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ON A SECOND ORDER CONDITION FOR
MAX-SEMISTABLE LAWS*

Luisa Canto e Castro, Maria da Graca Temido

In statistics of extremes the great importance of the Normal approximation
of intermediate order statistics is well known when the parent distribution
function is in a max-stable domain of attraction and verifies the first and the
second order extreme value conditions. The generalization of these condi-
tions to max-semistable contexts is the object of this paper, aiming to be a
basis of future developments in statistical inference under max-semistability.

1. Introduction

For a long time the semi-stability concept appeared in the literature only in the
partial sum context. The genesis of the class of max-semistable (MSS) distri-
butions is due to Pancheva [6] and Grinevich [3], [4]. After these essays many
efforts have been made in order to characterize this new class and their domains
of attraction. The class MSS includes not only the max-stable (MS) class of
distributions but also non-degenerate limit distributions for the maxima of inde-
pendent and identically distributed (i.i.d.) random variables (r.v.’s) with either
discrete or multi-modal continuous distribution functions (d.f.’s) which do not
belong to the MS class.

Following Pancheva [6], a real d.f. G is MSS if there are reals > 1, a > 0 and
b such that G(z) = G"(ax + b), = € IR, or equivalently, if there exist a sequence
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of iid. r.v.’s with d.f. F, a nondecreasing sequence of positive integers {k,}
satisfying

kn—i—l

n

(1) lim

=r, with r in [1, +o0],
n——+0o00

and two real sequences {a, > 0} and {b,} for which
(2) F* (anz + by) — G(z), n — +o0,

for each continuity point, x, of G. In this case we will say that F' belongs to the
domain of attraction of G. A characterization of this class, different from the one
of Grinevich [4], as well as necessary and sufficient conditions on F' such that (2)
holds, are given in Canto e Castro et al. [1].

The numerical expression of the elements of the MSS class is given by

Gy <u>, with ¢ € R and ¢ > 0, and
o

exp (—(1+vx)71”>V<1H(1+’w)71/”> L+vyz>0,7v#0
Gyp(z) = ][]_0070[(’}/) 1+v2<0,v#0 >
exp (—e "v(x)) 7v=0,z€lR

where 7 € IR and v is a bounded and periodic function with period p = Inr.
Notice that for ¥ = 1 we obtain the extreme value distribution G (x).

The class MSS includes three disjoint families, for v = 0, v > 0 and v < 0,
and each family includes infinitely many types. Indeed in Temido and Canto e
Castro [5] it is proved that G' and G? are in the same type if and only if exists
m € Z such that § = r™.

In this work we extend the first order and the second order conditions estab-
lished for the max-stable domains of attractions and characterize the class of all
possible limits.

2. A first order condition

As usually, for a nondecreasing and right continuous function f its left-continuous
inverse is defined by f~(z) = inf{y : f(y) > «}. In this context we recall Lemma
1.1.1 of de Haan and Ferreira [2] where conditions under which the convergence
of f, to f implies the convergence of f;~ to f~ are given.
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1 «—
1-F
context, F' belongs to the domain of attraction of G, that is, there are real
sequences {a, > 0} and {b,} for which

Let F be ad.f. and define U = . We recall that in the max-stable

(3) F"(apz +b,) — Gy(x) = exp(—(1+ rz) V), n— 400,
if and only if there is a real function a(t) such that

U (tx) — U(t) . ¥ —1
a(t)

For v = 0 the right hand side of (3) and (4) is interpreted as exp(—e™") and Inz,
respectively.

In order to extend that well known first order condition (4), which holds in
the max-stable setup, we are going to apply that lemma of de Haan and Ferreira
to relation (2). In fact we can establish the equivalence stated in the following
theorem.

, t — +o00.

(4)

Theorem 1. The distribution function F' belongs to the domain of attraction
of the max-semistable distribution function G if and only if there exist a nonde-
creasing positive integer sequence {kyn} satisfying (1), a positive real sequence
{an} and a real v such that

_ R (z)—h7 (1)
Ulkn x) — Ulkn) — L(x) := { 7 770 ,

()

an g(x) —g(1) =0
or each point of continuity x of L, where h and g are such that h (x) = m
633
dg—(x) = .

Proof. Applying Lemma 1.1.1 of de Haan and Ferreira [2] to the conver-
gence (2), we deduce

©) T () @=L e,

for each point = of continuity of L*. Since for v # 0

. (1+ vy)% . 27 —1 z
inf : x p = inf : T
{y v(In(l+yy)"7) - } { 7 v(=Inz) - }

[
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27 —1

v

and is nondecreasing, we obtain

h7(z)—1
) { 9(736) 7=0

In other hand, considering b}, = U(k,), from (5) we get

U (knz) — V),

— L*(z) + C, n — +o0,
Gnp

U (knz) — b

where C' is a constant. So, there is b, such that o~ L*(z), n —

Gnp,
U (any bn)
B ML AL LA —

+00. Consequently, applying again the same lemma, we have k:
n

(L*)(y), n — 400, and then

1 . 1
kn(1 — F(any + by)) —InG(y)

y I — +00,
for each point y of continuity of G. O

Remark 1. Observe that if v is constant we obtain the max-stable context
and the functions h and g have the expected expressions.

Remark 2. Note that if {k,} is a real positive and nondecreasing sequence
satisfying (1) then kp(1—F(uy)) — 7, n — 400, if and only if [k,|(1 — F(u,)) —
T, n — +oo. Thus, in what follows, {ky} is not necessarily an integer sequence.

In the following proposition, a characterization of the functions h and g is
given.

Proposition 1. Let v be a bounded and periodic function with period p

Inr, with r > 1. The functions h(z) = (%) and g(z) = < ? ))
vi—Inx vix

verify
i) h(zy) = zh(y) & ze{r, mel};

i) g(zy) = gy)+Inz < ze€ {r", meZ}.
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Proof. For positive reals y and z we have

hyz) = inf{x : V(L > y}

—Inz)
w

- ““f{““mzy}'

Now, since the period of v is Inr, we get v(—Inw —Inz) = v(— Inw) if and only
if there is an integer m such that In z = mInr. Then

h(zy) = zinf {w : m > y} = ™ h(y).

The result ii) follows similarly from

z—Inz
g(yz):inf{x:y?;)ZZy}:inf{:C:e Zy}

v(z)

= inf — > In z = inf : > 1
in {w V(w+lnz)_y}+ nz=in {w V(w)_y}+m nr

=g(y) +mInr. O

Example 1. Consider the Von Mises d.f. defined by F(z) = 1 —e~#~1/2sinz,
for x > 0, which is strictly increasing. This d.f. does not belong to any max--
stable domain of attraction. The inverse function U verifies

1
U(x) =lnx — EsinU(ac), x> 0.
Taking a,, = 1 we will check (5). In fact, taking into account that
1 1
U(kpx) —U(ky) =Ink, +Inz — 5 sinU(kpz) — Ink, + 5 sin U (ky,),

considering k,, such that sinU(k,) = 1, for all n, that is, k, = U~ (2nm + 7/2 —
1/2) _ e2n7r+71’/271/27 we get

1 1
(7) U(kpx) —U(ky) =lnzx — 3 sin U (kpx) + §,Vn € IN.
With a,, = 1 and this choice for k,, a convergence exists like in (5), if and only

if there is a function ¢(z), not depending on n such that U(k,x) = ¢(x) + 2mm,
with m € Z.
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Since

Ulkpzr) =4(x) +2mnr < kyx = et(@)+2mm+ 5 sin {(z)

PN e™/2-1/2, — ef(m)+%sin€(x)

holds if m = n € IN, we obtain £(x) = U(e™?~Y/2z), because F is strictly
increasing. Thus, from (7) we conclude that

U(kpx) —U(kyp) =Inz — %sinﬁ(w) + %

1
and that g(z) =Inz — 5 sin ¢(x). Moreover, since

(8) g (V‘Zz)) — & —lny(z) = %sin U (e”/H/?%)

and

x 1 1
U <eﬂ/21/2—yix)> =z= §sinz: —z+ g — §+l‘—1n’/($)a

1
from (8), we deduce z =z + g —3 and thus

V(.I') _ 6—%sin(a;+7r/2—1/2) _ e—%cos(w—%)7 r € R, 0

In the next result, for a special class of twice differentiable distribution func-
tions, we prove that the first order condition (5) can be established choosing
an = knU'(ky) .

Theorem 2. Let {k,} be a nondecreasing real sequence satisfying (1) with
r > 1. Suppose that the inverse function U is twice differentiable. If there is a
function h satisfying (hY)'(1) =~ for some real 7, i) of Proposition 1 and
knU" (knx) _ (h7)"()

e U k) () (@)

or there is a function g satisfying ¢'(1) =1, i) of Proposition 1, and

" /!
i U (k) _ g (:L‘)7
n=too U'(knz) ()

then (5) holds with a, = kU’ (ky,).
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Proof. For z > 0 and n sufficiently large such that k,xz > 1, we have

Tk U (kps)
InU' (kpz) —InU'(k,) = = T ds.
nU'(kpx) —InU'(ky,) /1 07 (ons) s
Then, for all reals a and b, we have
!/ b AY
lim sup |(In v /(knac) —1In () () =0
n—+00 z€[a,b] U (kn) Y

and consequently, since the Lagrange theorem gives us |e¥ — e'| < Cls — t| for
s,t € [a,b] and C' > 0, we also deduce

U'(knz)  (h7)'(x)

U’ (kn) Y

9) lim sup =0.

n—=+0 rela,b]

In this case we conclude that
Ulknz) = Uka) _ h7(x) = h7(1) _ / <U’<kns> _ <h”>’<s>) ds
kn U’ (kn) Y 1 U'(kn) Y
converges to zero, when n goes to infinity.
Mutatis mutandis the result holds as well as for the limit g. O

From the proof of the last theorem we can establish the following result.

Proposition 2. Let {k,} be a nondecreasing real sequence satisfying (1) with
r > 1. Suppose that the inverse function U is differentiable. If there is a function
h satisfying i) of Proposition 1 and (9) for some real 7y, or there is a function g
satisfying ii) of Proposition 1, and

y < U (knx)
im  sup
n—=+0 rela,b] U/(kn)

then (5) holds with a, = kU’ (ky,).

~4/a)| =

Example 2. Consider the d.f. of Example 1. Since
1
Ule) = z(1+3cosU(z))’
for x > 0, with {k,,} such that cosU(k,) = 0, we obtain
Ul(kpz) 1 B 1
Ukn) =z (14 3 cos(U(kn2))) oz (14 3 cos(¢(x)))
In other hand
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3. A second order condition

In this section, we establish a second order condition related to the first order
condition (5). Indeed we will suppose that there exists a real sequence {A,,} such
that lim A,/a, =0 and

n—-+00

(10) lim U(kpx)—Ul(ky) — anL(z)

—H
i A (),

for all z positive. In what follows we determine analytically the function H.
We recall again that, in the max-stable setup, for a d.f. F satisfying the
first order condition, we assume that there exists a function A(t) such that
lim A(t) =0 and

t—+00

: a(t) v
A A = H(z).

It is proved (see de Haan and Ferreira [2]) that, if H(x) is not a multiple of —””77_1,

1 /a1 27 -1
there is a constant p < 0, such that H(z) = — <ac _Z >
p Yt+p Y
We will need the following lemma.

Lemma 1. Let {k,} and U be under the conditions of Theorem 1. Then

lim U(kpr™az) —Ul(kyr ): lim U(kpsm ) — U(kpsm)

n—-+o0 an n—+00 ap

and
lim Ukpr™z) — Uk, ™)

=1.
n—+00 U (kntm ) — U(kntm)

Proof. In fact, using Theorem 1 we get, for v # 0,

Ukpr™ax) —Ul(k,)  Ulkn) — U(knr™)

+
Gnp an
Y my _ hY V(™) — hY
W) W) W) - ()
Y Y
h7 —h7(1
:Tm’Y (1‘) ( )7 n—>+oo,
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and
U(kntmx) = U(knim) _ U(kntm ) = Ulkntm) antm

an An4+m QA
h(x) — h7(1 hY(x) — h7(1
A ) g B W)

The result follows as well as for the function g. O

In the following theorem we establish the class of possible limits in (10). For
the proof we need the following well known result.

Lemma 2.

1. Suppose that {Vi,} is a real positive sequence satisfying Vipip = VinVp, for
all positive integers p and m. Then either V,,, = 1 or exists ( > 0 such that
Vin = (™, for all positive integer m.

2. Suppose that {Qn} is a real positive sequence such that, for all positive
integers p and m, Qmip = Q™ + Qum = Qub” + Q,, for some 0 > 0.
Then there is a real C' such that
(a) if 0 #1, then Qp, =C (1 —0™);

(b) if 6 =1, then Q@ = Cm.

Theorem 3. Let {k,} be a nondecreasing real sequence satisfying (1) with
r > 1. If the second order condition (10) holds, where H is not a multiple of
L(z), then there are real constants C, C1, Cy and Cs and periodic functions &,
&1, & and &3, with period Inr, and a parameter ( > 0 such that the function H
s given by

rhie(ng) +§ (W(x) — M) 4 #0.C#1

- ] G0a)+ W@ -rw) 3 20=1

)

e é(nz) + Oy (g(x) —g(1)  y=0,(#1

&3(Inz) + Cs (92(1:) — g2(1)) /lnr2 v=0,(=1

with x > 0. Moreover ( = lim AZ;rm and £(0) = £1(0) = &(0) = &3(0) = 0.

n—-+00 n
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Proof.  We divide the proof in cases A and B, for v # 0 and v = 0,
respectively.
Case A : v #0. Due to (5) and Lemma 2 we have

U(kpr™a) — Ulkn) — an(R7(r™z) —RY(1)) /v

R A,
CU(kpr™) = U(kn) — an(RY(r™) —h7(1)) /v
A, a
lim U(knym®) — Ulknim) — anym(RY (2) = h7(1)) /v An+m+
n—+o0 An+m Ay
L = ™) (z) = (1))
Ap
and then
(11) H(r™z)— H(r™)
v _ B _ pmy
= () i S Ay en e,

only if these two limits exist. Indeed, because of the fact that H is not a multiple
_ W(x) —m7(1)

of L*(x) , we conclude that the relation
Y
Hz1) _  H(w)
hY(z1)—hY(1) — hY(w2)—h7(1)
Bt 2!

does not hold for all positive reals x1 and x5. Thus, there are two different positive

RY(x1) — hY(1) .
m[{(@) # 0. Now, using (11)
hY(xz1) — h7(1)

hy(xg) — h7 (1)

reals, 1 and x9, such that H(zq) —

twice, one of them multiplying by 0 := , We obtain

(H(z1) — 0H(zs)) lim 2™ — f(rmay) — 0H(r™ay) — (1 — 0)H (™)

n—-+o00 An

+m . .
exists. Hence, once again from
n

what enables us to conclude that lim
n—-+oco

my
Gntm — T ay,

(11) we deduce that lim also exists.

n—-+0o00 An
Consider V,,, = lirJrrl 1 and observe that V4, =V, Vi, Vm, p € Z. By
n—-+0oo n

Lemma 2, V,;, = 1 or, otherwise, exists areal ( > 0 such that V,;,, ={™, Vm € Z.

n+m
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Now we subdivide case A into A; for { # 1 and A, for { = 1.
Case A : Consider

—(m+n)

T Tapim —r ay,

Qm = nLHEoo rfn'yAn
that exists by (11), and put a,, = r""a, and A, = r~"7A,,. Taking into account
that

/

/ ’ ’
an+m+p —OQpim + Aptm — Qp

Qerp = lim A
n
/ / / ’ /
= lim ndmip " Gedm g Beem o Sndm 7 O
n—-+o00 A;L-i-m n—-+oo 14;1 n—-+o0 14;1

we deduce
Qm+p = QpCmT—m'y + Qm, Vm,p e 7.

In a similar way we can obtain

Qerp = chpripﬂy + Qp» Vm,p € Z.

By Lemma 2 there is a constant C' such that @,, = C (1 — {™r~"™7).
Now, taking again (11) into consideration we obtain

w, @) =)

H(r"mz)— H(r™) = H(x)¢ r’mC (1 — Cmr*"”) )

In what follows we solve the linear equation

L @) =)

(12) H(rz) — H(r) = H(x)¢ S C(r=q)
beginning with the homogeneous part
(13) H(rz)=(H(x).

With z = €* it holds H (e'z*h”") = (H (€*) and multiplying by e~?inr we get
ef(z+ln r)% H (eerln r) _ efz%H (62) )

. . _yln¢ . T
(From this last equation we conclude that {(z) := e *Wr H (e*) is a periodic

function with period Inr. Then

H(z) = zhr £(lnz)
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is the general solution of the homogeneous equation (13).
C
Since Hp(z) = — (hY(xz) — h7(1)) is a particular solution of the complete

equation (12), we conclude that
In¢ C
H(w) = ztré(ogz) + = (b7 (x) = 17(1)

is the general solution of (12).

Note that H(1) = 0 implies £(0) = 0. Consequently £(0) = &(lnr) =
¢E2Inr)=---=&(mlnr)=---=0.

Case As: v # 0 and V,, =1 for all integer m. In a similar way we have

Qm—i—p = Qpr_m7 + Qm = er—p'y + Qp

and so, by Lemma 2, there is a constant C; such that @, = Cy (1 —r~™7),
V'm,p € Z. Hence (11) gives us
h(z) —h7(1)

H(r™z) — H(r™) = H(z) + 5

POy (1 ™)

We will solve

h7(x) — k(1)
—
The general solution of the equation H(rxz) = H(x) is & (Inx), where &

(14) H(rz)—H(r)=H(z) + Cy(r7=1).

is a periodic function with period Inr, and H,(xz) = =L (hY(x) = h7(1)) is a

particular solution of (14). Thus, when v # 1 and ¢ = 1, we can conclude that
Cy
H(z)=¢&(nx)+ P (W7 (x) — h7(1)).
Case B : v =0. From (5) and using again Lemma 2 we deduce

U (knr™z) — U(kn) — an (g (xr™) — g(1))

lim —

n—+o0o An
_U (knrm) -U (kn) — Gn (g (rm) — g(l)) —
An
lim U (kpimz)) = U (kntm) — antm (9(z) — g(1)) An+m+
n—+o00 An+m An
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and then

HO™s) — HG™) = H(z) lim 2mm o Gy Som = ooy oy

n—-+o0o n n—-+o00 An

We have again Qqp = Qp¢" + Qm = QP + @, and so, from Lemma 2,
there are reals Cy and Cj5 such that @, = C2(1 — (™) if ( # 1 or Q,, = Cym if

C:(liase B;:vy=0and ¢ # 1. It holds
H(r"z) = H(r'™) = ("H(z) + C2(1 = ™) (g(2) — 9(1)) .
Since Hy(x) = C2 (g(z) — ¢(1)) is a particular solution of
H(rz) - H(r) = CH(z) + Co(1 = ) (g9(x) — 9(1))
we conclude that the general solution of the last functional equation is given by
H(z) = 2t &(Ine) + Co (g(a) — 9(1)).
Case By : v =0 and { = 1. Using again the arguments above we obtain

H(r"x) —H(r™)=H(x)+Csm (9(z) —g(1)), Ym € Z.

C
Due to the fact that H,(z) = 21—3 (9*(z) — g*(1)) is a particular solution of the
nr
functional equation
(15) H(rz)— H(r) = H(z) + C3 (9(x) —g(1)),

we conclude that the general solution of this equation is

Cs

H(z) = &(In) + 52

(9°(2) = g*(1))

where £3 is a periodic function with period Inr.
Moreover £(0) = £1(0) = £2(0) = €3(0) =0 due to H(1) =0. O
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