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EARLY DETECTION OF EMERGENT EVENTS
BASED ON AN EXTREMAL PROCESS APPROACH

Christine Jacob, Zaher Khraibani, Elisaveta Pancheva

Let {Sn}n≥0 be a real renewal process representing the successive arrival
times of some event (ex.: clinical case of an infectious disease). We wish
to test that the first observed events are sporadic (the interarrival times
{∆Sk}k≤n are i.i.d.), and not emergent. For that we build the extremal
process R(·) from the point process {(Tk, Xk)}, where Tk = Sk − S1, Xk :=
[∆Sk]−1, k = 1, 2, . . . . Assuming that the {∆Sk} are i.i.d. according to
Exp(λ), we calculate the distribution of {R(t)}. We also compare this dis-
tribution to the one got under the independency of {Tk}, {Xk} (standard
setting). We finally illustrate this approach by testing on the first observa-
tions of a simulation of a slowly emergent phenomenon that this phenom-
enon is a sporadic one, and we show that the statistic based on the extremal
process is much more efficient and robust than the statistic based on the
record values.

1. Introduction

We consider the successive occurrence times {Sn}n≥0 of some phenomenon, such
as the occurrence times of the first clinical cases of a new disease, or the occurrence
times of the breakdowns of some new machine. In order to control the phenom-
enon as early as possible, we wish to detect from these first occurrence times if
we deal with a sporadic phenomenon or an emergent one which means that the
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mean occurrence rate of the events during the observation period has a tendency
to increase as this period increases. So we need to elaborate some fine and exact
statistic. Since the smallest values of the interarrival times {∆Sk}k≥1 and the
interarrival times between successive such small values are particularly significa-
tive of a potential emergence, we will consider the extremal process {R(t)}t≥0

built from the point process {Tk,Xk}k≥1, where Tk := Sk − S1 is the occurrence
time of the k + 1th case with T1 = 0, and Xk = (∆Sk)

−1. By construction
{Tk} and {Xk} are completely linked and {R(t)} is a jump process that jumps at
the successive random times {TLm}m≥1 of occurrence of the upper record values
{Rm}m≥1 of the sequence {Xk}, where Rm = XLm with L1 = 1. We will de-
rive the distribution of {R(t)}. We will also derive this distribution in the usual
standard setting where {Tk} and {Xk} are independent in order to compare the
results. Finally we will illustrate on a simulated trajectory of a slowly emergent
phenomon, the test of the assumption H0 of a sporadic phenomenon: the {∆Sk}
are i.i.d., using either the jump values {R(tm)}m≥1, where tm = T obs

Lm
is the mth

jump time of {R(t)} observed on the simulated trajectory, or the record process
{Rm}m≥1 := {R(TLm}m≥1. We will show that the extremal process is much more
efficient and robust than the record process since, contrary to Rm, it contains, at
each time tm, the information of the number of events Lobs

m in (0, tm], but not the
information m giving the number of records in (0, tm]. The details of the proofs
may be found in [2].

2. Assumptions and notations

We assume that the {∆Sk}k≥1 are independent and identically distributed with
a continuous c.d.f. Eλ(t), where Eλ(t) = 1 − e−λt (exponential distribution).
We define Tk := Sk − S1, k = 1, 2, . . . . So T1 = 0, which means that the
time origin, corresponds to the occurrence time S1 of the second event. Then
∆Tk := Tk − Tk−1 has the same distribution as ∆Sk for k ≥ 2. For convenience,
we also define ∆T1 := ∆S1. We define Xk := (∆Tk)

−1, k ≥ 1. Therefore the
{Xk} are i.i.d. according to the distribution:

∀x > 0, P (Xk ≤ x) = P (∆Tk ≥ x−1) = e−λx−1

=: Φ1,λ(x)

implying dΦ1,λ(x) = λx−2e−λx−1

dx. Moreover since limx→0 Φ1,λ(x) = 0 and
limx→0 Φ′

1,λ(x) = 0, where Φ′
1,λ(x) = dΦ1,λ(x)/dx, then we set Φ1,λ(0) = 0 and

Φ′
1,λ(0) = 0.

We will denote for all t > 0, x > 0, tλ = λt, xλ−1 = λ−1x. Since λ represents
the chosen time scale at which time t is defined, then tλ and xλ−1 are invariant
by scale change if x represents the inverse of a time. This implies that each
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distribution Gλ(t, x) depending on t or x (inverse of a time) observed at the
scale λ should be invariant by scale change, that is it should satisfy Gλ(t, x) =
G1(tλ, xλ−1). This is the case for Φ1,λ(x), that is Φ1,λ(x) = Φ1,1(xλ−1), and we
will check this property for the distributions that will be derived here. Notice
that Φ1,1(xλ−1) is a Fréchet distribution.

We define the p.p. (point process) N = {(Tk,Xk)}k≥1 and the extremal
process {R(t)} generated by this p.p.: So, for all t ≥ 0, R(t) := Rn(t)+1 :=

∨
n(t)+1
k=1 Xk, where n(t) := n(0, t] := #{k ≥ 2 : Tk ≤ t}, for t > 0, and n(0) = 0, is

the counting process associated to {Tk}. We denote U(s, t] := ∨
n(t)+1
k=n(s)+2Xk, the

max-increment of {R(t)} in (s, t]. We define τm as the mth jump time of R(·)
with τ1 = T1 = 0. Then defining Lm as the index of the mth record with L1 = 1,
we have τm = TLm and R(τm) = Rm are the mth record time and value of the
process {(Tk,Xk)}k≥1.

3. Distribution of {R(t)} in the dependent setting

Since Xk = (∆Tk)
−1, for all k, the time and the state components of the point

process {Tk,Xk}, are completely linked contrary to the usual setting. By con-
struction N = {(Tk,Xk)} generates a process {R(t)} with CADLAG and nonde-
creasing step functions. Moreover, for 0 = t1 < t2 < · · · < tn,

P (R(t1) ≤ x1, R(t2) ≤ x2, . . . , R(tn) ≤ xn) =

P (X1 ≤ x1,X1 ∨ U(t1, t2] ≤ x2, . . . ,X1 ∨ U(t1, t2] ∨ · · · ∨ U(tn−1, tn] ≤ xn),

where the {U(tk−1, tk]} are homogenous but nonindependent because of the non-
independence of the time and state components. So {R(t)} is called generalized
extremal process.

Moreover define C(t) := inf{x ≥ 0 : P (R(t) ≤ x) > 0}, the lower endpoint of
the c.d.f. of R(t). The curve C : [0,∞) → [0,∞) is the lower curve of the process
R(·). The c.d.f. of the max-increment U(·) above the lower curve is unique if we
impose the condition U(s, t] ≥ C(t) a.s., for all 0 ≤ s < t (see [1]). We will see in
proposition 3.1 that here C(·) = 0.

Let Pt;λ(x) := P

(

n(t)+1
∨

k=2
Xk ≤ x

)

. Then the distribution of R(t) is given by

Ft;λ(x) := P (R(t) ≤ x) = P (R(s) ≤ x,∀ 0 ≤ s ≤ t) = Φ1,λ(x)Pt;λ(x).(1)

Proposition 3.1. For a given t, Pt;λ(x) is continuous in x on (0,∞) and is
infinitely derivable on (0, t−1) and (t−1,∞). For a given x, {Pt;λ(x)} is infinitely



160 C. Jacob, Z. Khraibani, E. Pancheva

derivable on (0,∞). Moreover, for t ≥ 0, x ≥ 0, defining Eλ(·) = 1 − Eλ(·),

Pt;λ(x) =
∞
∑

m=0

∫

· · ·

∫

mP
k=1

uk≤t

{uk≥x−1}k≤m

Ēλ

(

t −
m
∑

k=1

uk

)

Πm
k=1dEλ(uk)

= e−λt

[xt]
∑

m=0

(λt)m

m!

(

1 −
m

xt

)m

(2)

Pt;λ(0) = e−λt, P0;λ(x) = 1,

where [xt] is the integer part of xt, and by convention (t − 0/x)0/0! = t0/0! = 1,
1
∨

k=2
Xk = 0. In addition Pt;λ(x) = Ptλ;1(xλ−1).

Consequence. Using (1),

Ft;λ(x) = e−λ(t+x−1)

[xt]
∑

m=0

(λt)m

m!

(

1 −
m

xt

)m

= Ftλ;1(xλ−1).

P r o o f. Let x ≥ 0. Using the full probability principle on n(t), we have

Pt;λ(x) =

∞
∑

m=0

P

(

n(t)+1
∨

k=2
Xk ≤ x, n(t) = m

)

First assume x = 0. Then Pt;λ(0) = P (∆T2 > t) = e−λt. Next assume x > 0.

Then Pt;λ(x) =
∞
∑

m=0
Gt,m;λ(x), where Gt,m;λ(x) := P

(

m+1
∨

k=2
Xk ≤ x, n(t) = m

)

,

m ≥ 0, and by convention
1
∨

k=2
Xk = 0.

Let us calculate Gt,m;λ(·) stepwise. For m > 0,

Gt,m;λ(x) = P

(

m+1
∨

k=2
Xk ≤ x, n(t) = m

)

= P
(

Tm+2 > t, Tm+1 ≤ t,∆Tk ≥ x−1, k = 2, . . . ,m + 1
)

.
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This probability is nonnull if mx−1 ≤ t. So assume x ≥ mt−1.

Gt,m;λ(x) =

∫

· · ·

∫

m+1P
k=2

uk≤t

{uk≥x−1}2≤k≤m+1

P

(

∆Tm+2 > t −
m+1
∑

k=2

uk

)

×

Πm+1
k=2 dP (∆Tk = uk)

=

∫

· · ·

∫

m+1P
k=2

uk≤t

{uk≥x−1}2≤k≤m+1

Ēλ(t −
m+1
∑

k=2

uk)Π
m+1
k=2 dEλ(uk)

=

∫

· · ·

∫

m+1P
k=2

uk≤t

{uk≥x−1}2≤k≤m+1

e−λ(t−
Pm+1

k=2
uk)Πm+1

k=2 e−λukλmdu2 . . . dum+1.

In addition to tλ := λt, xλ−1 := λ−1x, let vk := λuk, k = 2, . . . ,m + 1. Then

Gt,m;λ(x) = e−tλ

∫

· · ·

∫

m+1P
k=2

vk≤tλ

{vk≥x−1

λ−1}2≤k≤m+1

dv2 . . . dvm+1. The solution of this inte-

gral is given by the change of variable zk−1 = vk−x−1
λ−1 , 2 ≤ k ≤ m+1. Therefore

0 ≤ z1 + z2 + . . . zm ≤ tλ − mx−1
λ−1 . Let ax := tλ − mx−1

λ−1, Zi = z1 + · · · + zi =
Zi−1 + zi, and assume x ≥ mt−1. Then

Gt,m;λ(x) = e−tλ

∫ ax

0

∫ ax−Z1

0

∫ ax−Z2

0
· · ·

∫ ax−Zm−1

0
dzm · · · dz2dz1

= e−tλ

∫ ax

0
· · ·

∫ ax−Zm−2

0
[zm]

ax−Zm−1

0 dzm−1 · · · dz1

= e−tλ

∫ ax

0

[

−
(ax − Z1 − z2)

m−1

(m − 1)!

]ax−Z1

0

dz1

= · · · = e−tλ
am

x

m!
.

So finally

Gt,m;λ(x) = e−tλ
(tλ − mx−1

λ−1)
m

m!
I{m≤xt} = Gtλ,m;1(xλ−1).

This leads to Pt;λ(x) =
∑

m≥0
Gt,m;λ(x) = e−tλ

(

[xt]
∑

m=0
(m!)−1(tλ − m.x−1

λ−1)
m

)

im-

plying itself Pt;λ(x) = Ptλ;1(xλ−1). Moreover Pt;λ(0) := P

(

n(t)+1
∨

k=2
Xk ≤ 0

)

= 0
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while Pt;λ(0+) := lim
xց0

Pt;λ(x) = e−tλ . �

More generally, for x1 ≤ x2, P (R(0) ≤ x1, R(t) ≤ x2) = Φ1,λ(x1)Pt;λ(x2),
and for 0 < x1 < x2 · · · < xn, denoting Tt = sup{Tk : Tk ≤ t} := Tn(t)+1,

P (R(t1) ≤ x1, R(t2) ≤ x2, . . . , R(tn) ≤ xn) =

Φ1,λ(x1)

∫

· · ·

∫

tt1≤tt2 ···≤ttn

dP (U(0, tt1 ] ≤ x1, U(tt1 , ttt2 ] ≤ x2, . . . ,

U(ttn−1
, ttn ] ≤ xn, Tt1 = tt1 , Ttt2

= tt2 , . . . , Ttn = ttn) =
∫

· · ·

∫

tt1≤tt2 ···≤ttn

Eλ(tn − ttn)P (U(0, ttn − ttn−1
] ≤ xn,∆T2 > tn−1 − ttn−1

|

Ttn − Ttn−1
= ttn − ttn−1

) · · · ×

P (U(0, tt2 − tt1 ] ≤ x2,∆T2 > t1 − tt1 |Tt2 − Tt1 = tt2 − tt1) ×

P (U(0, tt1 ] ≤ x1,∆T2 > 0|Tt1 = tt1) ×

dP (Tttn−ttn−1
= ttn − ttn−1

) . . . dP (Ttt2−tt1
= tt2 − tt1)dP (Tt1 = t1),

where, for all n, P (U(0, ttn − ttn−1
] ≤ xn,∆T2 > tn−1 − ttn−1

|Ttn − Ttn−1
=

ttn−ttn−1
) may be calculated in a similar way as in proposition 3.1 and dP (Tt = tt)

is easily calculated using Eλ (see [2]).

Corollary 3.1. {R(t)} is stochastically continuous, that is lim
t→0

P (R(t + s)−

R(s) > ε) = 0, for all ε > 0.

P r o o f. We have

P (R(t + s) − R(s) > ε) =
∫

· · ·

∫

u≤s,v≤t+s,y∈(0,∞)
P (U(s, t + s] > ε + y|R(s) = y, Ts = u, Tt+s = v) ×

dP (R(s) = y, Ts = u, Tt+s = v) =
∫

· · ·

∫

u≤s,v≤t+s,y∈(0,∞)
(1 − P (U(s, t + s] ≤ ε + y|R(s) = y, Ts = u, Tt+s = v)) ×

dP (R(s) = y, Ts = u, Tt+s = v) ≤
∫∫

u≤s,v≤t+s

(1 − Iv=u)dP (Ts = u, Tt+s = v) ≤

1 −

∫

u≤s

dP (Ts = u, Tt+s = u) = 1 − P (n(s, t + s] = 0)

which tends to 0 as t → 0. �
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4. Distribution of {R(t)} in the independent setting

Assume now that Xk = ξ−1
k , for all k, where {ξk} are i.i.d., with the same

distribution as {∆Tk} but independent of {∆Tk}. So the space component and
the time component of the point process {(Tk,Xk)} are now independent (classical
setting) with X1 ∼ Φ1,λ(·) and T1 = 0 is the same origin as in the dependent

setting. Define as previously U(s, t] :=
n(t)+1
∨

k=n(s)+2
Xk, for 0 ≤ s < t. We show

here that, thanks to the independence of the increments of {n(t)}, that the max-
increments of {R(t)} are independent, and thanks to the Poisson distribution of
n(t), for all t, and the independence of {Tk}, {Xk}, that {R(t)} is a generalized
G-extremal process.

Lemma 4.1. The increments U(0, s] and U(s, t] are independent, homoge-
neous, with c.d.f.

P (U(s, t] ≤ x) := P

(

n(t)+1
∨

k=n(s)+2
Xk ≤ x

)

=
∑

m≥0

Φm
1,λ(x)P (n(s, t] = m)

= exp(−λ(t − s)[1 − Φ1,λ(x)]) := Gt−s
λ (x),(3)

where Gλ(x) = exp(−1 + Φ1,λ(x)) = G1(xλ−1).

P r o o f. Using the independence of the space and time components {Xk},
{∆Tk}, and the i.i.d. property of the {Xk}, we have

P (U(s, t] ≤ x) = P

(

n(s,t]+1
∨

k=2
Xk+n(s) ≤ x

)

=
∑

m≥0

∑

n≥0

P

(

m+1
∨

k=2
Xk+n ≤ x)P (n(s, t] = m,n(s) = n

)

=
∑

m≥0

∑

n≥0

Φm
1,λ(x)P (n(s, t] = m,n(s) = n)

The expression of P (U(s, t] ≤ x) is then directly deduced from
∑

n

P (n(s, t] =

m,n(s) = n) = P (n(s, t] = m) = exp(−λ(t− s))(λ(t− s))m(m!)−1. The indepen-
dence follows from the independence of the time and state components and from
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the independence of the increments of n(·):

P (U(0, s] ≤ y, U(s, t] ≤ x) =
∑

m,n

P

(

m+1
∨

k=2
Xk ≤ y,

n+1
∨

k=2
Xk+m ≤ x

)

P (n(s) = m,n(s, t] = n) =

∑

m

Φm
1,λ(y)P (n(s) = m)

∑

n

Φn
1,λ(x)P (n(s, t] = n) =

P (U(0, s] ≤ y)P (U(s, t] ≤ x). �

Proposition 4.1. The process {R(t)} defined by R(t) :=
n(t)+1
∨

k=1
Xk, which is

generated by the point process N = {(Tk,Xk)} with independent time and space
components is a generalized G-extremal process, that is, for 0 < x1 < x2 · · · < xn,
0 = t1 < t2 · · · < tn, its multidimensional distribution is Ft1,t2,...,tn;λ(x1, . . . , xn) =

Φ1,λ(x1)G
t2−t1
λ (x2) . . . G

tn−tn−1

λ (xn) = Fλt1,λt2,...,λtn;1(λ
−1x1, . . . , λ

−1xn). More-
over its lower curve C(·) is constant and equal to 0.

P r o o f. The proof for the extremal properties is immediate and that con-
cerning the generalized G-extremal process property is a direct consequence of
Lemma 4.1. �

Corollary 4.1. {R(t)} is stochastically continuous, that is lim
t→0

P (R(t + s)−

R(s) > ε) = 0.

P r o o f.

P (R(t + s) − R(s) > ε) =

∫ ∞

0
P (U(s, t + s] > ε + y|R(s) = y)dP (R(s) = y)

=

∫ ∞

0
(1 − Gt

λ(ε + y))d[Φ1,λ(y)Gs
λ(y)]

which implies lim
t→0

P (R(t + s) − R(s) > ε) = 0. �

5. Comparison of {R(t)} in the independent and in the depen-
dent settings

The independency of the max-increments is lost in the dependent setting respec-
tively to the independent setting. This implies that the G-extremal property is
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also lost. Moreover assume for simplification λ = 1. Then according to (2) and
(3)

P dep.(R(t) ≤ x) = Φ1,1(x)e−t

[xt]
∑

m=0

tm

m!

(

1 −
m

xt

)m

P indep.(R(t) ≤ x) = Φ1,1(x)e−tetΦ1,1(x) = Φ1,1(x)e−t

∞
∑

m=0

tm

m!
e−mx−1

which is not easy to compare analytically except for large values of m. But
simulations show that P dep.(R(t) ≤ x) ≤ P indep.(R(t) ≤ x), that is the extremal
process seems more easily larger in the dependent case than in the independent
one.

6. Distribution of {Rm}

The distribution of {Rm} only depends on {Xk} (and not on {Tk}). We recall
here the well-known distribution of Rm ([3]) and derive quantities such as the
distribution of the index of hitting of some given level by the record process.
Recall that {τm} are the jump times of the extremal process {R(t)} with τm =
TLm , and that R(τm) = Rm = XLm is the record value of the mth record, m ≥ 1.

Proposition 6.1. The records {Rm}m≥1 are the points of a nonhomogeneous
Poisson point process on the state space (0,∞) with mean measure

µ∗
λ(a, b] = ln

(1 − Φ1,λ(a)

1 − Φ1,λ(b)

)

= µ∗
1(aλ, bλ] 0 < a < b < ∞.

We set µ∗
λ(0, b] = lim

a→0
µ∗

λ(a, b] = ln(1 − Φ1,λ(b))−1.

This result is a direct application of Proposition 4.1.[iii] page 166 in Resnick
(1987) ([4]). We will denote PX;λ(x) and dPX;λ(x) for P (X ≤ x) and dP (X = x)
under ∆T1 ∼ Eλ.

Corollary 6.1. Let N∗(a, b] = #{m ≥ 1 : Rm ∈ (a,b]} (number of records
taking values in (a, b]). Then E(N∗(a, b]) = µ∗

λ(a, b] = µ∗
1(aλ, bλ], and

dPN∗(0,x];λ(m) := P (N∗(0, x] = m) =
[ln(1 − Φ1,λ(x))−1]m

m!
(1 − Φ1,λ(x))

and dPN∗(0,x];λ(m) = dPN∗(0,x
λ−1 ];1(m).
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Let η(x) = inf{m ≥ 1 : Rm > x} be the hitting index of (x,∞) by the record
values sequence. Then η(b)−η(a) = #{m : Rm ∈ (a,b]} = N∗(a,b] and moreover
we have the following result.

Corollary 6.2. Let x > 0. Then, for m ≥ 1,

PRm;λ(x) := P (Rm ≤ x) = P (N∗(0, x] ≥ m)

=
∑

k≥m

[ln(1 − Φ1,λ(x))−1]k

k!
(1 − Φ1,λ(x)) = PRm;1(xλ−1)(4)

dPη(x);λ(k) := P (η(x) = k) = P (N∗(0, x] = k − 1)

=
[ln(1 − Φ1,λ(x))−1]k−1

(k − 1)!
(1 − Φ1,λ(x)) = dPη(x

λ−1 );1(k).(5)

In (5), P (η(x) = k) is calculated using the intensity of the p.p. {Rm}. It
may be also calculated using the full probability principle and the independence
and equidistribution of the {Xk} (Proposition 6.2).

Proposition 6.2. For all k ≥ 2,

P (η(x) = k) =

(1 − Φ1,λ(x))
∑

1=j1<j2<···<jk<∞

[Φ1,λ(x)]jk−j1

(j2 − j1)(j3 − j1) . . . (jk − j1)
(6)

and for k = 1, P (η(x) = 1) = 1 − Φ1,λ(x).

P r o o f.

P (η(x) = k) =

P (XL1
≤ x, . . . ,XLk−1

≤ x,XLk
> x) =

∑

1=j1<j2<···<jk

P (Xj1 ≤ x, . . . ,Xjk−1
≤ x,Xjk

> x,L1 = j1, . . . , Lk = jk) =

∑

1=j1<j2<···<jk

∫

0<x1<x2<···<xk−1≤x

dP (Xj1 = x1,Xj1 ≤ x, {Xl ≤ Xj1}j1+1≤l≤j2−1,

Xj2 = x2,Xj2 > Xj1 ,Xj2 ≤ x, {Xl ≤ Xj2}j2+1≤l≤j3−1, . . . ,
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Xjk−1
= xk−1,Xjk−1

> Xjk−2
,Xjk−1

≤ x, {Xl ≤ Xjk−1
}jk−1+1≤l≤jk−1,Xjk

> x) =
∑

1=j1<j2<···<jk

∫

0<x1<x2<···<xk−1≤x

dP (Xj1 = x1, {Xl ≤ x1}j1+1≤l≤j2−1,Xj2 = x2,

{Xl ≤ x2}j2+1≤l≤j3−1, . . . ,Xjk−1
= xk−1, {Xl ≤ xk−1}jk−1+1≤l≤jk−1,Xjk

> x) =
∑

1=j1<j2<···<jk

[

∫

0<xk−1≤x

. . . [

∫

0<x2<x3

[

∫

0<x1<x2

dΦ1,λ(x1)[Φ1,λ(x1)]
j2−1−j1]

dΦ1,λ(x2)[Φ1,λ(x2)]
j3−1−j2 ] . . . dΦ1,λ(xk−1)[Φ1,λ(xk−1)]

jk−1−jk−1 ](1 − Φ1,λ(x)) =

∑

1=j1<j2<···<jk

[

∫

0<xk−1≤x

. . . [

∫

0<x2<x3

[Φ1,λ(x2)]
j2−j1

j2 − j1
dΦ1,λ(x2)[Φ1,λ(x2)]

j3−1−j2 ] . . .

dΦ1,λ(xk−1)[Φ1,λ(xk−1)]
jk−1−jk−1](1 − Φ1,λ(x)) =

∑

1=j1<j2<···<jk

[

∫

0<xk−1≤x

. . . [

∫

0<x2<x3

[Φ1,λ(x2)]
j3−1−j1

j2 − j1
dΦ1,λ(x2)] . . .

dΦ1,λ(xk−1)[Φ1,λ(xk−1)]
jk−1−jk−1](1 − Φ1,λ(x)) =

∑

1=j1<j2<···<jk

[

∫

0<xk−1≤x

. . . [

∫

0<x3<x4

[Φ1,λ(x3)]
j3−j1

(j3 − j1)(j2 − j1)
[Φ1,λ(x3)]

j4−1−j3dΦ1,λ(x3)] . . .

dΦ1,λ(xk−1)[Φ1,λ(xk−1)]
jk−1−jk−1](1 − Φ1,λ(x)) =

(1 − Φ1,λ(x))
∑

1=j1<j2<···<jk<∞

[Φ1,λ(x)]jk−j1

(jk − j1)(jk−1 − j1) . . . (j2 − j1)
. �

Remark 6.1. Compare (6) and (5). Using Taylor’s expansion of ln(1−U)−1

at U = 0, we get ln(1 − U)−1 =
∑

l≥1 U ll−1, which implies that

[ln(1 − Φ1,λ(x))−1]k−1 =
∑

n1≥1,...,nk−1≥1

[Φ1,λ(x)]n1+···+nk−1

n1 . . . nk−1
(7)

We define j1, . . . , jk−1, . . . in the following way: j1 = 1, j2 − j1 = n1, j3 − j2 =
n2,. . . , jk − jk−1 = nk−1. Then (7) becomes

[ln(1 − Φ1,λ(x))−1]k−1 =
∑

1=j1<j2<···<jk

[Φ1,λ(x)]jk−j1

(j2 − j1)(j3 − j2) . . . (jk − jk−1)
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and therefore (5) becomes

(8) P (η(x) = k)

=
(1 − Φ1,λ(x))

(k − 1)!

∑

1=j1<j2<···<jk−1<jk

[Φ1,λ(x)]jk−j1

(j2 − j1)(j3 − j2) . . . (jk − jk−1)

So finally compare (6) and (8). First they are equal for k = 1 and k = 2. Next
they are equal for any given k and all x > 0, if and only if, for all jk − j1 with
j1 = 1, and all x > 0,

∑

Jk−1(jk)

[Φ1,λ(x)]jk−j1

(k − 1)!(j2 − j1) . . . (jk − jk−1)
=

∑

Jk−1(jk)

[Φ1,λ(x)]jk−j1

(j2 − j1) . . . (jk − j1)
(9)

where Jk−1(jk) = {j2, . . . , jk−1 : 1 = j1 < j2 < · · · < jk−1 < jk}; (9) is checked if
for all jk > j1 + (k − 1),

∑

Jk−1(jk)

[

1

(k−1)!(j2−j1)(j3−j2) . . . (jk−jk−1)
−

1

(j2−j1)(j3−j1) . . . (jk−j1)

]

= 0.

This formula is easily checked for small values of k and jk (for example k = 3
with j3 ≤ 5).

7. Test of a sporadic phenomenon from a simulated trajectory

From processes {R(t)} and {Rm}, we may derive statistics of the test of H0:
“the {Xk} are i.i.d.”, that is the observed phenomenon is a sporadic one. We
test here this assumption on a given trajectory simulated under the assumption
of an emergent phenomenon, that is we assume that the {∆Sk} are independent
with ∆Sk ∼ Ek, where 1 − Ek(·) = (1 − Eλ(·))ρk , ρk = ak, a ≥ 1. Then
P (Xk ≤ x) := P (∆Tk ≥ x−1) = exp(−λakx−1) implying E(∆Tk) = 1/λk, where
λk = λ.ρk = λ.ak is the rate of occurrence of the k + 1th case from time Tk−1,
which is exponentially increasing when a > 1 (“epidemic” situation). We choose
for the simulation λ = 1 with a = 1.1, which means a slow emergence. We
compare the test results using either {Rm}m := {R(TLm)} or {R(tm)}m, where
tm = T obs

Lm
is the observed real time of occurrence of the mth record corresponding

to the Lmth event. The statistic R(tm) contains the additional information of the
number of events in (0, tm] compared to the statistic Rm, and moreover does not
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depend on the value m itself, while Rm is strongly dependent on m. Consequently
the statistic R(tm) is more informative and should be much more robust than Rm.
We will moreover see on this example that it is much easier to reject H0 with
R(tm) than with Rm and with (R(0), R(tm)) than with R(tm).

7.1. Test of H0 using {Rm}
m≥1

Figure 1: Simulated trajectory: {Xn}n≤40 with the observed records represented by
black ovals.

Recall that, for λ = 1, according to (4),

PH0
(Rm > x) =

∑

0≤k≤m−1

− ln((1 − Φ1(x))k

k!
(1 − Φ1(x))

where Φ1(x) = exp(−x−1). Since Φ1(x) is continuous in x ∈ (0,∞), we have
PH0

(Rm ≥ x) = PH0
(Rm > x). For the test of H0, we choose x = Robs

m := Xobs
Lm

(mth observed record), for different small values of m and will reject H0 for each
value of m, if PH0

(Rm > x) is small enough (table 1).

Notice that since X2, X3, X4 are of the same magnitude order on this tra-
jectory, then we could set m = 2, 3, 4, 5, 6, 7 with the same set of values of {Lm}
as above (for example Lm = 28 for m = 4) instead of m = 2, 5, 6, 7, 8, 9. This
implies PH0

(Rm ≥ Robs
m ) = 0.4412, 0.1880, 0.2981, 0.4748, 0.5131 instead of values
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m 2 5 6 7 8 9

Lm 2 5 28 31 39 40

Robs
m = Xobs

Lm
6 79 118 122 268 359

PH0
(Rm ≥ Robs

m ) 0.4412 0.5558 0.6554 0.7897 0.7979 0.8589

Table 1: Observed levels using {Rm}

of table 1, which shows the high dependency on m of the statistic. However in
both cases, H0 cannot be rejected.

7.2. Test of H0 using {R(tm)}
m≥1

Figure 2: Simulated trajectory: {Xn} according to Tn ≤ T40 = 4.8940 with the observed
records represented by black ovals.

Recall that, for λ = 1, according to (1) and (2),

PH0
(R(t) ≤ x) = Φ1(x)Pt(x) = exp(−(t + x−1))

[xt]
∑

m=0

tm

m!

(

1 −
m

xt

)m
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which is continuous in x on (0,∞). Therefore P (R(t) ≥ x) = P (R(t) > x) =

1−P (R(t) ≤ x). We choose tm := T obs
Lm

:=
Lm
∑

k=2

∆T obs
k , for different values of m and

reject H0 if PH0
(R(tm) ≥ Robs(tm)) is small enough (table 2). We also use the

joint statistics {(R(0), R(tm))}m and reject H0 if PH0
(R(0) ≥ Robs(0), R(tm) ≥

Robs(tm)) is small enough (table 2), where Robs(0) = 1.. Notice that PHi
(R(0) ≥

Robs(0), R(tm) ≥ Robs(tm)) ≤ PHi
(R(tm) ≥ Robs(tm)), for i = 0, 1, where H1

represents the emergence assumption. Consequently, under H0, we reject H0

more easily with R(0), R(tm) than with R(tm), but the power of the test under
H1 is also lower using R(0), R(tm) than using R(tm). We have

PH0
(R(0) ≥ Robs(0), R(tm) ≥ Robs(tm)) =

PH0
(R(tm) ≥ Robs(tm)) − PH0

(R(0) ≤ Robs(0), R(tm) ≥ Robs(tm)) =

1 − Φ1,λ(Robs(tm))Ptm;λ(Robs(tm)) − Φ1,λ(Robs(0))(1 − Ptm;λ(Robs(tm)))

m 6 7 8 9

Lm 28 31 39 40

tm = T obs
Lm

4.4402 4.5398 4.8912 4.8940

Robs(tm) 118. 122. 268. 359.

PH0
(R(tm) ≥ Robs(tm)) 0.0526 0.0517 0.0253 0.0190

PH0
(R(0) ≥ Robs(0), R(tm) ≥ Robs(tm)) 0.0362 0.0355 0.0173 0.0130

Table 2: Observed levels using {R(tm)}

So we can reject H0, as soon as tm = 4.4402 (cooresponding to Lm =
28 observed events) at the approximate level 0.05 using R(tm) and 0.04 using
(R(0), R(tm)) (table 2).

In conclusion, we reject easily H0 with the extremal process which is not the
case with the records values. This comes from the fact that the extremal process
contains the useful information of the number of events in the observed period.
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