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ROBUST ESTIMATION IN MULTITYPE BRANCHING

PROCESSES BASED ON THEIR ASYMPTOTIC

PROPERTIES∗

Vessela Stoimenova, Dimitar Atanasov

In this work we propose two procedures for robust estimation of the in-
dividual distributions of multitype discrete-time Galton-Watson branching
processes with an increasing number of ancestors, using the relative frequen-
cies of the process and their asymptotic distributions. The study is based
on simulations and numerical results.

1. Introduction

In the present paper we consider some aspects of the robust estimation in discrete-
time multitype Galton-Watson branching processes with a large (and increasing)
number of ancestors (MGWL processes).

The general formulation and handling of branching processes with several
types of particles was first introduced by Kolmogorov and Dmitriev (1947) and
Kolmogorov and Sevastyanov (1947) in the Markov case. Since then there is
an impressive number of work in the area of branching processes theory and
applications (see f.e. the books of Asmussen and Herring, 1983, Athreya and
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Ney, 1972, Harris, 1963, Jagers, 1975, Sevastyanov, 1971, Yakovlev and Yanev,
1989 and others).

Yakovlev and Yanev (1989) noted that branching processes with a large and
often random number of ancestors may be usefull for modelling purposes in the
study of cell proliferation as well as in applications to nuclear chain reactions.
Statistical inference for Bienaymé-Galton-Watson processes with an increasing
random number of ancestors (BGWR processes) was introduced and developed by
Yanev (1975) and Dion and Yanev (1991, 1992, 1994, 1997). Robustified versions
in the sense of the weighted and trimmed likelihood of the classical estimators
are proposed in Stoimenova, Atanasov, Yanev (2004 a, b, 2005), Stoimenova and
Atanasov (2006). In the class of the power series offspring distributions some
topics of the parametric estimation are considered in Stoimenova, Yanev (2005)
and of the robust parametric estimation - in Stoimenova (2005). The effectiveness
of the estimators of Dion and Yanev of the individual and immigration mean in
discrete-time branching processes with immigration, based on their relationship
to the BGWR processes, is studied in Atanasov, Stoimenova, Yanev (2007, 2009),
where also their robust modifications are proposed.

The asymptotic behaviour of multitype Markov branching processes is con-
sidered in Yakovlev and Yanev (2010) and the usage of the obtained limiting
results for cell kinetics studies is shown. Applications in the area of cell biology
were also a motivation for Yakovlev and Yanev (2009) to consider and study the
relative frequencies of distinct types of particles in MBPR. We base ourselves
on asymptotic results from these papers to construct robust estimators of the
individual distributions.

Within the present paper under robustness we mean weighted and trimmed
likelihood (WLT(k) estimators), defined by Vandev and Neykov (1998) and based
on the principle of the maximum likelihood estimation.

2. Multitype Galton-Watson processes – notations and overview

of the preliminary results

In the multitype Galton-Watson processes (or as we reffer to MGW processes) we
allow for the existence of distinguishable particles (individuals, cells depending
on the interpretation) with different probabilistic behaviour. To each particle
we assign a type in the set of types T = {1, 2, . . . , d} that is assumed to be
finite and with cardinality d. Each particle, say the l-th particle of type k ∈ T
living in the t−th generation (t= 0,1,2,. . . ), is associated with a random vector−→
ξ k(t, l) = (ξ1

k(t, l), . . . , ξ
d
k(t, l)), where ξj

k
(t, l) is a random variable that represents

the number of children of type j, j ∈ T , in the generation t + 1, produced from
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the k-th type l particle in the generation t. The distribution of the random vector−→
ξ k(t, l) does not depend on the generation, where the parent particle lives, and
on the index l. The offspring of the particles in the generation t forms the next
generation t+1. Hence a MGW process is defined as a sequence of random vectors
{Z(t) = (Z1(t), . . . , Zd(t))}, t ∈ N0 = {0, 1, 2, . . . }, where Zk(t) represents the

number of particles of type k ∈ T in generation t, Zk(t + 1) =
d∑

j=1

Zl(t)∑
l=1

ξk
j (t, l).

We denote by

hi(s) = E[sZ(1)|Zi(0) = 1] = E[s
Z1(1)
1 . . . s

Zd(1)
d

|Z1(0) = 1]

the offspring probability generating function of the MGW process, starting with
one particle of type i ∈ T , and by

F i(t, s) = E[sZ(t)|Zi(0) = 1] = E[s
Z1(t)
1 . . . s

Zd(t)
d |Z1(0) = 1]

the probability generating function of the process in the moment t, starting with
one particle of type i ∈ T . Here s = (s1, . . . , sd) and |sk| ≤ 1, k = 1, 2, . . . , d.

We use the following notations for the first and second moments of the off-
spring distribution:

mij =
∂

∂sj

hi(s)|s=1 = E[Zj(1)|Zi(0) = 1],

bi
jk =

∂2

∂sj∂sk

hi(s)|s=1 = E[Zj(1)[Zk(1) − δjk]|Zi(0) = 1],

where i, j, k = 1, d, δjk = 0, if j 6= i, δjk = 1, if j = i, and 1 = (1, . . . , 1).

If we denote by M = ||mij ||, then it is well known that by the branching
property and the independence of individual particle evolutions

M(t) := ||mij(t)|| = ||E[Zj(t)|Zi(0) = 1]|| = ||mij ||t = Mt,

mij(t) := E[Zj(t)|Zi(0) = 1] =
∂

∂sj

F i(t, s)|s=1,

bi
jk(t) :=

∂2

∂sj∂sk

F i(t, s)|s=1 = E[Zj(t)[Zk(t) − δjk]|Zi(0) = 1], i, j, k = 1, d.

Let us now suppose that the MGW process starts with one particle of type
1. We need the following notations:

σ2
k(t) := V ar[Zk(t)|Z1(0) = 1] = b1

kk(t) + m1k(t) − (m1k(t))
2,
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Cij(t) := Cov[Zi(t), Zj(t)|Z1(0) = 1] = b1
ij(t) − m1i(t)m1j(t),

rij(t) := Corr[Zi(t), Zj(t)|Z1(0) = 1] = Cij(t)/σi(t)σj(t), i, j, k,= 1, d.

Hence Cii(t) = σ2
i (t) and rii(t) = 1 for i = 1, d.

We suppose that the covariance matrix C(t) = ||Cij(t)|| and the correlation
matrix R(t) = ||rij(t)|| are finite and well defined.

Let U(t) =
d∑

k=1

Zk(t) be the total number of particles at the moment t and the

relative frequencies (or fractions, proportions) of types ∆k(t) =
Zk(t)

U(t)
be defined

on the set of nonextinction {U(t) > 0}. One should notice, that there exists the

following obvious relationship between the relative frequencies:
d∑

k=1

∆k(t) = 1.

We need also the following notation about the theoretical proportions pi(t) :=
m1i(t)

M(t)
, where M(t) = EU(t) =

d∑
j=1

m1j(t), which, as noted in Yakovlev and

Yanev (2009), may be interpreted as the probability that a randomly chosen cell
at time t is of type i.

Let us now consider the multitype Galton-Watson branching process starting
with Z1(0) = N initial number of ancestors.

Then the relative frequencies can be written as

∆i(t,N) =
Zi(t,N)

U(t,N)
=

N∑
k=1

Z
(k)
i (t)

N∑
k=1

U (k)(t)

,

where due to the independence of cell evolutions {Z(k)
i (t)}N

k=1 are iid copies of

the process {Zi(t), i = 1, d} and U (k)(t) =
d∑

i=1
Z

(k)
i (t).

According to the notations introduced in Yakovlev and Yanev (2009, 2010)
let

aij(t) =

{
σi(t)(1 − pi(t)) if i = j

−σipj(t) if i 6= j, i, j = 1, d
,

Wi(t,N) = M(t)
√

N [∆i(t,N) − pi(t)],

Vi(t,N) =

N∑

k=1

Z
(k)
i (t) − m1i(t)

σi(t)
√

N
=

Zi(t,N) − Nm1i(t)

σi(t)
√

N
.
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In Yakovlev and Yanev (2009), Proposition 1, it is shown that if m1i(t) < ∞,
i = 1, d, then the relative frequencies ∆i(t,N) are strongly consistent and asymp-
totically unbiased estimators for the proportions pi(t) when the initial number of
ancestors N → ∞. Moreover, when σ2

i (t) < ∞, i = 1, d, their multivariate nor-
mality is proved (Yakovlev and Yanev, 2009, Theorem 1) and as a consequence
one has that

Wi(t,N)
d

−→ Yi(t), N → ∞(1)

for every i = 1, d, where Yi(t) is a normally distributed centered random variable
with

S2
i (t) = V arYi(t) =

d∑

k,l=1

rkl(t)aki(t)ali(t)(2)

and

(V1(t,N), . . . , Vd(t,N))
d

−→ (X1(t), . . . ,Xd(t)), N → ∞,(3)

where the random variables (X1(t), . . . ,Xd(t)) have a joint normal distribution
with EXi(t) = 0, V arXi(t) = 1, Cov(Xi(t),Xj(t)) = rij(t).

3. Robust estimation of the individual distribution and algo-

rithms

We apply the concept of the weighted least trimmed estimators in order k
(WLT (k)) (see Vandev and Neykov, 1998) in order to estimate the offspring
distributions in the MGWL processes in the presence of outliers.

Let us suppose that we have two sets of sample paths of a branching process
with several types of particles based on the generation sizes and of the entire fam-
ily tree. This means that we are able to observe correspondingly the frequencies
Zi(t,N) (as already mentioned they represent the number of particles of type i
in the t-th generation of a MGWL process starting with N particles of type 1)
and the relative frequencies ∆i(t,N) = Zi(t,N)/U(t,N). Using these two sets
of observations, over each realization we obtain a number of estimated values for
the offspring distributions. As already mentioned, under the appropriate norm-
ing Vi(t,N) and Wi(t,N) these values are asymptotically normally distributed. If
the required conditions for asymptotic normality are not satisfied, the estimated
values are far from the real values of the offspring distributions. The aim is to
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propose an algorithm for robust estimation of the offspring distribution, explor-
ing the idea of the weighted and trimmed likelihood, in order to eliminate the
cases, which do not satisfy these conditions.

We remind that the robust properties of an estimator can be studied by the
measure of robustness, called breakdown point (BP ). We adopt the definition of
a finite sample breakdown point of Hampel at al. (1986). For a given estimator

S it is defined as BP (S) =
1

r
max{m : sup ‖S(Xm)‖ < ∞}, where Xm is a

sample, obtained from the sample X over r observations by replacing any m of
the observations by arbitrary values.

Vandev and Neykov (1993) determined the breakdown point of the WLT (α)
estimators in the case of multivariate normal distribution as BP > (r − α)/r if
r ≥ 3(d+1) and (r+d+1)/2 ≤ α ≤ r−d−1, where d is the space dimensionality
and α is the trimming factor.

3.1. Robust estimation based on generation sizes

In this subsection we consider the WLT(k) estimator of the mean and covariance
matrix for the fixed generation t based on the observations over the generation
sizes in this moment t of several sample paths of a MGWL process. This proce-
dure gives us as a further result the “correct” trees to use and the “outlier” trees
to avoid for improvement of the offspring distribution estimates for the different
particle types. The estimates of the individual distributions are calculated in
the standard way using the information about the evolution of the entire family
tree, i.e. we estimate the probabilities pi

(j1,...,jd) that a particle of type i produces
in the next generation j1 particles of type 1, j2 particles of type 2, etc., as the
number of particles of type i with the given offspring divided by the total number
of particles of type i (thus we obtain a Harris type estimator).

Let us consider the set {Z(1)(N1), . . . ,Z
(r)(Nr)}, where

Z(i)(Ni) = (Z
(i)
1 (Ni), . . . ,Z

(i)
d (Ni))

is a single realization of a MGWL process with Ni ancestors of the same type
and length L,

Z
(i)
j (Ni) = (Z

(i)
j (0, Ni), Z

(i)
j (1, Ni), . . . , Z

(i)
j (L,Ni)),

Ni, L ≥ 1, i = 1, 2, . . . , r, j = 1, 2, . . . , d, d ∈ N+ is the number of particle types
and r ∈ N+ is the number of sample paths.

We also need the following notation for the vector of the number of types in
the fixed t-th generation of the i-th sample path

Z(i)(t,Ni) = (Z
(i)
1 (t,Ni), . . . , Z

(i)
d

(t,Ni)).
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In this section we consider the WLT (α) estimator of the mean vector

NM1(t) = (Nm11(t), Nm12(t), . . . , Nm1d(t))

and covariance matrix

NC(t)

of the asymptotic multivariate normal distribution of (Z1(t,N), . . . , Zd(t,N)),
t = 1, L, (see (3)), obtained when N = N1 = · · · = Nd, which may be presented
in the following way:

(M̂1(t), Ĉ(t)) = argmin
M1(t),C(t)

α∑

i=1

− log φ(Zν(i)(t,N), NM1(t), NC(t)),(4)

where in the expression (M̂1(t), Ĉ(t)) M̂1(t) is the estimator of M and Ĉ(t) is
the estimator of C. Here α is a properly chosen trimming factor, φ(Z(i)(t,N),
NM1(t), NC(t)) is the density probability function of the asymptotic multivari-
ate normal distribution of Z(i)(t,N), ν is a permutation of the indices such that

φ(Zν(1)(t,N), NM1(t), NC(t)) ≥ · · · ≥ φ(Zν(α)(t,N), NM1(t), NC(t)),

M1(t) and C(t) are the unknown parameters of the process. This is a WLT (α)
estimator, in which all weights are equal to 1.

As a direct corollary of the result of Vandev and Neykov (1993) we see that

Proposition 3.1. The breakdown point BP of the WLT (α) estimators (4)
of the mean vector M1(t) and covariance matrix C(t), t = 1, L, in the MGWL
process starting with N ancestors of type 1 is BP > (r − α)/r, if r ≥ 3(d + 1)
and (r + d + 1)/2 ≤ α ≤ r − d − 1. Here d is the number of particle types, α is
the trimming factor and r is the number of observed trajectories.

Remark 3.1. It is possible to consider the generalization of (4) when the
sample paths that we observe start with different (and large) number of ancestors
N1, . . . , Nd (or, we observe realizations over a multivariate Galton-Watson process
starting with an increasing and random number of ancestors):

(M̂1(t), Ĉ(t)) = argmin
M1(t),C(t)

α∑

i=1

− log φ(Zν(i)(t,Nν(i)), Nν(i)M1(t), Nν(i)C(t)),(5)
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where again α is a properly chosen trimming factor,

φ(Z(i)(t,Nν(i)), Nν(i)M1(t), Nν(i)C(t))

is the density probability function of the asymptotic multivariate normal distri-
bution of Z(i)(t,Nν(i)), ν is a permutation of the indices such that

φ(Zν(1)(t,Nν(1)), Nν(1)M1(t), Nν(1)C(t)) ≥ . . .

· · · ≥ φ(Zν(α)(t,Nν(α)), Nν(α)M1(α), Nν(α)C(α)),

M1(t) and C(t) are the unknown parameters of the process.

3.1.1. An algorithm

We propose an algorithm for calculating the estimates of the offspring distri-
butions over the whole family trees excluding the outlier trees. The basis for
determining the trees with outlier generation sizes is formula (5).

1. Setting the initial value of the mean vector M1(t) and covariance matrix
C(t) of the multivariate normal probability density function φ(◦, NM1(t),
NC(t)).

2. Calculating the values φk of the of the log-density function of the vector

Z(k)(t,Nk) = ((Z
(k)
1 (t,Nk), . . . , Z

(k)
d (t,Nk)))

for the sample path k, k = 1, · · · , r at the predefined moment t.

3. Sorting the values {φk} in a descending way: φ(1) ≥ · · · ≥ φ(r).

4. Calculating M1(t) and C(t) from φ(1), · · · , φ(α), where the trimming factor
is a proportion of the number of the observed sample paths: α = int(q.r),
q ∈ (0.5, 1].

5. If the the alteration of the sum
α∑

k=1

φ(k) is less than an appropriate chosen

small value ε than exit and calculate probabilities, else go back to 2.
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3.1.2. A numerical example

As an example of the proposed procedure we generate 120 sample trees over a
multivariate Galton-Watson branching process with a large random number of
ancestors. We simulate

• r1 = 100 sample paths {Z(1)(N1), . . . ,Z
(100)(N100)} and

• r2 = 20 outlier sample paths {Z(101)(N101), . . . ,Z
(120)(N120)}.

The distribution of the regular sample paths is given in the table below

Type Probability Offsprings

1 0.2 1 0
1 0.2 0 1
1 0.4 2 0
1 0.2 0 2
2 0.2 1 0
2 0.2 1 1
2 0.3 2 0
2 0.3 0 2

and one simulated family tree of process can be seen on the next figure

The distribution of the outlier sample path is
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Type Probability Offsprings

1 0.5 1 0
1 0.5 0 2
2 0.5 2 0
2 0.5 0 1

On the next figure one sample path of the outlier process is given

The estimation of the disturbed probabilities gives us the following result,
where the influence of the outlier sample paths is seen (note the last row):

Type Probability Offsprings

1 0.2297 0 2
1 0.1812 0 1
1 0.2271 1 0
1 0.3621 2 0
2 0.2613 0 2
2 0.1737 1 0
2 0.3251 2 0
2 0.1726 1 1
2 0.0674 0 1

which is far from the true generating mechanism of the process.

The proposed procedure gives the following result, where the influence of the
outlier sample paths is reduced:
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Type Probability Offsprings

1 0.1956 0 1
1 0.2063 1 0
1 0.2042 0 2
1 0.3939 2 0
2 0.1941 1 0
2 0.2933 2 0
2 0.3137 0 2
2 0.1989 1 1

3.2. Robust estimation based on the relative frequencies

In this section we consider robust estimators of the theoretical offspring distrib-
ution π = {p1

j1,j2
}, in a MGWL process with two types of particles. We remind

that under p1
j1,j2

we understand the probability that a particle of type 1 has
j1 children of type 1 and j2 of type 2. The estimation is based on the asymp-
totic distribution (1) of the relative frequency ∆1(t,N), i.e. the observations in

this model are r relative frequencies ∆
(1)
1 (t,N), . . . ,∆

(r)
1 (t,N) obtained from r

independent realizations of the process starting with N particles of type 1.

The estimator can be expressed in the form:

π̂ = argmin
π

α∑

i=1

− log φ(∆
ν(i)
1

(t,N), p1(t),
S2

1(t)

M2(t)N
),(6)

where α is a properly chosen trimming factor, φ

(
∆

ν(i)
1

(t,N), p1(t),
S2

1(t)

M2(t)N

)

is the density probability function of the asymptotically normal distribution of

∆
(i)
1 (t,N), ν is a permutation of the indices such that

φ(∆
ν(1)
1

(t,N), p1(t),
S2

1(t)

M2(t)N
) ≥ · · · ≥ φ(∆

ν(α)
1

(t,N), p1(t),
S2

1(t)

M2(t)N
),

p1(t), S2
1(t) and M(t) are defined in Section 2 and are functions of the unknown

parameters π of the process.

3.2.1. A cell proliferation example

Let us consider the age-dependent two-type reducible Bellman-Harris branching
model of oligodendrocyte generation in cell culture, studied first in Yakovlev,
M. Mayer-Proschel and M. Noble (1998) and later in Yakovlev, Stoimenova,
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Yanev (2008), Yakovlev and Yanev (2009). The oligodendrocyte type-2 astro-
cyte progenitor cells (O-2A progenitor cells) are known to be precursors of oligo-
dendrocytes in the developing central nervous system. An O-2A progenitor cell
either differentiates into an oligodendrocyte, which does not divide under normal
conditions, or retains the ability to proliferate into two cells of the same type.

Let Z1(t,N) be the number of O-2A progenitor cells (cells of type 1) at
the moment t and Z2(t,N) - the number of oligodendrocytes (cells of type 2),
supposing that the process starts at time 0 with N progenitor cells. In the
above cited papers it is noted that the embedded discrete time process of the
considered 2-type Bellman-Harris branching model (Z1(t,N), Z2(t,N)), t ≥ 0 is
a 2-type Bienaymé-Galton-Watson process with offspring probability generating
functions

h1(s1, s2) = p0 + p1s
2
1 + p2s2, h1(1, 1) = p0 + p1 + p2 = 1, h2(s1, s2) = 1.

The interpretation of equations (7) is the following: in this process at the end
of its life (mitotic cycle) every cell of type 1 either dies with probability p0, or
differentiates into a new cell of type 2 with probability p2, or divides into two
new type 1 cells with probability p1. Every type 2 cell at the end of its life dies
without any offspring.

In the notations of Section 2 the first and second moments of the offspring
distributions are

m11 =
∂

∂s1
h1(s1, s2)|s1=s2=1 = 2p1, m12 =

∂

∂s2
h1(s1, s2)|s1=s2=1 = p2,

m21 =
∂

∂s1
h2(s1, s2)|s1=s2=1 = 0, m22 =

∂

∂s2
h2(s1, s2)|s1=s2=1 = 0,

b1
11 =

∂2

∂s2
1

h1(s1, s2)|s1=s2=1 = 2p1, b1
12 = b1

21 = b1
22 = b2

11 = b2
12 = b2

21 = b2
22 = 0

Hence

σ2
1 = V ar[Z1(1)|Z1(0) = 1] = b1

11 + m11 − (m11)
2 = 4p1[1 − p1],

σ2
2 = V ar[Z2(1)|Z1(0) = 1] = b1

22 + m12 − (m12)
2 = p2[1 − p2],

C12 = b1
12 − m11m12 = −2p1p2.

Using the formula for the mean matrix for generation t

M(t) = Mt =

[
2p1 p2

0 0

]t

=

[
m11(t) m12(t)
m21(t) m22(t)

]
=

[
(2p1)

t (2p1)
t−1p2

0 0

]
,
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we obtain

M(t) = m11(t) + m12(t) = (2p1)
t−1[2p1 + p2],

p1(t) =
m11(t)

m11(t) + m12(t)
=

2p1

2p1 + p2
.(7)

For the second moments in generation t the following recurrence formula is
valid:

bi
jk(t + 1) =

2∑

l=1

2∑

r=1

bi
lrmlj(t)mrk(t) +

2∑

l=1

milb
l
jk(t).

This yields in our particular case

b2
jk(t + 1) =

2∑

l=1

2∑

r=1

b2
lrmlj(t)mrk(t) +

2∑

l=1

m2lb
l
jk(t) = 0

and

b1
jk(t + 1) =

2∑

l=1

2∑

r=1

b1
lrmlj(t)mrk(t) +

2∑

l=1

m1lb
l
jk(t) =

= b1
11m1j(t)m1k(t) + m11b

1
jk(t).(8)

From (9) one has

b1
11(t + 1) = b1

11(m11(t))
2 + m11b

1
11(t) = (2p1)

t (2p1)
t − 1

2p1 − 1
,

⇒ C11(t) = σ2
1(t) = b1

11(t) + m11(t) − (m11(t))
2(9)

=
(2p1)

t[(2p1)
t − 1][2 − 2p1]

2p1 − 1
;

b1
12(t + 1) = b1

11m11(t)m12(t) + m11b
1
12(t) = (2p1)

tp2
(2p1)

t−1 − 1

2p1 − 1
,

⇒ C12(t) = b1
12(t) − m11(t)m12(t)(10)

=
(2p1)

tp2[2(2p1)
t−1 − (2p1)

t − 1]

2p1 − 1
;
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b1
22(t + 1) = b1

11(m12(t))
2 + m11b

1
22(t) = (2p1)

t−1p2
2

(2p1)
t−1 − 1

2p1 − 1
,

⇒ C22(t) = σ2
2(t) = b1

22(t) + m12(t) − (m12(t))
2 =

=
(2p1)

t−1p2[2(2p1)
t−1p2 − (2p1)

tp2 + 2p1 − p2 − 1]

2p1 − 1
;(11)

Now we have all we need to calculate the asymptotic variance S2
1(t) = V arY1(t),

because according to (2)

S2
i (t) =

d∑

k,l=1

rkl(t)aki(t)ali(t) =

= C11(t)[1 − p1(t)]
2 − 2C12(t)[1 − p1(t)]p1(t) + C22(t)p

2
1(t) =

=
2(2p1)

tp2[p1 + p2]

(2p1 + p2)2
(12)

and

S2
1(t)

M2(t)
=

2p2[p1 + p2]

(2p1)t−2[2p1 + p2]4
.(13)

Finally we can explicitly express the asymptotic distribution of the relative
frequency ∆1(t,N) as a function of the offspring probabilities p1 and p2 in the
form

√
N

[
∆1(t,N) − 2p1

2p1 + p2

]
∼ N

(
0,

2p2[p1 + p2]

(2p1)t−2[2p1 + p2]4

)
,

or equivalently,

∆1(t,N) ∼ N

(
2p1

2p1 + p2
,

2p2[p1 + p2]

N(2p1)t−2[2p1 + p2]4

)
.

Hence the robust estimator of the vector of unknown parameters π = (p1, p2)

is obtained from (6), replacing p1(t) by (9) and
S2

1(t)

M2(t)
by (14).

We illustrate the applicability of model (6) for detecting outlier trees by
simulating 80 sample paths of the considered process with offspring distribution
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Type Probability Offsprings

1 0.2 0 0
1 0.6 2 0
1 0.2 0 1
2 1 0 0

and 20 outlier trees distributed according

Type Probability Offsprings

1 0.5 2 0
1 0.5 0 1
2 1 0 0

On the following graph the likelihood function of the robust estimator is
shown:

The estimates obtained by the robust estimator (6) are

π̂ = (p̂1 = 0.5906, p̂2 = 0.2070)

p̂0 = 1 − 0.5906 − 0.2070 = 0.2024,

while the ML estimation of the disturbed set gives the result

π̃ = (p̃1 = 0.7223, p̃2 = 0.1730)
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p̃0 = 1 − 0.7223 − 0.1730 = 0.1047.

Remark. All calculations are made under MATLAB with “BP Engine Rev.
2” package, available at http://www.fmi.uni-sofia.bg/fmi/statist/projects/bp.
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