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NONLINEAR NORMALIZATION IN LIMIT THEOREMS

FOR EXTREMES

E. I. Pancheva, K. V. Mitov, S. Nadarajah

It is well known that under linear normalization the maxima of iid random
variables converges in distribution to one of the three types of max-stable
laws: Frechet, Gumbel and Weibull. During the last two decades the first
author and her collaborators worked out a limit theory for extremes and ex-
tremal processes under non-linear but monotone normalizing mappings. In
this model there is only one type of max-stable distributions and all contin-
uous and strictly increasing df’s belong to it. In a recent paper on General
max-stable laws, Sreehari points out two “confusing” results in Pancheva
(1984). They concern the explicit form of a max-stable df with respect to
a continuous one-parameter group of max-automorphisms, and domain of
attraction conditions. In the present paper the first claim is answered by
a detailed explanation of the explicit form, while for the second we give a
revised proof. The rate of convergence is also discussed.

1. Introduction

Any limit theorem for convergence of normalized maxima of iid random vari-
ables to a max-stable law G separates a subclass of distribution functions (d.f.’s)
MDA(G) called max-domain of attraction of G. Thus, if we use a wider class
of normalizing mappings than the linear ones, we get a wider class of limit laws
which can be used in solving approximation problems. Another reason for using
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nonlinear normalization concerns the problem of refining the accuracy of the ap-
proximation in the limit theorems: by using monotone mappings in certain cases
we can achieve a better rate of convergence. In the last two decades E. Pancheva
and her collaborators investigated various limit theorems for extremes and ex-
tremal processes using as normalizing mappings the so-called max-automorphisms
(see e.g. Pancheva (2010)): continuous and strictly increasing in each coordinate.
The max-automorphisms L : R

d → R
d, d ≥ 1 preserve the max-operation, i.e.

L(X ∨ Y ) = L(X) ∨ L(Y ), there exist inverse mappings L−1 and they form a
group w.r.t. the composition. We denote this group by GMA.

Choosing mappings from GMA for normalization in the limit theorems, we
are forced to change the notion of type (F ) for a nondegenerate d.f. F : We
say that a d.f. G belongs to type(F ) if there exists T ∈ GMA such that G =
F ◦T. Now the three extreme value distributions (Fréchet’s Φα, Gumbel’s Λ, and
Weibull’s Ψα) belong to the same type, the max-stable type (MS).

Let us recall the major notions of the univariate max-model: A nondegenerate
d.f. G is called max-stable if there exists a continuous one-parameter group
(c.o.g.) L = {Lt : t > 0} in GMA such that for all t > 0

Gt(x) = G(Lt(x)), x ∈ R.(1)

A d.f. G satisfying (1) has to be continuous and strictly increasing. Conversely,
given G, let us consider (1) as a functional equation for the unknownL. By solving
it one obtains that there exists a continuous and strictly increasing mapping

h : Support(G) ↔ (−∞,∞)

such that

Lt(x) = h−1(h(x) − log t), t > 0.(2)

Substituting (2) in (1) and solving w.r.t. G(.), we get

G(x) = exp{−e−h(x)},(3)

and this is the general explicit form of any max-stable d.f. We denote for any d.f.
G,

lG = inf{x : G(x) > 0}, rG = sup{x : G(x) < 1}.

Remark. Note that representation (3) can be expressed also in the form

(3’) G(x) = exp{−e−c1h1(x)}, c1 > 0
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or in the form

(3”) G(x) = exp{−c2e
−h2(x)}, c2 > 0

for parametrization of the class MS. Under this parametrization the c.o.g. L
remains the same since h(x) = c1h1(x) = h2(x) − log c2. Then

Lt(x) = h−1(h(x) − log t) = h−1
1 (h1(x) − 1

c1
log t) = h−1

2 (h2(x) − log t).

In this connection, the claim in Sreehari (2009), Remark 1, p.191, is unfounded.
The convergence to type theorem (CTT) is the main tool for proving limit

theorems for cumulative extremes. A convergence to type takes place if both
convergences Fn

w→ F and Fn ◦ Tn
w→ G, with Tn ∈ GMA, imply G ∈ type(F ),

i.e. there exists a T ∈ GMA such that G = F ◦T. Using here max-automorphisms
we are confronted with similar difficulties as if we were working in a space with
infinite dimension. Let f : [0, 1] → [0,∞) be continuous and vanish in zero, and
let Rf be the set of all sequences {Tn} ⊂ GMA satisfying the conditions

a) Tn(x) ≥ x,
b) h ≤ Tn(x + h) − Tn(x) ≤ f(h) → 0, h → 0.

Denote R =
⋃

f Rf . The sequences {Tn} from R are equicontinuous and
bounded from below. If in addition there exists a limit mapping T , then the
right-hand side of b) gives the continuity of T and the left-hand side of b) supplies
its strong monotony, i.e. T ∈ GMA.

Now, the CTT in our model claims: The compactness (w.r.t. the pointwise
convergence) of the normalizing sequence {Tn} ⊂ R is necessary and sufficient for
a convergence to type (cf. Pancheva (1993)). Unfortunately, this new formulation
of CTT makes it difficult for application. This is the reason for restricting our
investigation to regular normalizing sequences only. In this way we lose in
generality but win in clarity.

Definition 1. We refer to a sequence {Ln} ⊂ GMA as regular on a set S×T
if for every x ∈ S and t ∈ T there exists a limiting max-automorphism

(4) Lt(x) = lim
n→∞

L−1
[nt] ◦ Ln(x)

uniformly on compact subsets of T and the mapping t → Lt is one-to-one.

The main advantage of the restriction to regular normalizing sequences is
that instead of using CTT we use the continuity of the composition.
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Let X1,X2, . . . be iid r.v.s with d.f. F . Let G be a nondegenerate d.f. Suppose
that there exists a regular normalizing sequence {Ln} on (lG, rG) × (0,∞) such
that

(5) Fn(Ln(x))
w→ G(x).

Using the regularity of the sequence we see immediately that the limit law
G satisfies functional equation (1), hence G is max-stable w.r.t. the c.o.g. L =
{Lt, t > 0} determined by (4). If (5) is met we say that F belongs to the max-
domain of attraction of G w.r.t. L, briefly F ∈ MDA(G).

We underline that the normalizing sequence has to be regular on (lG, rG) with
the following example.

Example 1. Let F (x) = Λ(x) and Ln(x) =



















en

(

x − 1

n

)

if x ≤ 1

n

log nx if x >
1

n
.

Then (5) is met with G(x) = Φ1(x) and

lim
n→∞

L−1
[nt] ◦ Ln(x) = Lt(x)

where

Lt(x) =

















































x

t
, x > 0,

−∞, x ≤ 0

for t ∈ (0, 1)







x

t
, x > 0,

0, x ≤ 0

for t ≥ 1.

Hence {Ln} is regular on (0,∞) × (0,∞), Φ1 is max-stable with h(x) = log x,
Lt(x) = exp(log x − log t).

By the use of regular normalizing sequences one preserves the well-known
classical structures of limit theory: the class of the limit df’s in (5) coincides with
the class of all df’s satisfying functional equation (1), coincides with the class of
all df’s having the explicit form (3) (i.e. strictly increasing and continuous df’s).
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Theorem 5 in Pancheva (1984) says: A nondegenerate d.f. F belongs to
MDA(G) iff

1 − F (x) = [1 + o(1)]R(h(x))e−h(x), x → rF ,

where R(x) is a regularly varying function at infinity. The normalizing mappings
can be chosen as

Ln(x) = h−1{h(x) + log[nL(log n)]}.

Sreehari (2009) pointed out that the necessary part of the above statement is
wrong and proposed the following theorem: If a nondegenerate d.f. F ∈ MDA(G)
then there exists a sequence of positive functions {L∗(x;n)} such that

(6)
K{h(x) + log(nL∗(x;n))}

L∗(x;n)
→ 1, as n → ∞, for x ∈ (lF , rF ),

where K(x) = [1 − F ◦ h−1(x)]ex. Conversely, if for some strictly increasing
continuous function h(x) and a sequence of positive functions {L∗(x;n)} equation

(6) holds then F ∈ MDA(G), G(x) = e−e−h(x)
. In this case Ln(x) can be chosen

as

(7) Ln(x) = h−1{h(x) + log[nL∗(x;n)]}.

We are thankful to Sreehari M. for discovering the annoying mistake. Yet,
in the framework of our max-model the suggested normalization (7) cannot be
adopted: the variables x and n in L∗ are not separated and in general one cannot
check if (7) defines (or does not define) a regular normalizing sequence. The
aim of the present paper is to give a revised answer to the domain of attraction
problem if using regular norming sequences. We start with several illustrative
examples, then in Section 3 we state and prove our main results.

2. Examples

Example 2. Let X1,X2, . . . be i.i.d. r.v. with c.d.f. F (x) = 1−x−x, x ≥ 1.
Denote Mn = max{X1,X2, . . . ,Xn}. We want to find a normalizing sequence
Ln(x) such that

P{Mn ≤ Ln(x)} = P{L−1
n (Mn) ≤ x} → proper limit distribution.



174 E. I. Pancheva, K. V. Mitov, S. Nadarajah

It is natural to assume that the function U(x) :=
1

1 − F (x)
= xx, x ≥ 1 will

play an important role. Let us check some properties of U(x). We have that
U ′(x) = xx(1 + ln x) > 0 for every x ≥ 1. So, U(x) is strictly increasing and
continuous on the interval [1,∞), U(1) = 1, and U(x) ↑ ∞ as x → ∞, and
U : [1,∞) → [1,∞).

Therefore, there exists the inverse function U−1(x), that is

U(U−1(x)) = U−1(x)U
−1(x) = x and U−1(U(x)) = x

for every x ≥ 1. The function U−1(x) is also strictly increasing on [1,∞),
U−1(1) = 1, U−1(x) → ∞ as x → ∞, and U−1 : [1,∞) → [1,∞).

2.1. Fréchet limit distribution. Let us denote Ln(x) = U−1(nx) and then

L−1
n (x) =

U(x)

n
, for every x > 0 and n = 1, 2, . . .

We prove that as n → ∞,

P
{

L−1
n (Mn) ≤ x

}

= P

{

U(Mn)

n
≤ x

}

→ exp(−1/x), x > 0.

Indeed

P

{

U(Mn)

n
≤ x

}

= P
{

Mn ≤ U−1(nx)
}

=
(

P
{

X1 ≤ U−1(nx)
})n

=
(

1 − U−1(nx)−U−1(nx)
)n

=

(

1 − 1

U−1(nx)U−1(nx)

)n

=

(

1 − 1

nx

)n

→ exp(−1/x) = Φ1(x), n → ∞.

The sequence Ln(x) = U−1(nx) is regular. For this one has only to check that
for t > 0, L−1

[nt] ◦Ln(x) → Lt(x) = x/t. Recall that Φ1(x) is max-stable d.f. w.r.t.

the c.o.g. {Lt(x) = x
t , t ≥ 0}. Indeed

L−1
[nt] ◦ Ln(x) =

U(Ln(x))

[nt]
=

U(U−1(nx))

[nt]
=

nx

[nt]
→ Lt(x) = x/t, n → ∞.

2.2. Gumbel limit distribution. It appears that there exists another nonlinear
normalization for the sequence Mn which leads to the Gumbel limit distribution.
In other words we find a normalizing sequence Ln(x) such that

P{Mn ≤ Ln(x)} = P{L−1
n (Mn) ≤ x} → exp(−e−x) = Λ(x).
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Let us denote Ln(x) = U−1(nex) and then L−1
n (x) = log

U(x)

n
, for every x > 0

and n = 1, 2, . . . . Then as n → ∞,

P

{

log
U(Mn)

n
≤ x

}

→ exp(−e−x), x ∈ (−∞,∞).

Indeed

P

{

log
U(Mn)

n
≤ x

}

= P
{

Mn ≤ U−1(nex)
}

=
(

P
{

X1 ≤ U−1(nex)
})n

=
(

1 − U−1(nex)−U−1(nex)
)n

=

(

1 − 1

U−1(nex)U−1(nex)

)n

=

(

1 − 1

nex

)n

→ exp(−e−x), n → ∞.

In order to prove that the sequence Ln is regular one has to check that for t > 0,
L−1

[nt] ◦ Ln(x) → Lt(x) = x − log t. Recall that Λ(x) is max-stable w.r.t. c.o.g.

{Lt = x − log t, t ≥ 0}, hence h(x) = x. Indeed,

L−1
[nt] ◦ Ln(x) = log

U(Ln(x))

[nt]

= log
U(U−1(nex))

[nt]
= log

nex

[nt]
= x + log

n

[nt]
→ x − log t, n → ∞.

Remark. The nonlinear normalization Ln(x) = U−1(nx) in Example 2.1
and Ln(x) = U−1(nex) in Example 2.2 cannot be represented in an explicit form,
but U−1(.) can be determined asymptotically as the solution of the equation
log x + log log x + t = 0 (see e.g. de Bruijn (1958)).

2.3. Linear normalization. Since the tail of the d.f. F (x) = 1 − x−x, x ≥ 1
is very light there should exist sequences an > 0 and bn such that

P{Mn ≤ anx + bn} → e−e−x

, x ∈ (−∞,∞).

Note that the above relation is equivalent to

(8) n(1 − F (anx + bn)) → e−x.

The normalizing sequences can be chosen as follows: bn = U−1(n) and an =
1

log bn
, n ≥ 2. For every n ≥ 2 let us mention that bbn

n = n and bn log bn = log n.
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Then

n(1 − F (anx + bn)) = n

(

x

log bn
+ bn

)

−

�
x

log bn
+bn

�
= n

[

bn

(

x

bn log bn
+ 1

)]

−

h
bn

�
x

bn log bn
+1

�i
= n

(

b−bn

n

)

�
x

log n
+1

�
(

x

log n
+ 1

)

−(log n)
h

bn

log n

�
x

log n
+1

�i
= n−

x

log n

(

x

log n
+ 1

)

−(log n)
h

bn

log n

�
x

log n
+1

�i
= e−x

(

x

log n
+ 1

)

−(log n)
h

bn

log n

�
x

log n
+1

�i
.

We observe that

bn

log n
=

1

log bn
→ 0, n → ∞

because bn ↑ ∞, as n → ∞. Using this and the fact that

(

x

log n
+ 1

)

− log n

→ e−x,

we obtain

(

x

log n
+ 1

)

−(log n)
h

bn

log n

�
x

log n
+1

�i
→
(

e−x
)0

= 1,

which completes the proof. After some standard calculations one can see that

the sequence of linear transforms Ln(x) =
x

log bn
+ bn is regular.

Recall that there is only one type of limit df’s in (5). Thus, if F ∈ MDA(Φα)
w.r.t. a regular normalizing sequence {Ln}, then one can always find another
regular normalizing sequence {Tn} such that F ∈ MDA(Λ).



Nonlinear Normalization for Extremes 177

Example 3. Let X1,X2, . . . be i.i.d. r.v.s with standard exponential d.f.

F (x) =

{

1 − e−x, x > 0,
0, x ≤ 0.

3.1. Linear normalization. It is well known that the sequences an = 1,
bn = log n, n = 1, 2, . . . provide that for every fixed x ∈ R,

(F (anx + bn))n =
(

1 − e−(anx+bn)
)n

=
(

1 − e−(x+log n)
)n

=
(

1 − e−xe− log n
)n

=

(

1 − e−x

n

)n

→ e−e−x

, n → ∞.

The sequence Ln(x) = x + log n is regular.

3.2. Nonlinear normalization.

3.2.1. Gumbel limit distribution. Let us define

U(x) =
1

1 − F (x)
=

{

ex, x > 0,
1, x ≤ 0

and its inverse

U−1(x) =

{

log x x > 1,
−∞, x ≤ 1.

Take the normalizing monotone transforms Ln(x) = U−1(nex). Assume that x ∈
R is fixed, then nex > 1 for every n > e−x and then Ln(x) = log(nex) = x+log n,
which coincides with the linear normalization given above and Fn(Ln(x)) →
Λ(x). This is not surprising because the exponential distribution belongs to the
normal max-domain of attraction of Λ (NMDA(Λ)). Hence the normalizing
sequence

Ln(x) = L1/n(x) = x + log n

cannot be other than linear (or asymptotically equivalent to a linear one).

Recall that F belongs to the normal max-domain of attraction of Λ if F be-
longs to the max-domain of attraction of Λ with respect to the same normalizing
sequence {Ln} as Λ itself.
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3.2.2. Fréchet limit distribution. Recall that Φα is max-stable w.r.t. Lt(x) =
xt−1/α = exp{ 1

α (α log x − log t)}. Hence for α > 0,

(9) h(x) =

{

α log x, x > 0,
−∞, x ≤ 0.

Now we take the following monotone normalizing sequence

(10) Ln(x) = U−1(neh(x)) = log(nxα) = α log x + log n

and obtain the convergence

(F (Ln(x)))n = (1−e−Ln(x))n = (1−e− log(nxα))n = (1− 1

nxα
)n → e−x−α

, n → ∞.

Therefore under the regular normalizing sequence (10) the exponential distribu-
tion belongs to the MDA(Φα).

Remark. Note that if using nonlinear normalizing sequences, the classical
relation

F ∈ MDA(Φα) ⇔ 1 − F ∈ RV−α

is not true, as Examples 2 and 3 show.

Example 4. Let X1,X2, . . . be i.i.d. r.v.s with Pareto distribution, i.e.

F (x) =

{

1 − (1 + x)−α, x > 0,
0, x ≤ 0,

where α > 0.

4.1. Linear normalization. It is well known that the sequences an = n1/α,
bn = −1, n = 1, 2, . . . provide that for every fixed x > 0,

(F (anx + bn))n =
(

1 − (1 + anx + bn)−α
)n

=
(

1 − (1 + n1/αx − 1)−α
)n

=
(

1 − n−1x−α
)n

=

(

1 − x−α

n

)n

→ e−x−α

, n → ∞,

i.e. Pareto distribution belongs to NMDA(Φα) with the regular normalizing
sequence Ln(x) = n1/αx − 1.
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4.2. Nonlinear normalization.

4.2.1. Fréchet limit distribution. Let us define

U(x) =
1

1 − F (x)
=

{

(1 + x)α, x > 0,
1, x ≤ 0

and its inverse

U−1(x) =

{

x1/α − 1 x > 1,
−∞, x ≤ 1.

Take h(x) as in (9) and define the monotone normalizing sequence

Ln(x) = U−1(neh(x)) = n1/αx − 1.

It is in fact the linear transform given above.

4.2.2. Gumbel limit distribution. Let us now set h(x) = x for x ∈ R and
define the regular normalizing transforms Ln(x) = (nex)1/α − 1. Then we have

Fn(Ln(x)) = (1 − e−x

n
)n → e−e−x

, n → ∞,

thus the Pareto d.f. belongs to MDA(Λ) w.r.t. the above normalizing sequence.

3. Main results

Let F be an arbitrary nondegenerate d.f. Denote again U(x) =
1

1 − F (x)
. The

mapping U : (lF , rF ) → (1,∞) is monotone increasing.

Lemma 1. There exists a continuous and strictly increasing function g(x)
such that

(11)
g(x)

U(x)
→ 1, as x → rF ,

if and only if U is asymptotically continuous at rF , i.e.

(12)
U(x + 0)

U(x − 0)
→ 1, as x → rF .

This statement is a light modification of Lemma 2, Faktorovich (1989).
The following result answers the max-domain of attraction problem when

using regular normalizing sequences (cf. Theorem 6.4. in Balkema and Embrechts
(2007)).
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Theorem 1 (On max-domain of attraction). Let F ∈ MDA(H), where

H(x) = e−e−h(x)
. Then F is asymptotically continuous at rF and the normalizing

sequence Ln can be taken as

(13) Ln(x) = g−1(neh(x)),

where g is continuous and strictly increasing on (lF , rF ) and satisfies (11). Con-
versely, let F be asymptotically continuous at rF and let h : (lF , rF ) ↔ (−∞,∞)
be continuous and strictly increasing. Then there exists a continuous and strictly
increasing function g, such that the sequence g−1(neh(x)) is regular and normal-
izes the convergence

(14) Fn(Ln(x)) → exp{−e−h(x)}, n → ∞,

i.e. F ∈ MDA(H).

Remark. Roughly speaking, Theorem 1 says that, given F is asymptotically
continuous at its right endpoint, then Fn(Ln(x)) → H(x) iff the tail of F , the tail
of H and the regular normalizing sequence Ln are connected by the asymptotic
relation

(15) Ln(x) ∼
(

1

1 − F

)

←

(n.eh(x)), n → ∞.

Here U← is a left continuous inverse of U . The latter is equivalent to

n(1 − F (Ln(x))) → e−h(x), n → ∞.

P r o o f o f T h e o r em 1. Let F ∈ MDA(H). Assume that F is not asymp-
totically continuous at rF . Then p = F (rF−0) < 1 or there is a constant c > 1 and
a strictly increasing sequence xn → rF such that (1−F (xn−0))/(1−F (xn)) > c.
(cf. Theorem 3.1.3, Embrechts et al.(1997)). For x fixed and n → ∞ the nor-
malizing sequence Ln(x) ↑ rF , hence F (Ln(x)) → p and Fn(Ln(x)) ∼ pn → 0 in
contradiction to the assumption F ∈ MDA(H). Thus F has to be asymptoti-
cally continuous at rF , and, by Lemma 1, there exists a strictly increasing and
continuous function g, with

(16) g(x) ∼
(

1

1 − F

)

(x) = U(x), as x → rF .
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The inverse function g−1(x) exists. It is strictly increasing and g−1(x) ↑ ∞, as
x → ∞. Therefore

U(g−1(x)) ∼ g(g−1(x)) ∼ x, as x → ∞.

The sequence Ln(x) = g−1(neh(x)) satisfies Fn(Ln(x)) → H(x), n → ∞. Indeed,

P {Mn ≤ Ln(x)} = P
{

Mn ≤ g−1(neh(x))
}

= Pn
{

X1 ≤ g−1(neh(x))
}

=
[

1 − (1 − F (g−1(neh(x))))
]n

=

[

1 − 1

U(g−1(neh(x)))

]n

∼
[

1 − 1

neh(x)

]n

=

[

1 − e−h(x)

n

]n

→ exp{−e−h(x)},

as n → ∞.

Besides, the sequence Ln is regular because for t > 0,

L−1
[nt] ◦ Ln(x) = h−1

(

log
g(Ln(x))

[nt]

)

= h−1

(

log
g
(

g−1(neh(x))
)

[nt]

)

= h−1

(

log
neh(x)

[nt]

)

= h−1

(

log eh(x) + log
n

[nt]

)

= h−1

(

h(x) + log
n

[nt]

)

→ h−1 (h(x) − log t) = Lt(x), n → ∞.

Conversely, by Lemma 1 there exists a continuous and strictly increasing function
g such that (16) is satisfied. Then the mapping Ln(x) := g−1(neh(x)) belongs to
the GMA and the sequence {Ln} is regular. Thus, we have only to show (14).
Since (16) we have

n(1 − F (Ln(x))) = n(1 − F (g−1(neh(x)))) ∼ n/g(g−1(neh(x))) = e−h(x). �

Corollary 1.

1. Let F ∈ MDA(Φα). Then h(x) = α log x and Ln(x) ∼
(

1

1 − F

)

←

(nxα).

The function R(x) = nxα is regularly varying at infinity, hence U(Ln(x)) ∈
RVα. Since U(y) =

1

1 − F (y)
for y → rF we conclude that F̄ ◦Ln ∈ RV−α.
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2. In the max-model with monotone normalization, the necessary and suffi-
cient condition for F ∈ MDA(Φα) is F̄ ◦ Ln ∈ RV−α. It differs from the
necessary and sufficient condition F̄ ∈ RV−α in the max-model with linear
normalization (cf. Examples 2, 3 and 4).

3. Let F ∈ MDA(Λ). Then h(x) = x and Ln(x) ∼
(

1

1 − F

)

←

(nex). Hence

1

n

(

1

1 − F

)

(Ln(x)) → ex, n → ∞.

Choose yn ↑ rF such that 1 − F (yn) =
1

n
. Then for U =

(

1

1 − F

)

←

U←(Ln(x))

U←(yn)
→ ex, n → ∞.

The converse is also true (cf. de Haan (1970)).

Remark. Examples 2, 3, and 4 from Section 2 show that a distribution may
belong to MDA of two different max-stable laws. Moreover, every continuous and
strictly increasing df belongs to the max-domain of attraction of every max-stable
df. Yet it will be wrong to conclude that “domains of attractions of different types
are not disjoint if using monotone normalization” as read in some authors. In
fact, if using monotone normalization, there is only one type of max-stable laws!

Theorem 2. Let F ∈ MDA(H),H(x) = e−e−h(x)
, w.r.t. the regular normal-

izing sequence Ln, defined in Theorem 1. If g(x) = U(x) then

|Fn(Ln(x)) − H(x)| = O (1/n) , n → ∞.

Remark. If the function g(x) is asymptotically equivalent to U(x) then the
rate of convergence depends also on the rate of convergence in the asymptotic

relation
g(x)

U(x)
→ 1 as x → ∞.

P r o o f. Since Fn(Ln(x)) =
[

1 − e−h(x)

n

]n
, we have to estimate

∣

∣

∣

∣

∣

[

1 − e−h(x)

n

]n

− e−e−h(x)

∣

∣

∣

∣

∣
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For u > 0 it follows from the power series that

n log
(

1 − u

n

)

= −u + O

(

1

n

)

, n → ∞.(17)

Using the inequality |e−a − e−b| ≤ |a − b|, (a, b ≥ 0), one gets

∣

∣

∣

∣

∣

[

1 − e−h(x)

n

]n

− e−e−h(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

exp

(

n log

[

1 − e−h(x)

n

])

− exp
(

−e−h(x)
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

−n log

[

1 − e−h(x)

n

]

− e−h(x)

∣

∣

∣

∣

∣

= O

(

1

n

)

, n → ∞.

The last relation follows from (17) with u = e−h(x) > 0. �

Corollary 2. Let Ln and Tn be two normalizing sequences of max- automor-
phisms, such that

n(1 − F (Ln(x))) → e−h(x),(18)

n(1 − F (Tn(x))) → e−h(x)(19)

for h continuous and strictly increasing. Then both sequences are regular and
asymptotically equivalent in the sense that

L−1
n (Tn(x)) → x, n → ∞.

Conversely, if (18) holds and {Tn} is asymptotically equivalent to {Ln} in the
above sense, then (19) also holds.

P r o o f. Covergences (18) and (19) imply that

Ln(x) ∼
(

1

1 − F

)

←
(

neh(x)
)

∼ Tn(x).

Take Ln(x) = g−1(neh(x)) and Tn(x) = f−1(neh(x)) where g and f are continuous
and strictly increasing functions satisfying (11). Both g−1 and f−1 are asymp-

totically inverse to U(x) =
1

1 − F (x)
. Since L−1

n (y) = h−1(log g(y) − log n) we
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have

L−1
n ◦ Tn(x) = h−1

{

log
g(Tn(x))

n

}

= h−1

{

log
g ◦ f−1(neh(x))

n

}

∼ h−1

{

log
neh(x)

n

}

= x.

Conversely, (19) can be rewritten as

n(1 − F (Tn(x))) = n
{

1 − F (Ln[L−1
n ◦ Tn(x)])

}

∼ n {1 − F (Ln(x))} → e−h(x).

�

As a conclusion let us consider the normalization of maxima of normally
distributed iid random variables.

Example 5 (Normal distribution). Let X1,X2, . . . be iid r.v.s with stan-
dard normal d.f.

N(x) =
1√
2π

x
∫

−∞

e−u2/2du and density n(x) =
1√
2π

e−x2/2, x ∈ (−∞,∞).

By Theorem 1 the regular normalizing sequence Ln(x) = U−1(nex), where

U =
1

1 − N
, causes the weak convergence

(20) N
n(Ln(x)) → e−e−x

.

Theorem 2 says that the rate of this convergence is O(1/n). Unfortunately, the
sequence U−1(nex) is not very useful in practice, because of the fact that the

inverse function

(

1

1 − N

)

−1

is not explicitly known. Thus we go through the

well known asymptotic relation

(21) U(x) =
1

1 − N(x)
∼ g(x) =

x

n(x)
=

√
2πxe

x
2

2 , x → ∞

in order to find an asymptotic inverse of g(x) and of U(x), respectively. Following
the same way as in the proof of Theorem 1.5.3 in Leadbetter et al. (1983), we
obtain the following asymptotic inverse of g(x) as x → ∞

g−1(x) =
√

2 log x − log 4π − log log x
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for which

U(g−1(x)) ∼ g(g−1(x)) ∼ x, as x → ∞.

Now we define the sequence

Tn(x) = g−1(nex) =
√

2 log n + 2x − log 4π − log(log n + x).

Next we show that both sequences Tn and Ln are asymptotically equivalent.

Indeed, since L−1
n (y) = log

U(y)

n
we have

L−1
n ◦ Tn(x) = log

U(Tn(x))

n
= log

U(g−1(nex))

n
= log

nex

n
+ o(1) → x, n → ∞.

Then one can use the sequence Tn(x) for normalization in (20), thus

(22) N
n(Tn(x)) → Λ(x), n → ∞.

According to Theorem 2 the rate of convergence in the equation (20) is O(1/n).
On the other hand the rate of convergence in the equation (22) depends also on
the rate of convergence in the asymptotic relation (21). It is not difficult to show
that in this case the rate of convergence is equivalent to that in the linear case,

namely O

(

1

log n

)

(see e.g. de Haan (1970)).
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