process

N− = {(t−i , η−i ) : i ∈ {0, 1, . . . }}

with the mean measure

µ−((0, t] × (x,∞)) = t
p

q
e−x.

Analogously to the regularly varying case when we use the Invariance principle
for the maxima of a linear process with subexponential noise in the max-domain
of attraction of Gumbel distribution (Theorem 5.5.11 [6]) we obtain the following
results.
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Theorem 4.3. Let Ñn be the point processes defined in (4). Assume that
{Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z are iid, {ξi}i∈Z have
subexponential df’s in the max-domain of attraction of Gumbel distribution and
satisfy condition (12). The sequence of real numbers {ci}i∈Z is such that (13)
and (14) hold.

Assume that there exists a random process θ, with a.s. continuous and strictly
increasing sample paths, such that

N(n·)

n
=⇒ θ(·) n → ∞ in M([0,∞)).

Then Ỹn(t) =⇒ Y (θ(t)), where

(15) Y (t) = Y +(t) ∨ Y −(t).

is a G-extremal process, generated by the extreme value distribution

G(x) = exp{−e−xp−1}, x ∈ R,

ãn ∼ F←
(

1 −
1

n

)
and

b̃n ∼ n

∫ ∞

F←(1− 1

n)
F̄ (y)dy.

Corollary 4.2. Let T1, T2, . . . be time-points with counting process N , which
is a mixed Poisson process with random intensity θ and Eθ < ∞. Assume that
{Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z are iid, {ξi}i∈Z have
subexponential df’s in the max-domain of attraction of Gumbel distribution and
satisfy condition (12). The sequence of real numbers {ci}i∈Z is such that (13)
and (14) are satisfied.

Then

Ỹn(·) =⇒ Y (θ·),

where Y is the G-extremal process, defined in (15), ãn ∼ F←
(

1 −
1

n

)
and

b̃n ∼ n

∫ ∞

F←(1− 1

n
)
F̄ (y)dy.
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Theorem 4.4. Let Ñn be the point process, defined in (4) with time-points
T1, T2, . . . that constitute a renewal process with time between renewals J1, J2, . . .

with df’s J and counting process N . Suppose that 1 − J ∈ RV−β, β ∈ (0, 1).
Assume that {Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z are iid,
{ξi}i∈Z have subexponential df’s in the max-domain of attraction of Gumbel dis-
tribution and satisfy condition (12). The sequence of real numbers {ci}i∈Z is such
that (13) and (14) are satisfied.

Then

Ỹn(·) =⇒ Ỹ (t) = Y (Eβ(·)) in M([0,∞)),

where ãn ∼ F←(J(n)),

b̃n ∼

∫ ∞

F←(J(n))

F̄ (y)dy

J̄(n)

and Y is the G-extremal process, defined in (15).

Moreover

P (Ỹ (t) < x) =

∞∑

n=0

(−e−xp−1tβ)n

Γ(1 + nβ)
, x ∈ R.
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Figure 2: Distribution of Ỹ (1) for β = 0.5 and p = 0.7, p = 0.2 and p = 0.5 (correspond-
ingly from up to down)

Case C) Now we suppose that k < ∞, ci > 0, i ∈ Z and the df F of {ξi}i∈Z

belongs to the max-domain of attraction of the Weibul distribution

(16) Ψα(x) = exp{−(−x)α}, x ≤ 0, α > 0.
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Figure 3: Distribution of Ỹ (1) for p = 0.5 and β = 0.2, β = 0.7 and β = 0.5 (correspond-
ingly form up to down)

We denote xR
F = sup{x : F (x) < 1} and

(17) c(α, k) =
Γk(α + 1)

Γ(αk + 1)

k∏

i=1

ci.

It is well known that if F belongs to the max-domain of attraction of the
Weibul distribution, xR

F < ∞.
Analogously to the previous cases when we use the Invariance principle for

the maxima of such linear process (Theorem 2.1. [8]) we obtain the following
results.

Theorem 4.5. Let Ñn be the point processes, defined in (4). Suppose
{Xn}n∈N have representations (6) where k < ∞. Let {ξi}i∈Z be iid rv’s with
df F in the max-domain of attraction of Ψα, α > 0. {ci}i∈Z are positive real
numbers.

Assume that there exists a random process θ, with a.s. continuous and strictly
increasing sample paths, such that

N(n·)

n
=⇒ θ(·), in M([0,∞)), n → ∞.

Then Ỹn(·) =⇒ Y (θ(·)), where Y is a Ψkα-extremal process, generated by the
extreme value distribution

(18) Ψkα(x) = exp{−c(α, k)(−x)kα}, x ≤ 0, t > 0,
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ãn ∼ xR
F

k∑
j=1

cj , b̃n ∼ xR
F − F←(1 − n−1/k) and c(α, k) are defined in (17).

Corollary 4.3. Let Ñn be the point processes, defined in (4) with time-points
T1, T2, . . . with counting process N , which is a mixed Poisson process with random
intensity θ and Eθ < ∞. Assume that {Xn}n∈N have representations (6) where
k < ∞, {ξi}i∈Z are iid with df’s F in the max-domain of attraction of Ψα, α > 0
and positive real numbers {ci}i∈Z.

Then
Ỹn(·) =⇒ Y (θ·),

where Y is the Ψkα-extremal process, defined in (18), ãn and b̃n could be chosen
as in the previous theorem.

Theorem 4.6. Let Ñn be the point processes, defined in (4) with time-points
T1, T2, . . . that constitute a renewal process with time between renewals J1, J2, . . .

with df’s J and counting process N . Suppose that 1 − J ∈ RV−β, β ∈ (0, 1).
Assume that {Xn}n∈N have representations (6) where k < ∞, {ξi}i∈Z are iid
with df’s F in the max-domain of attraction of Ψα, α > 0. {ci}i∈Z are positive
real numbers.

Then
Ỹn(·) =⇒ Ỹ (t) = Y (Eβ(·)) in M([0,∞)),

where ãn ∼ xR
F

k∑
j=1

cj , b̃n ∼ xR
F −F←(1−(1−J(n))1/k) and Y is the Ψkα-extremal

process, defined in (18).
Moreover

P (Ỹ (t) < x) =
∞∑

n=0

(−c(α, k)(−x)kαtβ)n

Γ(1 + nβ)
, x ≤ 0,

where c(α, k) are defined in (17).

Case D) Let k = ∞ and {ξi}i∈Z be iid with df F in the max-domain of
attraction of Ψα, α > 0. See (16).

Condition (9) will be substituted by the following conditions: For i ∈ Z,

ci > 0

and for some positive real number q > 2

ci ∼ O(j−q), j → ∞.
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If c(1) ≥ c(2) ≥ . . . is the same sequence but ordered, we assume that for all
s ∈ (0, 1)

lim
n→∞

sn
sn∑

j=s−n

c2
(j)

c2
(n)

= 0.

We call these conditions – “Conditions C”.
We denote

r(λ) =

∞∑

j=1

cjE(ξ1 exp{λcjξ1})

E exp{λcjξ1}
, λ > 0

and ν =
∞∑

j=1
cjξj .

Analogously to the previous cases when we use the Invariance principle for
the maxima of such linear process we obtain the following results.

Theorem 4.7. Let Ñn be the point processes, defined in (4). Assume that
{Xn}n∈N have representations (6) where k = ∞, {ξi}i∈Z are iid with df’s F , in
the max-domain of attraction of Weibull df, Ψα, α > 0. The sequence of real
numbers {ci}i∈Z is such that Conditions C are satisfied.

Assume that there exists a random process θ, with a.s. continuous and strictly
increasing sample paths, such that

N(n·)

n
=⇒ θ(·) n → ∞ in M([0,∞)).

Then Ỹn(t) =⇒ Y (θ(t)), where Y is a extremal process, generated by the
extreme value distribution

(19) G1(x) = exp{−e−x},

ãn ∼ F←ν

(
1 −

1

n

)
and b̃n ∼ (r←(F←ν (1 − n−1))−1.

Corollary 4.4. Let T1, T2, . . . be time-points with counting process N , which
is a mixed Poisson process with random intensity θ and Eθ < ∞. Assume that
{Xn}n∈N have representations (6) where k = ∞ and {ξi}i∈Z are iid with df’s F

in the max-domain of attraction of Ψα, α > 0. The sequence of real numbers
{ci}i∈Z is such that Conditions C are satisfied.

Then
Ỹn(·) =⇒ Y (θ·),

where Y , ãn and b̃n are the same as in the previous Theorem.
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Theorem 4.8. Let T1, T2, . . . be a renewal process with time between re-
newals J1, J2, . . . with df’s J and counting process N . Suppose that 1−J ∈ RV−β,
β ∈ (0, 1). Assume that {Xn}n∈N have representations (6) where k = ∞ and
{ξi}i∈Z are iid with df’s F in the max-domain of attraction of Ψα, α > 0. The
sequence of real numbers {ci}i∈Z is such that Conditions C are satisfied.

Then

Ỹn(·) =⇒ Ỹ (t) = Y (Eβ(·)) in M([0,∞)),

ãn ∼ F←ν (J(n)), b̃n ∼ (r←(F←ν (J(n)))−1 and Y is the G1-extremal process, de-
fined in (19).

Moreover

P (Ỹ (t) < x) =

∞∑

n=0

(−e−xtβ)n

Γ(1 + nβ)
, x ∈ R.
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