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BULGARICA

ON A SECOND ORDER CONDITION FOR

MAX-SEMISTABLE LAWS
∗

Lúısa Canto e Castro, Maria da Graça Temido

In statistics of extremes the great importance of the Normal approximation
of intermediate order statistics is well known when the parent distribution
function is in a max-stable domain of attraction and verifies the first and the
second order extreme value conditions. The generalization of these condi-
tions to max-semistable contexts is the object of this paper, aiming to be a
basis of future developments in statistical inference under max-semistability.

1. Introduction

For a long time the semi-stability concept appeared in the literature only in the
partial sum context. The genesis of the class of max-semistable (MSS) distri-
butions is due to Pancheva [6] and Grinevich [3], [4]. After these essays many
efforts have been made in order to characterize this new class and their domains
of attraction. The class MSS includes not only the max-stable (MS) class of
distributions but also non-degenerate limit distributions for the maxima of inde-
pendent and identically distributed (i.i.d.) random variables (r.v.’s) with either
discrete or multi-modal continuous distribution functions (d.f.’s) which do not
belong to the MS class.

Following Pancheva [6], a real d.f. G is MSS if there are reals r > 1, a > 0 and
b such that G(x) = Gr(ax + b), x ∈ IR, or equivalently, if there exist a sequence
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of i.i.d. r.v.’s with d.f. F , a nondecreasing sequence of positive integers {kn}
satisfying

(1) lim
n→+∞

kn+1

kn
= r, with r in [1,+∞[,

and two real sequences {an > 0} and {bn} for which

(2) F kn (an x + bn) → G(x), n → +∞,

for each continuity point, x, of G. In this case we will say that F belongs to the
domain of attraction of G. A characterization of this class, different from the one
of Grinevich [4], as well as necessary and sufficient conditions on F such that (2)
holds, are given in Canto e Castro et al. [1].

The numerical expression of the elements of the MSS class is given by

Gγ,ν

(

x − µ

σ

)

, with µ ∈ IR and σ > 0, and

Gγ,ν(x) =























exp
(

− (1 + γx)−1/γ
)

ν
(

ln (1 + γx)−1/γ
)

1 + γx > 0, γ 6= 0

1I]−∞,0[(γ) 1 + γx ≤ 0, γ 6= 0

exp (−e−xν(x)) γ = 0, x ∈ IR

,

where γ ∈ IR and ν is a bounded and periodic function with period p = ln r.
Notice that for ν = 1 we obtain the extreme value distribution Gγ(x).

The class MSS includes three disjoint families, for γ = 0, γ > 0 and γ < 0,
and each family includes infinitely many types. Indeed in Temido and Canto e
Castro [5] it is proved that G and Gθ are in the same type if and only if exists
m ∈ Z such that θ = rm.

In this work we extend the first order and the second order conditions estab-
lished for the max-stable domains of attractions and characterize the class of all
possible limits.

2. A first order condition

As usually, for a nondecreasing and right continuous function f its left-continuous
inverse is defined by f←(x) = inf{y : f(y) ≥ x}. In this context we recall Lemma
1.1.1 of de Haan and Ferreira [2] where conditions under which the convergence
of fn to f implies the convergence of f←n to f← are given.
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Let F be a d.f. and define U =

(

1

1 − F

)

←

. We recall that in the max-stable

context, F belongs to the domain of attraction of Gγ , that is, there are real
sequences {an > 0} and {bn} for which

(3) Fn (an x + bn) → Gγ(x) = exp(−(1 + γx)−1/γ), n → +∞,

if and only if there is a real function a(t) such that

(4)
U (tx) − U(t)

a(t)
→

xγ − 1

γ
, t → +∞.

For γ = 0 the right hand side of (3) and (4) is interpreted as exp(−e−x) and ln x,
respectively.

In order to extend that well known first order condition (4), which holds in
the max-stable setup, we are going to apply that lemma of de Haan and Ferreira
to relation (2). In fact we can establish the equivalence stated in the following
theorem.

Theorem 1. The distribution function F belongs to the domain of attraction
of the max-semistable distribution function G if and only if there exist a nonde-
creasing positive integer sequence {kn} satisfying (1), a positive real sequence
{an} and a real γ such that

(5)
U(kn x) − U(kn)

an
→ L(x) :=

{

hγ(x)−hγ(1)
γ γ 6= 0

g(x) − g(1) γ = 0
,

or each point of continuity x of L, where h and g are such that h←(x) =
x

ν(− ln x)

and g←(x) =
ex

ν(x)
.

P r o o f. Applying Lemma 1.1.1 of de Haan and Ferreira [2] to the conver-
gence (2), we deduce

(6)
U (knx) − bn

an
→

(

1

− ln Gγ,ν

)

←

(x) := L∗(x), n → +∞,

for each point x of continuity of L∗. Since for γ 6= 0

inf

{

y :
(1 + γ y)

1

γ

ν(ln(1 + γ y)−
1

γ )
≥ x

}

= inf

{

zγ − 1

γ
:

z

ν(− ln z)
≥ x

}
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and
zγ − 1

γ
is nondecreasing, we obtain

L∗(x) =

{

hγ(x)−1
γ γ 6= 0

g(x) γ = 0
.

In other hand, considering b′n = U(kn), from (5) we get

U (knx) − b′n
an

→ L∗(x) + C, n → +∞,

where C is a constant. So, there is bn such that
U (knx) − bn

an
→ L∗(x), n →

+∞. Consequently, applying again the same lemma, we have
U←(any + bn)

kn
→

(L∗)←(y), n → +∞, and then

1

kn(1 − F (any + bn))
→

1

− ln G(y)
, n → +∞,

for each point y of continuity of G. �

Remark 1. Observe that if ν is constant we obtain the max-stable context
and the functions h and g have the expected expressions.

Remark 2. Note that if {kn} is a real positive and nondecreasing sequence
satisfying (1) then kn(1−F (un)) → τ, n → +∞, if and only if [kn](1−F (un)) →
τ, n → +∞. Thus, in what follows, {kn} is not necessarily an integer sequence.

In the following proposition, a characterization of the functions h and g is
given.

Proposition 1. Let ν be a bounded and periodic function with period p =

ln r, with r > 1. The functions h(x) =

(

x

ν(− ln x)

)

←

and g(x) =

(

ex

ν(x)

)

←

verify

i) h(z y) = z h(y) ⇔ z ∈ {rm, m ∈ ZZ};

ii) g(z y) = g(y) + ln z ⇔ z ∈ {rm, m ∈ ZZ}.
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P r o o f. For positive reals y and z we have

h(y z) = inf

{

x :
x/z

ν(− ln x)
≥ y

}

= z inf

{

w :
w

ν(− ln(w z))
≥ y

}

.

Now, since the period of ν is ln r, we get ν(− ln w − ln z) = ν(− ln w) if and only
if there is an integer m such that ln z = m ln r. Then

h(z y) = z inf

{

w :
w

ν(− ln w)
≥ y

}

= rmh(y).

The result ii) follows similarly from

g(y z) = inf
{

x : ex

ν(x) ≥ z y
}

= inf

{

x :
ex−ln z

ν(x)
≥ y

}

= inf

{

w :
ew

ν(w + ln z)
≥ y

}

+ ln z = inf

{

w :
ew

ν(w)
≥ y

}

+ m ln r

= g(y) + m ln r. �

Example 1. Consider the Von Misès d.f. defined by F (x) = 1−e−x−1/2 sin x,
for x > 0, which is strictly increasing. This d.f. does not belong to any max--
stable domain of attraction. The inverse function U verifies

U(x) = ln x −
1

2
sin U(x), x > 0.

Taking an = 1 we will check (5). In fact, taking into account that

U(knx) − U(kn) = ln kn + ln x −
1

2
sinU(knx) − ln kn +

1

2
sin U(kn),

considering kn such that sin U(kn) = 1, for all n, that is, kn = U←(2nπ + π/2 −
1/2) = e2nπ+π/2−1/2, we get

(7) U(knx) − U(kn) = ln x −
1

2
sin U(knx) +

1

2
,∀n ∈ IN.

With an = 1 and this choice for kn, a convergence exists like in (5), if and only
if there is a function ℓ(x), not depending on n such that U(knx) = ℓ(x) + 2mπ,
with m ∈ Z.
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Since

U(knx) = ℓ(x) + 2mπ ⇔ knx = eℓ(x)+2mπ+ 1

2
sin ℓ(x)

⇔ eπ/2−1/2x = eℓ(x)+ 1

2
sin ℓ(x)

holds if m = n ∈ IN, we obtain ℓ(x) = U(eπ/2−1/2x), because F is strictly
increasing. Thus, from (7) we conclude that

U(knx) − U(kn) = ln x −
1

2
sin ℓ(x) +

1

2

and that g(x) = ln x −
1

2
sin ℓ(x). Moreover, since

(8) g

(

ex

ν(x)

)

= x ⇔ − ln ν(x) =
1

2
sin U

(

eπ/2−1/2 ex

ν(x)

)

and

U

(

eπ/2−1/2 ex

ν(x)

)

= z ⇒
1

2
sin z = −z +

π

2
−

1

2
+ x − ln ν(x),

from (8), we deduce z = x +
π

2
−

1

2
and thus

ν(x) = e−
1

2
sin(x+π/2−1/2) = e−

1

2
cos(x− 1

2
), x ∈ IR. �

In the next result, for a special class of twice differentiable distribution func-
tions, we prove that the first order condition (5) can be established choosing
an = knU ′(kn) .

Theorem 2. Let {kn} be a nondecreasing real sequence satisfying (1) with
r > 1. Suppose that the inverse function U is twice differentiable. If there is a
function h satisfying (hγ)′(1) = γ for some real γ, i) of Proposition 1 and

lim
n→+∞

knU ′′(knx)

U ′(knx)
=

(hγ)′′(x)

(hγ)′(x)

or there is a function g satisfying g′(1) = 1, ii) of Proposition 1, and

lim
n→+∞

knU ′′(knx)

U ′(knx)
=

g′′(x)

g′(x)
,

then (5) holds with an = knU ′(kn).
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P r o o f. For x > 0 and n sufficiently large such that knx > 1, we have

ln U ′(knx) − ln U ′(kn) =

∫ x

1

knU ′′(kns)

U ′(kns)
ds.

Then, for all reals a and b, we have

lim
n→+∞

sup
x∈[a,b]

∣

∣

∣

∣

ln
U ′(knx)

U ′(kn)
− ln

(hγ)′(x)

γ

∣

∣

∣

∣

= 0

and consequently, since the Lagrange theorem gives us |es − et| < C|s − t| for
s, t ∈ [a, b] and C > 0, we also deduce

(9) lim
n→+∞

sup
x∈[a,b]

∣

∣

∣

∣

U ′(knx)

U ′(kn)
−

(hγ)′(x)

γ

∣

∣

∣

∣

= 0.

In this case we conclude that

U(kn x) − U(kn)

knU ′(kn)
−

hγ(x) − hγ(1)

γ
=

∫ x

1

(

U ′(kns)

U ′(kn)
−

(hγ)′(s)

γ

)

ds

converges to zero, when n goes to infinity.
Mutatis mutandis the result holds as well as for the limit g. �

From the proof of the last theorem we can establish the following result.

Proposition 2. Let {kn} be a nondecreasing real sequence satisfying (1) with
r > 1. Suppose that the inverse function U is differentiable. If there is a function
h satisfying i) of Proposition 1 and (9) for some real γ, or there is a function g
satisfying ii) of Proposition 1, and

lim
n→+∞

sup
x∈[a,b]

∣

∣

∣

∣

U ′(knx)

U ′(kn)
− g′(x)

∣

∣

∣

∣

= 0,

then (5) holds with an = knU ′(kn).

Example 2. Consider the d.f. of Example 1. Since

U ′(x) =
1

x
(

1 + 1
2 cos U(x)

) ,

for x > 0, with {kn} such that cos U(kn) = 0, we obtain

U ′(knx)

U ′(kn)
=

1

x
(

1 + 1
2 cos(U(knx))

) =
1

x
(

1 + 1
2 cos(ℓ(x))

) .

In other hand

g′(x) =
1

x
−

1

2
cos(ℓ(x))ℓ′(x) =

1

x
(

1 + 1
2 cos(ℓ(x))

) . �
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3. A second order condition

In this section, we establish a second order condition related to the first order
condition (5). Indeed we will suppose that there exists a real sequence {An} such
that lim

n→+∞
An/an = 0 and

(10) lim
n→+∞

U(kn x) − U(kn) − anL(x)

An
= H(x),

for all x positive. In what follows we determine analytically the function H.

We recall again that, in the max-stable setup, for a d.f. F satisfying the
first order condition, we assume that there exists a function A(t) such that
lim

t→+∞
A(t) = 0 and

lim
t→+∞

U(t x)−U(t)
a(t) − xγ

−1
γ

A(t)
= H(x).

It is proved (see de Haan and Ferreira [2]) that, if H(x) is not a multiple of xγ
−1
γ ,

there is a constant ρ ≤ 0, such that H(x) =
1

ρ

(

xγ+ρ − 1

γ + ρ
−

xγ − 1

γ

)

.

We will need the following lemma.

Lemma 1. Let {kn} and U be under the conditions of Theorem 1. Then

lim
n→+∞

U(kn rm x) − U(kn rm)

an
= lim

n→+∞

U(kn+m x) − U(kn+m)

an

and

lim
n→+∞

U(kn rm x) − U(kn rm)

U(kn+m x) − U(kn+m)
= 1.

P r o o f. In fact, using Theorem 1 we get, for γ 6= 0,

U(kn rm x) − U(kn)

an
+

U(kn) − U(kn rm)

an

−→
hγ(xrm) − hγ(1)

γ
−

hγ(rm) − hγ(1)

γ

= rmγ hγ(x) − hγ(1)

γ
, n → +∞,
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and
U(kn+m x) − U(kn+m)

an
=

U(kn+m x) − U(kn+m)

an+m

an+m

an

−→
hγ(x) − hγ(1)

γ
am =

hγ(x) − hγ(1)

γ
rmγ , n → +∞.

The result follows as well as for the function g. �

In the following theorem we establish the class of possible limits in (10). For
the proof we need the following well known result.

Lemma 2.

1. Suppose that {Vm} is a real positive sequence satisfying Vm+p = VmVp, for
all positive integers p and m. Then either Vm = 1 or exists ζ > 0 such that
Vm = ζm, for all positive integer m.

2. Suppose that {Qm} is a real positive sequence such that, for all positive
integers p and m, Qm+p = Qpθ

m + Qm = Qmθp + Qp, for some θ > 0.
Then there is a real C such that

(a) if θ 6= 1, then Qm = C (1 − θm) ;

(b) if θ = 1, then Qm = Cm.

Theorem 3. Let {kn} be a nondecreasing real sequence satisfying (1) with
r > 1. If the second order condition (10) holds, where H is not a multiple of
L(x), then there are real constants C, C1, C2 and C3 and periodic functions ξ,
ξ1, ξ2 and ξ3, with period ln r, and a parameter ζ > 0 such that the function H
is given by

H(x) =























































x
ln ζ

ln r ξ(ln x) +
C

γ
(hγ(x) − hγ(1)) γ 6= 0, ζ 6= 1

ξ1(ln x) +
C1

γ
(hγ(x) − hγ(1)) γ 6= 0, ζ = 1

x
ln ζ

ln r ξ2(ln x) + C2 (g(x) − g(1)) γ = 0, ζ 6= 1

ξ3(ln x) + C3

(

g2(x) − g2(1)
)

/ ln r2 γ = 0, ζ = 1

,

with x > 0. Moreover ζ = lim
n→+∞

An+m

An
and ξ(0) = ξ1(0) = ξ2(0) = ξ3(0) = 0.
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P r o o f. We divide the proof in cases A and B, for γ 6= 0 and γ = 0,
respectively.

Case A : γ 6= 0. Due to (5) and Lemma 2 we have

lim
n→+∞

U(knrmx) − U(kn) − an(hγ(rmx) − hγ(1))/γ

An
−

−
U(knrm) − U(kn) − an(hγ(rm) − hγ(1))/γ

An
=

lim
n→+∞

U(kn+mx) − U(kn+m) − an+m(hγ(x) − hγ(1))/γ

An+m

An+m

An
+

+
(an+m − anrmγ)(hγ(x) − hγ(1))/γ

An

and then

(11) H(rmx) − H(rm)

= H(x) lim
n→+∞

An+m

An
+

hγ(x) − hγ(1)

γ
lim

n→+∞

an+m − rmγan

An
,

only if these two limits exist. Indeed, because of the fact that H is not a multiple

of L∗(x) =
hγ(x) − hγ(1)

γ
, we conclude that the relation

H(x1)
hγ(x1)−hγ(1)

γ

=
H(x2)

hγ(x2)−hγ(1)
γ

does not hold for all positive reals x1 and x2. Thus, there are two different positive

reals, x1 and x2, such that H(x1) −
hγ(x1) − hγ(1)

hγ(x2) − hγ(1)
H(x2) 6= 0. Now, using (11)

twice, one of them multiplying by θ :=
hγ(x1) − hγ(1)

hγ(x2) − hγ(1)
, we obtain

(H(x1) − θH(x2)) lim
n→+∞

An+m

An
= H(rmx1) − θH(rmx2) − (1 − θ)H(rm)

what enables us to conclude that lim
n→+∞

An+m

An
exists. Hence, once again from

(11) we deduce that lim
n→+∞

an+m − rmγan

An
also exists.

Consider Vm = lim
n→+∞

An+m

An
and observe that Vm+p = Vp Vm, ∀ m, p ∈ Z. By

Lemma 2, Vm = 1 or, otherwise, exists a real ζ > 0 such that Vm = ζm, ∀ m ∈ Z.
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Now we subdivide case A into A1 for ζ 6= 1 and A2 for ζ = 1.
Case A1 : Consider

Qm = lim
n→+∞

r−(m+n)γan+m − r−nγan

r−nγAn

that exists by (11), and put a
′

n = r−n ran and A
′

n = r−n γAn. Taking into account
that

Qm+p := lim
a
′

n+m+p − a
′

n+m + a
′

n+m − a
′

n

A′

n

:= lim
n→+∞

a
′

n+m+p − a
′

n+m

A
′

n+m

lim
n→+∞

A
′

n+m

A′

n

+ lim
n→+∞

a
′

n+m − a
′

n

A′

n

we deduce
Qm+p = Qpζ

mr−mγ + Qm, ∀m, p ∈ ZZ.

In a similar way we can obtain

Qm+p = Qmζpr−pγ + Qp, ∀m, p ∈ ZZ.

By Lemma 2 there is a constant C such that Qm = C (1 − ζmr−mγ) .
Now, taking again (11) into consideration we obtain

H(rmx) − H(rm) = H(x)ζm +
hγ(x) − hγ(1)

γ
rmγC

(

1 − ζmr−mγ
)

.

In what follows we solve the linear equation

(12) H(rx) − H(r) = H(x)ζ +
hγ(x) − hγ(1)

γ
C (rγ − ζ)

beginning with the homogeneous part

(13) H(rx) = ζH(x).

With x = ez it holds H
(

ez+ln r
)

= ζH (ez) and multiplying by e−z ln ζ

ln r we get

e−(z+ln r) ln ζ

ln r H
(

ez+ln r
)

= e−z ln ζ

ln r H (ez) .

¿From this last equation we conclude that ξ(z) := e−z ln ζ

ln r H (ez) is a periodic
function with period ln r. Then

H(x) = x
ln ζ

ln r ξ(ln x)
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is the general solution of the homogeneous equation (13).

Since Hp(x) =
C

γ
(hγ(x) − hγ(1)) is a particular solution of the complete

equation (12), we conclude that

H(x) = x
ln ζ

ln r ξ(log x) +
C

γ
(hγ(x) − hγ(1))

is the general solution of (12).
Note that H(1) = 0 implies ξ(0) = 0. Consequently ξ(0) = ξ(ln r) =

ξ(2 ln r) = · · · = ξ(m ln r) = · · · = 0.
Case A2 : γ 6= 0 and Vm = 1 for all integer m. In a similar way we have

Qm+p = Qpr
−mγ + Qm = Qmr−pγ + Qp

and so, by Lemma 2, there is a constant C1 such that Qm = C1 (1 − r−mγ) ,
∀m, p ∈ ZZ. Hence (11) gives us

H(rmx) − H(rm) = H(x) +
hγ(x) − hγ(1)

γ
r−mγC1

(

1 − r−mγ
)

.

We will solve

(14) H(r x) − H(r) = H(x) +
hγ(x) − hγ(1)

γ
C1 (rγ − 1) .

The general solution of the equation H(r x) = H(x) is ξ1(ln x), where ξ1

is a periodic function with period ln r, and Hp(x) =
C1

γ
(hγ(x) − hγ(1)) is a

particular solution of (14). Thus, when γ 6= 1 and ζ = 1, we can conclude that

H(x) = ξ1(ln x) +
C1

γ
(hγ(x) − hγ(1)) .

Case B : γ = 0. From (5) and using again Lemma 2 we deduce

lim
n→+∞

U (knrmx) − U(kn) − an (g (xrm) − g(1))

An
−

−
U (knrm) − U (kn) − an (g (rm) − g(1))

An
=

lim
n→+∞

U (kn+mx)) − U (kn+m) − an+m (g(x) − g(1))

An+m

An+m

An
+

(an+m − an) (g(x) − g(1))

An
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and then

H(rmx) − H(rm) = H(x) lim
n→+∞

An+m

An
+ lim

n→+∞

an+m − an

An
(g(x) − g(1)) .

We have again Qm+p = Qpζ
m + Qm = Qmζp + Qp and so, from Lemma 2,

there are reals C2 and C3 such that Qm = C2(1 − ζm) if ζ 6= 1 or Qm = C3m if
ζ = 1.

Case B1 : γ = 0 and ζ 6= 1. It holds

H(rmx) − H(rm) = ζmH(x) + C2(1 − ζm) (g(x) − g(1)) .

Since Hp(x) = C2 (g(x) − g(1)) is a particular solution of

H(r x) − H(r) = ζH(x) + C2(1 − ζ) (g(x) − g(1))

we conclude that the general solution of the last functional equation is given by

H(x) = x
ln ζ

ln r ξ2(ln x) + C2 (g(x) − g(1)) .

Case B2 : γ = 0 and ζ = 1. Using again the arguments above we obtain

H(rmx) − H(rm) = H(x) + C3 m (g(x) − g(1)) , ∀m ∈ ZZ.

Due to the fact that Hp(x) =
C3

2 ln r

(

g2(x) − g2(1)
)

is a particular solution of the

functional equation

(15) H(r x) − H(r) = H(x) + C3 (g(x) − g(1)) ,

we conclude that the general solution of this equation is

H(x) = ξ3(ln x) +
C3

2 ln r

(

g2(x) − g2(1)
)

,

where ξ3 is a periodic function with period ln r.
Moreover ξ(0) = ξ1(0) = ξ2(0) = ξ3(0) = 0 due to H(1) = 0. �
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Lúısa Canto e Castro

Center for Statistics and Appl. of the Univ. Lisbon

Department of Statistics and Operational Research

Faculty of Sciences, University of Lisbon

1749-016 Lisbon, Portugal

e-mail: luisa.loura@fc.ul.pt

Maria da Graça Temido

Center for Mathematics of The University of Coimbra

Department of Mathematics

University of Coimbra

3001-454 Coimbra, Portugal

e-mail: mgtm@mat.uc.pt


