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PROPERTIES OF THE BELLMAN GAMMA DISTRIBUTION

Evelina Veleva

The Bellman gamma distribution is a matrix variate distribution, which is a
generalization of the Wishart distribution. In practice it arises as a distrib-
ution of the empirical normal covariance matrix for samples with monotone
missing data. The exact distributions of determinants and quotient of deter-
minants of some submatrices of Bellman gamma distributed random matri-
ces are obtained. The method, considered in this paper, gives the possibility
to derive the distribution of products and quotient of products of principal
minors of a Bellman gamma matrix, and in particular, of a Wishart matrix.

1. Introduction

The Bellman gamma distribution is a matrix variate distribution, which is a

generalization of the Wishart and the matrix gamma distributions (see [3]). In

practice it arises as a distribution of the empirical normal covariance matrix for

samples with monotone missing data (see [6]). Some of the results in this paper

are analogous to already known properties of the Wishart distribution.

Theorem 3.3 gives a representation of the elements of a Bellman gamma

matrix as algebraic functions of independent random variables. It can be used for

generation of Bellman gamma matrices and is applied for establishing properties

of Bellman gamma matrices, and in particular, of Wishart matrices. A property of
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a Wishart distribution, analogous to Theorem 3.5 is proved by a similar technique

in [5], deriving the exact distribution of the likelihood ratio test for diagonality

of a covariance matrix, when the last column of the sample correlation matrix

has missing elements.

In this paper, the exact distributions of determinants and quotient of deter-

minants of some submatrices of Bellman gamma distributed random matrices are

obtained. The presented technique gives the possibility to derive the distribution

of products and quotient of products of principal minors of a Bellman gamma

matrix, and in particular, of a Wishart matrix.

Definitions of the Bellman gamma type I and II distributions are given in the

next section. Section 2 also contains some notations and preliminary notes. The

main results are given in Section 3.

2. Preliminary notes

We denote the four parameter Beta distribution (see [1]) by Beta(a, b, c, d), where

c and d represent the minimum and maximum values of the distribution. Let

ζ ∼ Gamma(a, b) denote that a random variable ζ has Gamma distribution (see

[1]) with shape parameter a and scale parameter b. The next properties of the

Beta and Gamma distribution can be easily checked by transforming variables.

Proposition 2.1. If ζ ∼ Beta(a, a,−1, 1), then 1 − ζ2 ∼ Beta(a, 1/2, 0, 1).

Proposition 2.2. Let ζ1 and ζ2 be independent random variables, ζ1 ∼
Beta(a, b, 0, 1), ζ2 ∼ Beta(a + b, c, 0, 1). Then the product ζ1ζ2 has distribution

Beta(a, b + c, 0, 1).

Proposition 2.3. Let ζ1 and ζ2 be independent random variables, ζ1 is

Gamma(a, b) and ζ2 ∼ Beta(a − c, c, 0, 1). Then ζ1ζ2 ∼ Gamma(a − c, b).

Let A be a real n × n matrix. Let α and β be nonempty subsets of the

set Nn = {1, . . . , n}. By A[α, β] we denote the submatrix of A, composed of

the rows with numbers from α and the columns with numbers from β. When

β ≡ α, A[α,α] is denoted simply by A[α]. For the complement of α in Nn is

used the notation αc. Let i, j ∈ Nn and i, j /∈ α. Suppose that in the submatrix

A[α ∪ {i}, α ∪ {j}] of the matrix A = (ai,j) we replace the element ai,j by 0. We

shall denote the obtained matrix by A[α ∪ {i}, α ∪ {j}]0.
The next definitions of Bellman gamma type I and II distributions are given

in [3]. By Γ∗
n(a1, . . . , an) is denoted the generalized multivariate gamma function,
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Γ∗
n(a1, . . . , an) = πn(n−1)/4

n
∏

j=1
Γ
(

aj − (j − 1)/2
)

, aj > (j − 1)/2, j = 1, . . . , n.

The trace of a matrix A is denoted by tr(A).

Definition 2.1. A random positive definite n×n matrix U follows Bellman

gamma type I distribution, denoted by U ∼ BGI
n(a1, . . . , an; C), if its probability

density function is given by

(2.1) fU(U) =

(

n
∏

i=1
(det C[{i, . . . , n}])ai−ai−1

)

(detU)an−(n+1)/2

Γ∗
n(a1, . . . , an)

n
∏

i=2
(det U[{1, . . . , i − 1}])ai−ai−1

e−tr(CU),

where C (n×n) is a positive definite constant matrix, a0 = 0 and aj > (j− 1)/2,

j = 1, . . . , n, are constants.

Definition 2.2. A random positive definite n×n matrix U follows Bellman

gamma type II distribution, denoted by U ∼ BGII
n (b1, . . . , bn; B), if its probability

density function is given by

fU(U) =

(

n
∏

i=1
(det B[{1, . . . , i}])bn−i+1−bn−i

)

(det U)bn−(n+1)/2

Γ∗
n(b1, . . . , bn)

n−1
∏

i=1
(det U[{i + 1, . . . , n}])bn−i+1−bn−i

e−tr(BU),

where B (n×n) is a positive definite constant matrix, b0 = 0 and bj > (j − 1)/2,

j = 1, . . . , n, are constants.

The next five Propositions are proved in [7]. We denote by In the identity

matrix of size n. We shall denote by Ĩn the square matrix of size n with units on

the anti-diagonal and zeros elsewhere.

Proposition 2.4. Let U ∼ BGI
n (a1, . . . , an; C). Then the matrix V = ĨnU Ĩn

is Bellman gamma type II distributed BGII
n (a1, . . . , an; B), B = ĨnCĨn.

Proposition 2.5. Let U ∼ BGI
n(a1, . . . , an; C) and L be an arbitrary lower

triangular constant matrix of size n. Then the matrix W = LULt has distribution

BGI
n(a1, . . . , an; (Lt)−1CL−1).
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For an arbitrary positive definite matrix U there exist a unique lower trian-

gular matrix V with positive diagonal elements, such that U = V Vt. The matrix

V is called the Cholesky triangle (see [2]).

Proposition 2.6. Let U = (ui,j) be an arbitrary positive definite matrix of

size n. Then U = V Vt, where V = (vi,j) is a lower triangular matrix,

vj,i =
det U[{1, . . . , i}, {1, . . . , i − 1, j}]

vi,i det U[{1, . . . , i − 1}] , 2 ≤ i < j ≤ n,

v1,1 =
√

u1,1, vj,j =

√

detU[{1, . . . , j}]
det U[{1, . . . , j − 1}] , vj,1 =

u1,j

v1,1
, j = 2, . . . , n.

Proposition 2.7. Let C = (ci,j) be an arbitrary positive definite matrix of

size n. Then C = DDt, where D = (di,j) is an upper triangular matrix,

di,j =
detC[{i, j + 1, . . . , n}, {j, . . . , n}]

dj,j detC[{j + 1, . . . , n}] , 1 ≤ i < j ≤ n − 1,

dn,n =
√

cn,n, di,i =

√

det C[{i, . . . , n}]
detC[{i + 1, . . . , n}] , di,n =

ci,n

dn,n
, i = 1, . . . , n − 1.

Proposition 2.8 below is analogous to the Bartlett’s decomposition of the

Wishart distribution (see [3], [4]).

Proposition 2.8. Let U ∼ BGI
n (a1, . . . , an; In) and U = VVt, where V =

(Vi,j) is a lower triangular random matrix with Vi,i > 0. Then Vi,j , 1 ≤ j ≤ i ≤ n,

are independently distributed, V 2
i,i ∼ Gamma

(

ai − (i − 1)/2, 1
)

, i = 1, . . . , n, and
√

2Vi,j ∼ N(0, 1), 1 ≤ j < i ≤ n.

3. Main results

From Proposition 2.4 it follows that the properties of a Bellman gamma type

I distributed random matrix can be reformulated for Bellman gamma type II

matrices.

Using Proposition 2.5, the properties of BGI
n(a1, . . . , an; In) distribution can

be generalized for BGI
n(a1, . . . , an; C), where C is an arbitrary positive definite

matrix.
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From Definition 2.1 it can be seen that if U ∼ BGI
n(a1, . . . , an; C) with

a1 = · · · = an = m/2, then U has Wishart distribution with m degrees of

freedom and covariance matrix 1
2C−1, denoted by Wn

(

m,
1

2
C−1

)

. Using Propo-

sition 2.5 with L =
√

2In we obtain that if U ∼ BGI
n(a1, . . . , an; C), then

2U ∼ BGI
n

(

a1, . . . , an;
1

2
C

)

. Hence if U ∼ BGI
n

(m

2
, . . . ,

m

2
;C
)

, then 2U ∼

Wn(m,C−1). In particular, if U ∼ BGI
n

(m

2
, . . . ,

m

2
; In

)

, then 2U ∼ Wn(m, In).

Theorem 3.1. Let U ∼ BGI
n(a1, . . . , an; C) and ηi, i = 1, . . . , n be the ran-

dom variables

ηi =
detU[{1, . . . , i}]

detU[{1, . . . , i − 1}]
detC[{i, . . . , n}]

detC[{i + 1, . . . , n}] , i = 2, . . . , n − 1,

η1 = detU[{1}] det C

det C[{2, . . . , n}] , ηn =
detU

detU[{1, . . . , n − 1}] detC[{n}].

Then ηi, i = 1, . . . , n, are mutually independent and ηi is gamma distributed

Gamma
(

ai − (i − 1)/2, 1
)

, i = 1, . . . , n.

P r o o f. Suppose first that C = In. Let V = (Vi,j) be the Cholesky triangle

of U. From Proposition 2.6 we have that η1 = V 2
1,1, ηi = V 2

i,i, i = 2, . . . , n. The

assertion of the theorem now follows from Proposition 2.8.

Let now C be an arbitrary n×n positive definite matrix. Let D be the upper

triangular matrix, defined by Proposition 2.7. Then DDt= C and according to

Proposition 2.5, the matrix W = DtUD has distribution BGI
n(a1, . . . , an; In).

Since for i = 1, . . . , n

W[{1, . . . , i}] = Dt[{1, . . . , i}]U[{1, . . . , i}]D[{1, . . . , i}],

it can be seen that

η1 = detW[{1}], ηi =
detW[{1, . . . , i}]

detW[{1, . . . , i − 1}] , i = 2, . . . , n.

Hence, by the first part of the proof, the Theorem follows. �

Corollary 3.1. Let U ∼ BGI
n(a1, . . . , an; C). Then the random variable

detUdet C is distributed as the product η1 . . . ηn, where η1, . . . , ηn are mutually

independent random variables, ηi ∼ Gamma
(

ai − (i − 1)/2, 1
)

, i = 1, . . . , n.
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P r o o f. Let ηi, i = 1, . . . , n, be defined as in Theorem 3.1. Since η1 . . . ηn =

detUdet C, the corollary follows from Theorem 3.1. �

Theorem 3.2. Let U ∼ BGI
n(a1, . . . , an; In) and i be an integer, 1 < i < n.

Then for all integers j, i < j ≤ n the random variable

(3.1) detU[{1, . . . , i}, {1, . . . , i − 1, j}]

is distributed as the product ν η1 . . . ηi−1
√

ηi, where ν, η1, . . . , ηi are mutually in-

dependent,
√

2ν ∼ N(0, 1), ηk ∼ Gamma
(

ak − (k − 1)/2, 1
)

, k = 1, . . . , i.

P r o o f. Let V = (Vi,j) be the Cholesky triangle of U. Let us consider the

random variables ν = Vj,i, η1 = V 2
1,1, ηk = V 2

k,k, k = 2, . . . , i. According to Propo-

sition 2.6, for i < j ≤ n the random variable (3.1) is equal to ν η1 . . . ηi−1
√

ηi.

Now, using Proposition 2.8 we complete the proof. �

Corollary 3.2. Let U ∼ BGI
n(a1, . . . , an; In) and i be an integer, 1 < i < n.

Then for all integers j, i < j ≤ n

(3.2)
detU[{1, . . . , i}, {1, . . . , i − 1, j}]

detU[{1, . . . , i − 1}] ∼ ν
√

η,

(3.3)
detU[{1, . . . , i}, {1, . . . , i − 1, j}]

detU[{1, . . . , i}] ∼ ν√
η
,

where ν and η are independent,
√

2ν ∼ N(0, 1) and η ∼ Gamma(ai− (i−1)/2, 1).

P r o o f. Let η1, . . . , ηi and ν be defined as in the proof of Theorem 3.2. Using

Proposition 2.6, the left hand side of (3.2) is equal to ν
√

η
i
; the left hand side of

(3.3) equals to (ν
√

ηi)/ηi = ν/
√

ηi. The corollary now follows from Proposition

2.8. �

Let P (n,ℜ) be the set of all real, symmetric, positive definite matrices of order

n. Let us denote by D(n,ℜ) the set of all real, symmetric matrices of order n, with

positive diagonal elements, whose off-diagonal elements are in the interval (-1,1).

There exist a bijection (one-to-one correspondence) h̃ : D(n,ℜ) → P (n,ℜ),

constructed in [5]. The image of an arbitrary matrix X = (xi,j) from D(n,ℜ)

by the bijection h̃ is a matrix Y = (yi,j) from P (n,ℜ), defined first on the main
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diagonal and then consecutively on the diagonals parallel to the main diagonal,

by the recurrence formulas

(3.4) yi,i = xi,i, i = 1, . . . , n,

(3.5) yi,i+1 = xi,i+1
√

yi,iyi+1,i+1, i = 1, . . . , n − 1,

(3.6) yi,j =
E

detY[{i + 1, . . . , j − 1}] ,

E = (−)j−i detY[{i, . . . , j − 1}, {i + 1, . . . , j}]0

+ xi,j

√

det Y[{i, . . . , j − 1}] det Y[{i + 1, . . . , j}],

j − i = 2, . . . , n − 1.

The preimage X = h̃−1(Y) of a matrix Y from P (n,ℜ) is defined by the

equalities (see [5])

xi,i = yi,i, i = 1, . . . , n,

xi,i+1 =
yi,i+1√

yi,iyi+1,i+1
, i = 1, . . . , n − 1,

xi,j =
(−1)j−i−1 detY[{i, . . . , j − 1}, {i + 1, . . . , j}]
√

detY[{i, . . . , j − 1}] det Y[{i + 1, . . . , j}]
, 2 ≤ j − i ≤ n − 1.

For an arbitrary real square matrix A of order n and integers i, j, 1 ≤ i <

j ≤ n, the following identity holds

(3.7) detA detA[{i, j}c] = det A[{i}c] det A[{j}c]

− det A[{i}c, {j}c] detA[{j}c, {i}c].

It is a special case of the identity (1) in [8]. Using (3.7), it is shown in [5] that

(3.8) 1 − x2
i,j =

det Y[{i, . . . , j}] det Y[{i + 1, . . . , j − 1}]
det Y[{i, . . . , j − 1}] det Y[{i + 1, . . . , j}] , 2 ≤ j − i ≤ n − 1,
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(3.9) 1 − x2
i,i+1 =

detY[{i, i + 1}]
yi,iyi+1,i+1

, i = 1, . . . , n − 1,

(3.10) detY[{i, . . . , j}] = xi,i . . . xj,j





∏

i≤s<t≤j

(1 − x2
s,t)



 , 1 ≤ i < j ≤ n.

The Jacobian of the transformation from (xi,j) to (yi,j) is

J =
∂(x1,1, . . . , xn,n, x1,2, . . . , xn−1,n, x1,3, . . . , xn−2,n, . . . , x1,n)

∂(y1,1, . . . , yn,n, y1,2, . . . , yn−1,n, y1,3, . . . , yn−2,n, . . . , y1,n)
.

¿From (3.6) it can be seen that xi,j depends only on yk,s, i ≤ k ≤ s ≤ j.

Consequently, all the elements above the main diagonal in J are zero. Therefore

det J is equal to the product of the diagonal elements, the first n of which are

ones. ¿From (3.5) and (3.6) we find the rest of them

∂xi,i+1

∂yi,i+1
=

1
√

yi,iyi+1,i+1
, i = 1, . . . , n − 1,

∂xi,j

∂yi,j
=

det Y[{i + 1, . . . , j − 1}]
√

detY[{i, . . . , j − 1}] det Y[{i + 1, . . . , j}]
, 2 ≤ j − i ≤ n − 1.

After simplifications we obtain

(3.11) det J =

[

√
y1,1yn,n

(

n−1
∏

k=2

√

detY[{1, . . . , k}] det Y[{k, . . . , n}]
)]−1

.

Theorem 3.3. Let a1, . . . , an be real numbers, such that ai > (i − 1)/2,

i = 1, . . . , n. Let ξ= (ξi,j) be a symmetric n × n random matrix. Suppose that

ξi,j, 1 ≤ i ≤ j ≤ n, are mutually independent, ξi,j ∼ Beta
(

aj − (j − i)/2, aj−

(j − i)/2,−1, 1
)

, 1 ≤ i < j ≤ n, and ξi,i ∼ Gamma(ai, 1), i = 1, . . . , n. Then the

matrix U = h̃(ξ), where h̃ is the bijection defined by (3.4) - (3.6), has Bellman

gamma type I distribution BGI
n (a1, . . . , an; In).

P r o o f. The joint density function of ξi,j, 1 ≤ i ≤ j ≤ n has the form

f(xi,j, 1 ≤ i ≤ j ≤ n) = K

(

n
∏

i=1

xai−1
i,i e−xi,i

)





∏

1≤i<j≤n

(1 − x2
i,j)

aj−
(j−i)

2
−1



 ,
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K =

(

n
∏

i=1

1

Γ(ai)

)





∏

1≤i<j≤n

Γ(2aj − j + i)

[Γ (aj − (j − i)/2)]2 22aj−j+i−1



 ,

xi,i > 0, i = 1, . . . , n, xi,j ∈ (−1, 1), 1 ≤ i < j ≤ n. Using the duplication formula

for the gamma function (see [4], p.154) Γ(2x) = π−1/222x−1Γ(x)Γ(x + 1/2), after

simplification we get K = 1/Γ∗
n(a1, . . . , an), where Γ∗

n denotes the generalized

multivariate gamma function introduced on p. 3. The new variables are the

elements Ui,j, 1 ≤ i ≤ j ≤ n of the matrix U. Using (3.4), (3.8), (3.9) and (3.11)

we obtain that the joint density of Ui,j, 1 ≤ i ≤ j ≤ n is equal to the right hand

side of (2.1) with C = In. �

Corollary 3.3. Let U ∼ BGI
n(a1, . . . , an; In) and let p and q be integers,

1 ≤ p ≤ q ≤ n. Then the matrix U[{p, . . . , q}] has BGI
q−p+1(ap, . . . , aq; Iq−p+1)

distribution.

P r o o f. By Theorem 3.3, U can be considered as an image U = h̃(ξ). From

formulas (3.4) – (3.6) it can be seen that if Y = h̃(X) and p, q are integers,

1 ≤ p ≤ q ≤ n, then

(3.12) Y[{p, . . . , q}] = h̃(X[{p, . . . , q}]).

Applying again Theorem 3.3 we complete the proof. �

Corollary 3.4. Let U ∼ BGI
n(a1, . . . , an; In) and let p be an integer, 1 ≤ p ≤

n. Then the random matrices U[{1, . . . , p}] and U[{p+1, . . . , n}] are independent.

P r o o f. Using (3.12) we have U[{1, . . . , p}] = h̃(ξ[{1, . . . , p}]), U[{p +

1, . . . , n}] = h̃(ξ[{p+1, . . . , n}]). The corollary now follows from the independence

of ξi,j, 1 ≤ i ≤ j ≤ n. �

Theorem 3.4. Let U ∼ BGI
n(a1, . . . , an; In) and U be partitioned with sub-

matrices Ui,j , i, j = 1, . . . , k, where Ui,i are square matrices of size ni, i =

1, . . . , k. Then

(3.13)
detU

detU1,1 . . . detUk,k
∼ βn1+1 . . . βn,

where βj , j = n1 +1, . . . , n, are mutually independent, βj ∼ Beta
(

aj − (j − 1)/2,

(n1 + · · ·nrj
)/2, 0, 1

)

; rj is the greatest integer such that n1 + · · · + nrj
< j,

j = n1 + 1, . . . , n.
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P r o o f. The matrix U can be considered as an image U = h̃(ξ), where ξ is

the random matrix given in Theorem 3.3. Applying (3.10) to detU and detUi,i,

i = 1, . . . , k, we obtain that the left hand side of (3.13) equals

n
∏

j=n1+1

n1+···+nrj
∏

s=1

(1 − ξ2
s,j).

Let us substitute βj =
n1+···+nrj
∏

s=1
(1 − ξ2

s,j), j = n1 + 1, . . . , n. Since ξs,j, 1 ≤
s ≤ j ≤ n are mutually independent, βn1+1, . . . , βn are also independent. Using

Propositions 2.1 and 2.2, we obtain that for 1 ≤ u ≤ v < j ≤ n

(3.14) (1 − ξ2
u,j) . . . (1 − ξ2

v,j) ∼ Beta
(

aj − (j − u)/2, (v − u + 1)/2, 0, 1
)

.

Using (3.14) we find the distribution of βj and complete the proof. �

Theorem 3.5. Let U ∼ BGI
n (a1, . . . , an; In) and p, q be integers, 1 < p <

q < n. Then

(3.15)
detU[{1, . . . , q}] detU[{p, . . . , n}]

detU[{p, . . . , q}] ∼ η1 . . . ηn,

where ηi, i = 1, . . . , n, are mutually independent and ηi ∼ Gamma(ai− (i −
1)/2, 1), i = 1, . . . , q, ηi ∼ Gamma

(

ai − (i − p)/2, 1
)

, i = q + 1, . . . , n.

P r o o f. Applying (3.10) to detU[{1, . . . , q}], detU[{p, . . . , n}] and

detU[{p, . . . , q}] we obtain that the left hand side of (3.15) equals to

ξ1,1 . . . ξn,n

(

q
∏

t=2

t−1
∏

s=1

(1 − ξ2
s,t)

)





n
∏

t=q+1

t−1
∏

s=p

(1 − ξ2
s,t)



 .

Let us substitute βt =
t−1
∏

s=1
(1 − ξ2

s,t), t = 2, . . . , q, βt =
t−1
∏

s=p
(1 − ξ2

s,t), t = q +

1, . . . , n. From (3.14) we have that βt ∼ Beta
(

at − (t − 1)/2, (t − 1)/2, 0, 1
)

,

t = 2, . . . , q, βt ∼ Beta
(

at − (t − p)/2, (t − p)/2, 0, 1
)

, t = q + 1, . . . , n. Let

η1 = ξ1,1, ηi = ξi,iβi, i = 2, . . . , n. Then the required assertion follows from

Proposition 2.8. �
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Theorem 3.6. Let U ∼ BGI
n (a1, . . . , an; In) and p, q be integers, 1 < p <

q < n. Then

(3.16)
detUdetU[{p, . . . , q}]

detU[{1, . . . , q}] det U[{p, . . . , n}] ∼ βq+1 . . . βn,

where βq+1, . . ., βn are mutually independent and βi ∼ Beta
(

ai − (i − 1)/2,

(p − 1)/2, 0, 1
)

, i = q + 1, . . . , n.

P r o o f. Using (3.10) we obtain that the left hand side of (3.16) equals
n
∏

t=q+1

p−1
∏

s=1
(1 − ξ2

s,t). Let us substitute βt =
p−1
∏

s=1
(1 − ξ2

s,t), t = q + 1, . . . , n. Since

ξs,t, 1 ≤ s ≤ t ≤ n are mutually independent, βq+1, . . . , βn are also independent.

Finally, applying (3.14) we complete the proof. �

The approach, used in the proofs of Theorems 3.4 - 3.6, can be also applied to

derive the distribution of products and quotient of products of principal minors

of the form U[{i, . . . , j}] of a Bellman gamma matrix U.
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