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STUDIA MATHEMATICA

BULGARICA

ON Y-LINKED GENES AND BISEXUAL BRANCHING

PROCESSES∗

M. González, C. Gutiérrez, R. Mart́ınez, M. Mota

In this paper we survey the results concerning the extinction problem for a
two-allele Y-linked gene in a two-sex monogamic population, with a prefer-
ence of females for males carrying one of the two alleles of the gene. First we
give the mathematical definition of the Y-linked bisexual branching process
to model this situation and study some of its relevant properties. Then, we
research the extinction of the population and also the survival of each geno-
type depending on the behaviour of the other genotype. Finally, we simulate
the evolution of the population and conjecture its long term behaviour, for
some critical situations.

1. Introduction

Recent investigations in genetics have shown the importance of some genes linked
to the Y-chromosome in both, human (see for example the web page
www.nature.com/nature/focus/ychromosome/, Quintana-Murci and Fellous
(2001), Krausz et al. (2003, 2004) or Hughes et al. (2005)) and other animal
populations (see for example Bernardo et al. (2001), Yamada et al. (2004) or
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the review by Charles et al. (2005)). Since this chromosome is exclusive of male
individuals, it is natural to think that the characters controlled by such genes can
have some influence on the mating process of such species, with a preference of
females for males carrying one of the alleles of the gene. On the basis of this fact,
González et al. (2006) have developed a bidimensional bisexual branching process
to describe the generation-by-generation evolution of the number of carriers of
the two alleles, R and r, of a Y-linked gene in a two-sex monogamic population.
In this scenario, females do not have the gene and then the couples (a female
and a male) will be classified as R-type or r-type, depending on the genotype
of the male. Following the inheritance rules, R-type mating units can generate
females and R-type males while r-type mating units can produce females and
r-type males. Moreover, a mating mechanism, where each individual mates with
one individual of the opposite sex, if available (perfect fidelity mating), is con-
sidered. Furthermore, R-type males are preferred by females as mates, though a
female will mate with an r-male if no R-male is available.

Using this model, the extinction problem for a Y-linked gene has been con-
sidered in González et al. (2006, 2008), providing conditions for the almost sure
extinction of the whole population and also for the survival of each genotype with
positive probability. Specifically, González et al. (2006) consider the problem of
the extinction of the population, the survival of a genotype when the another
one becomes extinct and begin the study of the simultaneous survival of both
genotypes. This study was completed in González et al. (2008), along with the
investigation of the growth rate of each genotype. In this work we present the
results of both papers. For the proofs, the reader will be referred to González et
al. (2006, 2008).

This paper contains three sections. In Section 2 we provide the definition
of the Y-linked bisexual branching process to model perfect fidelity mating and
preference. We also present some basic properties of the model. In Section 3 we
study the extinction problem for both the whole population and each genotype, in
the latter case considering the behaviour of the other genotype. For some critical
situations, we also simulate the evolution of the population and conjecture its
long term behaviour.

2. The probability model

The probability model we are concerned with is the Y-linked bisexual branching
process, introduced by González et al. (2006), where perfect fidelity mating and
preference of females for R-type males are assumed.

To provide a formal definition of this model, we consider two independent
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sequences {(FRn,l,MRn,l) : l = 1, 2, . . . ;n = 0, 1, . . .} and {(Frn,l,Mrn,l) : l =
1, 2, . . . ;n = 0, 1, . . .} of independent, identically distributed, non-negative and
integer-valued bivariate random vectors on the same probability triple (Ω,F , P ),
where (FR01,MR01) and (Fr01,Mr01) may have different distributions. Intu-
itively, the vector (FRn,l,MRn,l) (resp. (Frn,l,Mrn,l)) represents the number
of females and males generated by the lth R-type (resp. r-type) mating unit in
generation n.

With respect to the distribution of these vectors, we assume the reproduc-
tion scheme given in Daley (1968). That is, each R-type (resp. r-type) couple
produces offspring, independently of one another, as specified by a given prob-
ability distribution {pR

k }k≥0 (resp. {pr
k}k≥0), with mean mR (resp. mr). An

offspring will be female with probability α, 0 < α < 1, and male with probability
1−α. These sex designations are made independently among the offspring of any
couple. Then, if a R-type (resp. r-type) mating unit produces k offspring, i.e.
FR0,1+MR0,1 = k (resp. Fr0,1+Mr0,1 = k), the number of females among these,
FR0,1 (resp. Fr0,1), follows a binomial distribution of size k and probability α.
Therefore E[FR0,1] = αmR and E[MR0,1] = (1 − α)mR (resp. E[Fr0,1] = αmr

and E[Mr0,1] = (1 − α)mr). Moreover, both distributions will be assumed with
finite variances through the paper.
If for every n ≥ 0, ZRn and Zrn represent the total number of R-type and r-type
mating units, respectively, at generation n, then the Y-linked bisexual process
{(ZRn, Zrn)}n≥0 is defined, recursively as follows:

• The number of R-type and r-type mating units in the initial generation is
fixed:

(ZR0, Zr0) = (i, j), i, j ∈ N0.

• For every n ≥ 0, the offspring generated by each genotype in the (n + 1)st
generation is specified by the formulas:

(FRn+1,MRn+1) =

ZRn∑

l=1

(FRnl,MRnl), (Frn+1,Mrn+1) =

Zrn∑

l=1

(Frnl,Mrnl),

where (FRn+1,MRn+1) and (Frn+1,Mrn+1) represent the total number of
females and males given, respectively, by all the R-type and r-type couples
in generation n. Moreover,

Fn+1 = FRn+1 + Frn+1

gives the total number of females in the (n + 1)st generation.
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• Finally, from the vector (Fn+1,MRn+1,Mrn+1) and considering the perfect
fidelity mating and the preference of females for R-type males, (ZRn+1,
Zrn+1) is determined as follows:

– Since R-type males are chosen first as mates and perfect fidelity mating
is assumed, the number of R-type mating units is

ZRn+1 = min{Fn+1,MRn+1}.

– The number of females which do not mate with R-type males is max{0,
Fn+1 − MRn+1}. These females mate with r-type males and the as-
sumption of perfect fidelity implies that the number of r-type mating
units is

Zrn+1 = min{max{0, Fn+1 − MRn+1},Mrn+1}.

Furthermore, the total number of mating units in the nth generation is given
by Zn = ZRn + Zrn and it follows that Zn = min{Fn,MRn + Mrn}.

The process {(ZRn, Zrn)}n≥0 is a homogeneous Markov chain while {Zn}n≥0

does not have the Markov’s property. However, if pR
k = pr

k = pk for all k ≥ 0, then
both types of mating units have the same reproduction behaviour and therefore
the process {Zn}n≥0 is a bisexual branching process with perfect fidelity mating
and reproduction law {pk}k≥0 (see Daley (1968), for details of this process).

From now on, we focus our attention on the extinction and/or explosion of
genotypes R and r. To this end, we call the events {ZRn → 0} and {Zrn → 0}
extinction of the R and r genotypes, respectively, and the events {ZRn → ∞} and
{Zrn → ∞} explosion of the R and r genotype, respectively. Since the processes
{ZRn}n≥0 and {Zrn}n≥0 are integer valued and ZRn+1 = 0 if ZRn = 0 and
Zrn+1 = 0 if Zrn = 0, it follows that

{ZRn → 0} = {ZRn = 0 eventually} =

∞⋃

n=1

{ZRn = 0}

and

{Zrn → 0} = {Zrn = 0 eventually} =

∞⋃

n=1

{Zrn = 0}.

Although {ZRn}n≥0 and {Zrn}n≥0 are not Markov chains, González et al. (2006)
proved that both genotypes have the dual extinction-explosion asymptotic be-
haviour, typical in many homogeneous branching processes (see Haccou et al.
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(2005)): either the total number of mating units of a genotype goes to zero or
has an unlimited growth, that is,

P (ZRn → 0) + P (ZRn → ∞) = 1 and P (Zrn → 0) + P (Zrn → ∞) = 1.

Therefore, if we denote by A0,0 = {ZRn → 0, Zrn → 0} the extinction of the
population, by A∞,0 = {ZRn → ∞, Zrn → 0} the fixation of R genotype, by
A0,∞ = {ZRn → 0, Zrn → ∞} the fixation of r genotype and by A∞,∞ =
{ZRn → ∞, Zrn → ∞} the explosion of both genotypes, we have that

P (A0,0) + P (A∞,0) + P (A0,∞) + P (A∞,∞) = 1.

In conclusion, to study the extinction problem of the gene in the population, we
focus our attention on the events A0,0, A∞,0, A0,∞ and A∞,∞.

3. The extinction problem

From now on, in order to simplify the notation, we denote P (·|(ZR0, Zr0) = (i, j))
by P(i,j)(·), with i, j ≥ 0. Moreover, we assume that i, j > 0. When i = 0 or
j = 0, then there is only one surviving genotype at the initial generation which
evolves like a bisexual process with its associated reproduction law (see González
et al. (2006)), and therefore the extinction problem is deduced from Daley (1968).

A necessary and sufficient condition for the population to become extinct
almost surely is given in the following result:

Theorem 1. Let i, j > 0, then P(i,j)(A0,0) = 1 if and only if min{αmr, (1−
α)mr} ≤ 1 and min{αmR, (1 − α)mR} ≤ 1.

We conclude that if the average number of females or males produced by
a mating unit of each type is less than or equal to one then the process be-
comes extinct almost surely. Moreover, as it is shown in the following result,
min{αmr, (1 − α)mr} > 1, is a necessary and sufficient condition for a posi-
tive probability of fixation of the r genotype, and consequently the extinction
probability of the whole population is less than one.

Theorem 2. Let i, j > 0, then P(i,j)(A0,∞) > 0 if and only if min{αmr, (1−
α)mr} > 1.

Therefore the almost sure extinction of r genotype implies that min{αmr, (1−
α)mr} ≤ 1. Moreover, this happens independently on behaviour of R genotype.
Indeed, if (1 − α)mr ≤ 1, which intuitively means that the average number of
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males produced by a r-couple is less than or equal to one, then the r genotype
becomes extinct almost surely because there are not enough r-type males. Also,
if max{αmR, αmr} ≤ 1, that is, the average number of females generated by a
mating unit is less than or equal to one, then there are not enough females in the
population and it becomes extinct almost surely. The situation (1 − α)mr > 1,
αmr ≤ 1 and αmR > 1 is special. Since αmR < (1 − α)mR then, possibly,
some R-type males mate with females produced by r-couples (see left graphic in
Figure 1) and the remaining females are not enough to keep the r genotype alive.
To show this scenario we have simulated 10 generations for such a process with
(ZR0, Zr0) = (1, 10000), α = 0.2 and the reproduction laws following Poisson
distributions with mR = 6 and mr = 5. In Figure 1, we illustrate a path from such
a process where we can observe the pattern previously described. In conclusion,
we establish the following result:

Theorem 3. Let i, j > 0, then P(i,j)(Zrn → 0) = 1 if and only if min{αmr,
(1 − α)mr} ≤ 1.
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Figure 1: Path from a process where (1 − α)mr > 1, αmr ≤ 1 and αmR > 1

On the other hand, the behaviour of R genotype does depend on the extinction
or survival of r genotype, because of the preference. When the r genotype becomes
extinct, we obtain the following result about fixation of R genotype, similar to
Theorem 2:

Theorem 4. Let i, j > 0, then P(i,j)(A∞,0) > 0 if and only if min{αmR, (1−
α)mR} > 1.
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From Theorem 3 and Theorem 4, we deduce that for the simultaneous sur-
vival of both genotypes with positive probability it is necessary that the average
number of males generated by a mating unit of any genotype as well as the aver-
age number of females produced by a r-type couple are greater than one. When
α > 0.5, this condition is also sufficient because, provided that the number of
mating units of both types is large enough, the number of females produced by
each genotype is greater than the number of males generated by such a genotype.
Therefore the number of mating units of both genotypes may grow indefinitely
because the average number of males of both genotypes is greater than one and
every male mates.

On the other hand, when α < 0.5, R-type mating units do not produce
enough females to mate all the R-type males and some of these mate with fe-
males produced by r-type mating units (see left graphic in Figure 1). Thus,
the simultaneous survival of both genotypes depends on the relation between
αmr and (1 − α)mR, that is, the average number of females produced by an
r-type couple and the average number of males produced by an R-type cou-
ple. Indeed, if αmr < (1 − α)mR, then, as long as the R genotype is alive,
the number of R-type males is so big that, eventually, all the females choose
these males and r-type males cannot mate, so the r genotype becomes extinct,
and therefore the survival of both genotype has zero probability. Notice that r
genotype can survive by itself, because min{αmr, (1 − α)mr} > 1. Moreover, if
αmR > 1, the R genotype can survive by itself, but not simultaneously with r
genotype. This is an amazing fact, because although all parameters are greater
than one, that is, min{αmR, (1 − α)mR, αmr, (1 − α)mr} > 1, we obtain that
P(i,j)(A∞,∞) = 0 and therefore P(i,j)(A0,0) + P(i,j)(A∞,0) + P(i,j)(A0,∞) = 1. To
show this scenario we have simulated 20 generations of a Y-linked bisexual process
with (ZR0, Zr0) = (1, 5), α = 0.3 and reproduction laws following Poisson distri-
butions with mR = 3.5 and mr = 4. In Figure 2 we illustrate three paths from
such a process where we can observe the different patterns previously described.

Furthermore, when α < 0.5 and (1 − α)mR < αmr, the number of females
produced by r-type couples is much bigger than the number of males produced
by R-type couples, so only a negligible amount of these females mates with R-
type males. The rest of females mates with r-type males and they are enough for
the survival of r genotype. Since 1 < (1 − α)mR, then both genotypes survive
simultaneously. In conclusion, we establish the following result concerning the
event A∞,∞:

Theorem 5. Let i, j > 0,

i) If min{(1 − α)mR, (1 − α)mr, αmr} ≤ 1, then P(i,j)(A∞,∞) = 0.
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Figure 2: Paths from a process where 1 < αmr < (1 − α)mR and 1 < αmR

ii) If α < 0.5 and 1 < αmr < (1 − α)mR, then P(i,j)(A∞,∞) = 0.

iii) If α < 0.5 and 1 < (1 − α)mR < αmr, then P(i,j)(A∞,∞) > 0.

iv) If α > 0.5 and min{(1 − α)mR, (1 − α)mr} > 1, then P(i,j)(A∞,∞) > 0.

The case α < 0.5 and 1 < (1 − α)mR = αmr is not included in the previous
result. In order to conjecture the possible behaviour of the process under such
conditions we have simulated five batches of 10000 processes with reproduction
laws following Poisson distributions with means mR = 7/4 and mr = 21/8 and
α = 0.4. For these values of the parameters, αmr = (1 − α)mR = 1.05 > 1. In
all the simulated processes we set ZR0 = 10 and Zr0 = 25. The following table
shows the number of processes in each batch that have not become extinct by
generations 20, 40, 60, 80 and 100.

batch 1 2 3 4 5

generation 20 561 559 512 549 573
generation 40 67 79 65 72 87
generation 60 19 22 14 21 25
generation 80 8 10 5 9 12
generation 100 2 6 1 7 6

It is observed how the number of non-extinct processes decreases along gen-
erations with similar figures in the five batches. Therefore, from this simulation
we conjecture for a Y-linked bisexual branching process that if α < 0.5 and
αmr = (1 − α)mR > 1, then P(i,j)(A∞,∞) = 0.

Notice that the situation α = 0.5 has not been considered in the previous
theorem and still is an open problem. Finally, notice that, since the behaviour of
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R genotype depends on r genotype, then it is not possible to provide a necessary
and sufficient condition for the almost sure extinction of the R genotype.
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