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WEAK ERGODICITY OF Mt/Mt/N/N + R QUEUE∗

Alexander Zeifman, Anna Korotysheva

We consider nonstationary birth and death processes on finite state space
and study the bounds of the rate of convergence to the limit regime. We also
obtain some bounds on the rate of convergence for the queue-length process
of Mt/Mt/N/N + R queue.

1. Introduction

Consider a queueing model with N servers and R ≥ 0 waiting rooms. Let X (t)

be a number of customers in the queue. Then X(t) is a birth and death process

(BDP) with state space EN+R = {0, 1, . . . , N + R} and birth and death rates

an (t) = λ (t) , bn (t) = µ (t) min (n,N) respectively. The most known model

corresponds to the case R = 0, this is the famous Erlang loss system. General

approach for the study of nonstationary BDPs has been proposed in our papers

[5, 6], see also [1, 2, 3, 7]. Namely we study the forward Kolmogorov system and

special transformations of intensity matrices.

In this note we outline our general approach for the study of such models (in

Section 2) and obtain some new bounds on the rate of convergence for queue-

length process of Mt/Mt/N/N + R queue (Section 3).

*The research has been partially supported by RFBR, grant No. 11-01-12026.
2000 Mathematics Subject Classification: 60J27, 60K25.
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queue.
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Let X(t) be a BDP on finite state space {0, . . . , S} and let λn (t) , µn+1 (t) , n =

0, . . . , S − 1 be the respective birth and death intensities. We assume that all

λn (t) , µn+1 (t) , n = 0, . . . , S − 1, are non-negative and locally integrable on

[0;∞) functions.

Denote by pi(t) the state probabilities of X(t), by p(t) = (p0(t), p1(t), . . . , pS(t))T

the respective column vector, and by A(t) = {aij(t)}
S
i,j=0 , t ≥ 0 the transposed

intensity matrix of the process:

(1) aij(t) =























λi−1 (t) , if j = i − 1,

µi+1 (t) , if j = i + 1,

− (λi (t) + µi (t)) , if j = i,

0, overwise.

Throughout the whole paper we use the l1-norm for vectors ‖x‖ =
∑

|xi|.

BDP X(t) is called weakly ergodic if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for any

initial conditions p∗(s),p∗∗(s) and any s ≥ 0.

2. General bounds for finite BDPs

Let δk > 0, 1 ≤ k ≤ S − 1 be positive numbers.

Put

(2) αk(t) = λk(t) + µk+1(t) − δk+1λk+1(t) − δ−1
k µk(t), k = 0, . . . , S − 1,

and

(3) ζk(t) = λk(t) + µk+1(t) + δk+1λk+1(t) + δ−1
k µk(t), k = 0, . . . , S − 1,

(here we suppose δ−1
0 = δS = 0 and δ0 = 1).

Denote

(4) min
0≤k≤S−1

αk(t) = β(t),

(5) max
0≤k≤S−1

ζk(t) = χ(t),
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and

(6) dk =
k−1
∏

i=0

δi, θ =
S

∑

i=1

di, d = min
1≤i≤S

di

Theorem 1. The following bounds on the rate of convergence hold:

(7)
d

4θ
e−

R
t

s
χ(τ) dτ‖p∗(s) − p∗∗(s)‖ ≤ ‖p∗(t) − p∗∗(t)‖

≤
4θ

d
e−

R
t

s
β(τ) dτ‖p∗(s) − p∗∗(s)‖,

for any initial probability distributions p∗(s), p∗∗(s), and any 0 ≤ s ≤ t.

P r o o f. We use the approach of [6]. Consider the forward Kolmogorov

system for the probabilistic dynamics of the process:

(8)
dp

dt
= A (t)p, t ≥ 0.

By introducing

p0 (t) = 1 −
∑

i≥1

pi (t) ,

we obtain from (8) the following system:

(9)
dz

dt
= B (t) z + f (t) ,

where

(10) B =















−(λ0 + λ1 + µ1) µ2 − λ0 −λ0 · · · −λ0 −λ0

λ1 −(λ2 + µ2) µ3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(λS−1 + µS−1) µS

0 0 0 · · · λS−1 −µS















,

(11) z = (p1, . . . , pS)T , f (t) = (a10 (t) , . . . , aS0 (t))T = (λ0 (t) , 0, . . . , 0)T .
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Consider the matrix

(12) D =















d1 d1 d1 · · · d1

0 d2 d2 · · · d2

0 0 d3 · · · d3
...

...
...

. . .

0 0 0 0 dS















,

and the respective vector norm ‖z‖1D = ‖Dz‖.

Let x(t) = (x1, x2, ..., xS). Then

(13) ‖x‖1D = ‖Dx‖ ≤ ‖D‖‖x‖ = θ‖x‖;

and

(14) ‖x‖ = ‖D−1Dx‖ ≤ ‖D−1‖‖x‖1D ≤
2

d
‖x‖1D

so

(15)
d

2
‖x‖ ≤ ‖x‖1D ≤ θ‖x‖.

Consider the logarithmic norm of B(t) in l1D-norm:

(16)

γ(B(t))1D = γ(DB(t)D−1)

= max
0≤i≤S−1

(

−λi(t) − µi+1(t) + δi+1λi+1(t) + δ−1
i µi(t)

)

= − min
0≤i≤S−1

(

λi(t) + µi+1(t) − δi+1λi+1(t) − δ−1
i µi(t)

)

= −β(t).

and the logarithmic norm of −B(t) in l1D-norm:

(17) γ(−B(t))1D

= max
0≤i≤S−1

(

λi(t) + µi+1(t) + δi+1λi+1(t) + δ−1
i µi(t)

)

= χ(t).

Then the following bound holds:

e−
R

t

s
χ(τ)dτ ≤ ‖V (t, s)‖1D ≤ e−

R
t

s
β(τ)dτ ,(18)
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for any t, s (0 ≤ s ≤ t), where V (t, s) is the Cauchy operator of equation (9).

Now we have from (15) and (18)

(19)

‖p∗(t) − p∗∗(t)‖ ≤ 2‖z∗(t) − z∗∗(t)‖ ≤
4

d
‖z∗(t) − z∗∗(t)‖1D

≤
4

d
e
−

tR
s

β(τ) dτ

‖z∗(s) − z∗∗(s)‖1D

≤
4

d
e
−

tR
s

β(τ) dτ

‖p∗(s) − p∗∗(s)‖1D

≤
4θ

d
e
−

tR
s

β(τ) dτ

‖p∗(s) − p∗∗(s)‖.

On the other hand, for any solution y1,y2 of the system (9) one has:

(20) ‖y1(t) − y2(t)‖1D ≥ e−
R

t

s
χ(τ)dτ‖y1(s) − y2(s)‖1D.

Now let y1,y2 be such that

(21) p∗(s) =
(

1 − ‖y1(s)‖, yT

1 (s)
)T

; p∗∗(s) =
(

1 − ‖y2(s)‖, yT

2 (s)
)T

.

Hence (14) and (20) imply the following bound:

‖p∗(t) − p∗∗(t)‖ ≥
1

θ
‖p∗(t) − p∗∗(t)‖1D =

1

θ
‖y1(t) − y2(t)‖1D ≥

1

θ
e−

R
t

s
χ(τ)dτ‖y1(s) − y2(s)‖1D =

1

2θ
e−

R
t

s
χ(τ)dτ ‖p∗(s) − p∗∗(s)‖1D ≥

d

4θ
e−

R
t

s
χ(τ)dτ ‖p∗(s) − p∗∗(s)‖.(22)

Note that the equality

∞
∫

0

β(τ) dτ = +∞ implies weak ergodicity of X(t).
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Remark. Under the assumptions of Theorem 1 the following estimate holds

(23) e−
R

t

s
χ(τ) dτ‖p∗(s) − p∗∗(s)‖1D

≤ ‖p∗(t) − p∗∗(t)‖1D ≤ e−
R

t

s
β(τ) dτ‖p∗(s) − p∗∗(s)‖1D,

for any initial probability distributions p∗(s), p∗∗(s), and any 0 ≤ s ≤ t.

Put

(24) β∗(t) = max
0≤k≤S−1

αk(t).

Theorem 2. Let D (p∗(s) − p∗∗(s)) ≥ 0 (or D (p∗(s) − p∗∗(s)) ≤ 0). Then

the following bound holds:

(25) ‖p∗(t) − p∗∗(t)‖ ≥
d

2θ
e
−

tR
s

β∗(u)du

‖p∗(s) − p∗∗(s)‖ ,

for any s ≥ 0, t ≥ s.

P r o o f. Consider the system (9) and put v(t) = D (p∗(t) − p∗∗(t))T . Then

(26)
dv(t)

dt
= DB(t)D−1v(t).

Let now l+1 be a set of l1-vectors with non-negative coordinates. All non-

diagonal elements of the matrix DB(t)D−1 are non-negative for any t ≥ 0.

Therefore, if v(s) ≥ 0 for some s ≥ 0 then v(t) ≥ 0 for any t ≥ s.

Therefore

d {
∑

vi}

dt
≥

{

∑

vi

}

min
k

(

−λk − µk+1 + δk+1λk+1 + δ−1
k µk

)

=

−
{

∑

vi

}

max
k

(λk + µk+1 − δk+1λk − δ−1
k µk) = −β∗

{

∑

vi

}

.(27)



Weak Ergodicity of Mt/Mt/N/N + R Queue 249

Hence we have for any t ≥ s :

‖p∗(t) − p∗∗(t)‖ ≥
1

θ
‖p∗(t) − p∗∗(t)‖1D =

‖v(t)‖

θ
=

∑

vi(t)

θ
≥

1

θ
e−

R
t

s
β∗(τ)dτ

∑

vi(s) =
1

θ
e−

R
t

s
β∗(τ)dτ ‖p∗(s) − p∗∗(s)‖1D ≥

d

2θ
e−

R
t

s
β∗(τ)dτ ‖p∗(s) − p∗∗(s)‖.(28)

This inequality implies our claim. �

Remark. Under the assumptions of Theorem 2 the following bound holds

(29) ‖p∗(t) − p∗∗(t)‖1D ≥ e−
R

t

s
β∗(τ) dτ‖p∗(s) − p∗∗(s)‖1D,

for any initial probability distributions p∗(s), p∗∗(s) such that

D (p∗(s) − p∗∗(s)) ≥ 0 (or D (p∗(s) − p∗∗(s)) ≤ 0),

and for any 0 ≤ s ≤ t.

Remark. One can see that the main problem now is the finding of the

appropriate sequence {δk}.

3. Bounds for the queue-length process of Mt/Mt/N/N + R
queue.

Let now X(t) be queue-length process for Mt/Mt/N/N + R queue. In the case

R = 0 (Erlang model with losses) we have necessary and sufficient condition of

weak ergodicity in the following form (see the proof and related bounds in [4, 8]):

The process is weakly ergodic if and only if

(30)

∞
∫

0

(λ(t) + µ(t)) dt = +∞.

Here we consider general case R > 0. Then we have in (2) and (3)

αk(t) = λ(t) + (k + 1)µ(t) − δk+1λ(t) − δ−1
k kµ(t),
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if 0 ≤ k ≤ N − 1,

αk(t) = λ(t) + Nµ(t) − δk+1λ(t) − δ−1
k Nµ(t)

if N ≤ k < N + R,

and

ζk(t) = λ(t) + (k + 1)µ(t) + δk+1λ(t) + δ−1
k kµ(t)

if 0 ≤ k ≤ N − 1,

ζk(t) = λ(t) + Nµ(t) + δk+1λ(t) + δ−1
k Nµ(t),

if N ≤ k < N + R, respectively.

First case. Let there exist l > 1 such that the following assumption holds:

(31)

∞
∫

0

(Nµ(τ) − lλ(τ)) dτ = +∞.

Put δk = 1, k ≤ N − 1, and δk = l, k ≥ N.

Then

(32) αk (t) =















































µ (t) , k < N − 1;

µ (t) − (l − 1) λ (t) , k = N − 1;

(

1 −
1

l

)

(Nµ (t) − lλ (t)) , N ≤ k ≤ N + R − 2;

Nµ (t)

(

1 −
1

l

)

+ λ (t) , k = N + R − 1.

We can suppose l ≤
N

N − 1
, hence
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(33) β (t) = min
k

αk (t) =

(

1 −
1

l

)

(Nµ (t) − lλ (t)) ,

(34) β∗ (t) = max
k

αk (t) = µ (t) ,

and

(35) χ (t) = max
k

ζk(t) ≤ 2 (lλ (t) + Nµ (t)) .

Therefore Theorems 1 and 2 imply the following statement.

Theorem 3. Let (31) be fulfilled. Then the following bounds hold:

1

4θ
e−2

R
t

s
(lλ(τ)+Nµ(τ)) dτ‖p∗(s) − p∗∗(s)‖ ≤ ‖p∗(t) − p∗∗(t)‖ ≤

4θe−
R

t

s
(1− 1

l
)(Nµ(τ)−lλ(τ)) dτ‖p∗(s) − p∗∗(s)‖,(36)

for any initial probability distributions p∗(s), p∗∗(s), and any 0 ≤ s ≤ t,

(37) ‖p∗(t) − p∗∗(t)‖ ≥
1

2θ
e
−

tR
s

µ(u)du

‖p∗(s) − p∗∗(s)‖ ,

if D (p∗(s) − p∗∗(s)) ≥ 0 (or D (p∗(s) − p∗∗(s)) ≤ 0), and any 0 ≤ s ≤ t, where

θ = N − 1 +
R+1
∑

i=1
li.

Second case. Let there exist l < 1 such that

(38)

∞
∫

0

(lλ(τ) − Nµ(τ)) dτ = +∞.

Put δk = l, k ≥ 1. Then
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(39) αk (t) =



































(

1

l
− 1

)

(lλ (t) − kµ (t)) + µ (t) , k ≤ N − 1;

(

1

l
− 1

)

(lλ (t) − Nµ (t)) , N ≤ k ≤ N + R − 2;

λ (t) − N

(

1

l
− 1

)

µ (t) , k = N + R − 1

and

(40) β (t) = min
k

αk (t) =

(

1

l
− 1

)

(lλ (t) − Nµ (t)) ,

(41) β∗ (t) = max
k

αk (t) ≤ λ (t) .

On the other hand,

(42) χ∗ (t) = max
k

ζk (t) ≤ 2

(

λ (t) +
N

l
µ (t)

)

.

Hence Theorems 1 and 2 imply the following statement.

Theorem 4. Let (38) be fulfilled. Then the following bounds hold:

d

4θ
e−2

R
t

s
(λ(τ)+ N

l
µ(τ)) dτ‖p∗(s) − p∗∗(s)‖ ≤ ‖p∗(t) − p∗∗(t)‖ ≤

4θ

d
e−

R
t

s
( 1

l
−1)(lλ(τ)−Nµ(τ)) dτ‖p∗(s) − p∗∗(s)‖,(43)

for any initial probability distributions p∗(s), p∗∗(s), and any 0 ≤ s ≤ t,

(44) ‖p∗(t) − p∗∗(t)‖ ≥
d

2θ
e
−

tR
s

λ(u)du

‖p∗(s) − p∗∗(s)‖ ,

if D (p∗(s) − p∗∗(s)) ≥ 0 (or D (p∗(s) − p∗∗(s)) ≤ 0), and any 0 ≤ s ≤ t, where

θ ≤ N + R and d = lN+R.
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Remark. There is a number of open problems for Mt/Mt/N/N + R queue,

see [9, 10]. For instance, the condition (30) seems to be necessary and sufficient

for weak ergodicity of the queue-length process. Is this true?

Acknowledgments

We want to thank the Referee for useful remarks.

REFERE NC ES

[1] B. L. Granovsky, A. I. Zeifman. The decay function of nonhomogeneous

birth-death processes, with application to mean-field models. Stoch. Proc.

Appl., 72 (1997), 105–120.

[2] B. L. Granovsky, A. I. Zeifman. The N -limit of spectral gap of a class of

birth-death Markov chains. Appl. Stoch. Models in Business and Industry,

16 (2000), 235–248.

[3] B. L. Granovsky, A. I. Zeifman. Nonstationary Queues: Estimation of

the Rate of Convergence. Queueing Systems, 46 (2004), 363–388.

[4] A. I. Zeifman. Properties of a system with losses in the case of variable

rates. Automat. Remote Control, 50 (1989), 82–87.

[5] A. I. Zeifman. Some estimates of the rate of convergence for birth and

death processes. J. Appl. Probab., 28 (1991), 268–277.

[6] A. I. Zeifman. Upper and lower bounds on the rate of convergence for

nonhomogeneous birth and death processes. Stoch. Proc. Appl., 59 (1995),

157–173.

[7] A. I. Zeifman, S. Leorato, E. Orsingher, Ya. Satin, G. Shilova.

Some universal limits for nonhomogeneous birth and death processes. Queue-

ing systems, 52 (2006), 139–151.

[8] A. I. Zeifman. On nonstationary Erlang model. Automation and Remote

Control, 70 (2009), 2003–2012.

[9] A. I. Zeifman. Ergodicity of Mt/Mt/N/N + R queue and related bounds

(submitted).



254 Alexander Zeifman, Anna Korotysheva

[10] A. I. Zeifman. Ergodicity of finite birth-death processes and related bounds

(submitted).

Alexander Zeifman

Vologda State Pedagogical University

Institute of Informatics Problems RAS and ISEDT RAS

e-mail: zeifman@yandex.ru

Anna Korotysheva

Vologda State Pedagogical University

e-mail: a korotysheva@mail.ru


