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SOME CONTRIBUTIONS TO THE CLASS OF TWO-SEX

BRANCHING PROCESSES DEPENDING ON THE NUMBER

OF COUPLES IN THE POPULATION∗

Shixia Ma, Manuel Molina, Yongsheng Xing

We consider the class of two-sex branching processes with offspring and
mating depending on the number of couples in the population introduced
in Molina et al. (2008). In addition to its theoretical interest, this class
also has clear practical implications, especially in population dynamics. We
investigate its extinction probability and limiting behavior. By considering
different probabilistic approaches, necessary and sufficient conditions for its
almost sure extinction are determined. Assuming the nonextinction, some
limiting results are derived.

1. Introduction

Branching processes are widely used as appropriate mathematical models to de-

scribe the probabilistic evolution of systems whose components (cells, particles,

individuals in general) after certain life period reproduce and die. Nowadays,

branching process theory is an active research area of interest and applicability

to such fields as biology, demography, ecology, epidemiology, genetics, medicine,
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population dynamics, and others. We emphasize here that branching processes

have interesting applications in biological populations, playing an increasingly

important role in molecular biology and microbiology. One may cite, for exam-

ple, the monographs by Jagers (1975), Kimmel and Axelrod (2002), Pakes (2003),

or Haccou et al. (2005), which include practical applications to cell kinetics, drug

resistance and chemotherapy, gene amplification, polymerase chain reaction, and

so on.

In particular, with the purpose to model the probabilistic evolution of popula-

tions where females and males coexist and form couples several classes of discrete

time two-sex branching processes have been investigated, including the bisexual

Galton-Watson process (see Alsmeyer and Rösler (1996, 2002), Bruss (1984), Da-

ley (1968a), Daley et al. (1986)); processes with immigration (see González et

al. (2000, 2001), Ma and Xing (2006)); processes in varying or random environ-

ments (see Ma (2006), Ma and Molina (2009), Molina et al. (2003)); processes

with population-size depending mating (see Molina et al. (2002, 2004, 2006),

Xing and Wang (2005)), or processes with a control function (see Molina et al.

(2007)). Also, a general class of continuous time two-sex branching processes was

introduced in Molina and Yanev (2003). For a more detailed information about

two-sex branching processes we refer the reader to the surveys by Hull (2003) or

Molina (2010).

In this work, we continue the research about the class of two-sex branching

processes with offspring and mating depending on the number of couples in the

population introduced in Molina et al. (2008). We investigate necessary and

sufficient conditions for its almost sure extinction and, assuming nonextinction,

we derive some limiting results. The paper is organized as follow: In Section 2,

we describe formally and we interpret intuitively the class of two-sex branching

process we study. In Section 3, we state and discuss the main results. In order

to achieve a more comprehensible reading of the paper, we include the proofs in

Section 4.

2. The two-sex process

On a probability space (Ω,F , P ), let us consider the two-sex branching process

{(Fn,Mn)}n≥1 defined in the form:

(1) (Fn,Mn) =

Zn−1
∑

i=1

(fn,i;Zn−1,mn,i;Zn−1), Zn = LZn−1(Fn,Mn), n = 1, 2, . . .
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where the empty sum is considered to be (0, 0). The random vector (Fn,Mn)

represents the number of females and males in the nth generation. These females

and males form Zn couples. A couple is formed by one female and one male of

the same generation who came together with the purpose of generating offspring.

Initially, we assume that there is a positive number, N0, of couples in the pop-

ulation, i.e., Z0 = N0. Let Z+ and R+ be, respectively, the nonnegative integer

and real numbers. Given that, Zn−1 = N :

(a) (fn,i;N ,mn,i;N ), i = 1, . . . , N are independent and identically distributed

nonnegative integer valued random vectors on (Ω,F , P ). Intuitively, (fn,i;N ,

mn,i;N) represents the number of females and males descending from the

ith couple of the (n− 1)th generation. Its probability law is referred as the

offspring probability distribution when there are N progenitor couples in

the population. When N = 0, it is clear that P (f1,1;0 = 0,m1,1;0 = 0) = 1.

(b) LN is the function which governs the mating between females and males.

It is a nonnegative real function, defined on R+ × R+, assumed to be non-

decreasing in each argument, integer valued on the integers, and such that,

for x, y ∈ R+, LN (x, 0) = LN (0, y) = 0.

Process (1) may be interpreted as a branching model developing in an envi-

ronment which changes stochastically in time according to the number of couples

in the population. In each generation, both the offspring probability distribution

and the mating function are affected by the number of couples in the previous

generation. For certain animal populations, it is reasonable to assume that, by

environmental, social, or other factors, the offspring and the mating between fe-

males and males may be affected by the number of couples in the population.

Indeed, the motivation behind the class of processes considered in this paper

is the interest in developing two-sex models to describe such behaviors. It is a

general class of models which includes, as particular cases, the two-sex models

introduced in Daley (1968), Molina et al. (2002) and Xing and Wang (2005).

Subsequently, in order to establish results about the extinction probability

and the asymptotic behavior for the class of processes (1), we will introduce

the following requirements on the mating functions and the offspring probability

distributions:

(a1): {LN}N≥0 is such that LN is a superadditive function, namely,

LN (x1 + x2, y1 + y2) ≥ LN (x1, y1) + LN (x2, y2), xi, yi ∈ R+, i = 1, 2.
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(a2) For x, y ∈ R+ fixed, {LN (x, y)}N≥0 is a nondecreasing sequence.

(a3) f1,1;N � f1,1;N+1 and m1,1;N � m1,1;N+1, N ∈ Z+.

Remark 2.1. Assumption (a1) expresses the intuitive notion that x1 + x2

females and y1 + y2 males coexisting together will form a number of couples that

is at least as great as the total number of couples formed by x1 females and y1

males, and x2 females and y2 males, living separately. Most of mating functions

considered in two-sex branching process theory are superadditive. Assumption

(a2) represents the usual behavior in many biological populations in which the

mating is promoted as the number of couples grows. Some classical sequences of

mating functions verifying conditions (a1) and (a2) are, for example: LN (x, y) =

xmin{N, y}, or LN (x, y) = min{x,Ny}. According to (a3), the variables f1,1;N

and m1,1;N take large values with a lower probability than f1,1;N+1 and m1,1;N+1

do, respectively. This expresses the intuitive fact that when the number of couples

in the population grows then the numbers of originated females and males take

large values with higher probabilities.

Throughout this work, we will assume the classical duality extinction-explo-

sion in branching process theory, namely, for N ≥ 1,

(2) P

(

lim
nր∞

Zn = 0 | Z0 = N

)

+ P

(

lim
nր∞

Zn = ∞ | Z0 = N

)

= 1.

Under this framework, some general setting which guarantee (2) holds were inves-

tigated in Molina et al. (2008). Also, it was proved that the asymptotic growth

rate R = lim
N→∞

RN exists where

RN = N−1E[Zn | Zn−1 = N ], N = 1, 2, . . .

RN represents the expected growth rate per couple when there are N couples

in the population. Next, we continue the research about the class of two-sex

branching processes presented in (1), investigating results concerning its extinc-

tion probability and asymptotic behavior.

Given the random variables X and Y , we say that X is stochastically smaller than Y ,
written X � Y , if P (X > t) ≤ P (Y > t), t ∈ R.
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3. The main results

First, we provide some necessary and sufficient conditions for the almost sure

extinction of the two-sex process. To this end, we will use two probabilistic

approaches: (i) by considering the concept of asymptotic growth rate (Theorem

3.1) and (ii) through the stochastic comparison with a two-sex process with only

mating depending on the number of couples (Theorem 3.2). Then, assuming the

nonextinction, we derive some asymptotic results (Theorems 3.3 and 3.4).

Note that, if for some n ≥ 1, Zn = 0 then, from (1), one deduces that

(Fn+m,Mn+m) = (0, 0) and Zn+m = 0, m ≥ 1. Hence, the two-sex process does

not survive.

Definition 3.1. Let QN = P

(

lim
nր∞

Zn = 0 | Z0 = N

)

be the extinction

probability when initially there are N couples in the population, N ≥ 1.

Theorem 3.1. Assume (a1), (a2), and (a3).

(i) If R ≤ 1 then QN = 1 for N ≥ 1.

(ii) If R > 1 then there exists K0 ≥ 1 such that QN < 1 for N ≥ K0.

In the next result, by using a methodology based in the stochastic comparison

with a two-sex process with only mating depending on the number of couples in

the population, necessary and sufficient conditions for the almost sure extinction

of the two-sex process are also determined. To this end, we introduce the following

modification in requirement (a3):

(a4): For N ∈ Z+, f1,1;N � f1,1;N+1, m1,1;N � m1,1;N+1 and there exist random

variables f1,1 and m1,1 such that lim
Nր∞

f1,1;N = f1,1 and lim
Nր∞

m1,1;N = m1,1

almost surely.

Remark 3.1. From (a4), by stochastic order properties, one deduces that

f1,1;N � f1,1 and m1,1;N � m1,1, N ∈ Z+. Let us write by (µf ;N , µm;N )

and (µf , µm), respectively, the mean vectors of (f1,1;N ,m1,1;N ) and (f1,1,m1,1),

both assumed to be finite. Again, by (a4), {µf ;N}N≥0 and {µm;N}N≥0 are

nondecreasing sequences. By monotone convergence theorem, one derives that

lim
Nր∞

µf ;N = µf and lim
Nր∞

µm;N = µm.

Let {(F ∗
n ,M∗

n)}n≥1 be the two-sex process, initiated with Z∗
0 = N0 couples:
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(3) (F ∗
n ,M∗

n) =

Z∗

n−1
∑

i=1

(fn,i,mn,i), Z∗
n = LZ∗

n−1
(F ∗

n ,M∗
n), n = 1, 2, . . .

where (fn,i,mn,i) are independent and identically distributed random vectors with

the same probability distribution of (f1,1,m1,1).

Remark 3.2. Process (3) was studied in Molina et al.(2002). It was proved

that R∗ = lim
kր∞

R∗
k exists, with R∗

k = k−1E[Z∗
n | Z∗

n−1 = k], k ≥ 1, and R∗ ≤ 1 if

and only if P

(

lim
nր∞

Z∗
n = 0 | Z∗

0 = N

)

= 1, N ≥ 1.

Theorem 3.2. Assume (a1), (a2), and (a4).

(i) If R∗ ≤ 1 then QN = 1 for N ≥ 1.

(ii) If R∗ > 1 then there exists K0 ≥ 1 such that QN < 1 for N ≥ K0.

Remark 3.3. Note that assumption (a4) is stronger than (a3), so Theo-

rem 3.2 is more restrictive than Theorem 3.1. However, if (a4) holds then, in

order to prove the almost sure extinction of the process {(Fn,Mn)}n≥1, the suf-

ficient condition given in Theorem 3.2 is easier to check than that provided in

Theorem 3.1.

From now on, we will assume N0 large enough such that:

P

(

lim
nր∞

Zn = ∞ | Z0 = N0

)

> 0 and P

(

lim
nր∞

Z∗
n = ∞ | Z∗

0 = N0

)

> 0

It can be verified that the sequences {Wn}n≥0, Wn = R−nZn, and {W ∗
n}n≥0,

W ∗
n = R∗−n

Z∗
n, are nonnegative supermartingales relative to the families of σ-

algebras {σ(Z0, . . . , Zn)}n≥0 and {σ(Z∗
0 , . . . , Z∗

n)}n≥0, respectively. Hence, it is

derived that there exist nonnegative and finite random variables W and W ∗ such

that {Wn}n≥0 and {W ∗
n}n≥0 converge almost surely to W and W ∗, respectively.

Theorem 3.3. Assume (a1), (a2), and (a4). If {W ∗
n}n≥0 converges in Lp

to W ∗, for some p > 0, then {Wn}n≥0 converges in Lα to W , for α ∈ (0, p).
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Remark 3.4. Sufficient conditions for the convergence of {W ∗
n}n≥0 to W ∗

in Lp, for p = 1 and p = 2, were investigated in Molina et al. (2004, 2006).

According to Theorem 3.3, such conditions will also be sufficient in order to derive

that {Wn}n≥0 converges to W in Lα, for α ∈ (0, 1) and α ∈ (0, 2), respectively.

Next result establishes sufficient conditions which guarantee that W is a non-

degenerate at 0 random variable. Let {εN}N≥1 where εN = R − RN .

Theorem 3.4. Assume (a1), (a2), and (a4). If {εN}N≥1 is nonincreasing

and
∞
∑

N=1
N−1εN < ∞ then, lim

nր∞
E[Wn | Z0 = N0] > 0.

4. Proofs

P r o o f o f T h e o r e m 3.1. From (a1), (a2), and (a3), one deduces, see Molina

et al. (2008), that R = sup
N≥1

RN .

(i) Assume R ≤ 1. Then, for n ∈ Z+,

E[Zn+1] = E [E[Zn+1 | Zn] ] = E [ZnRZn
] ≤ E [ZnR] ≤ E[Zn].

Hence,

P

(

lim
nր∞

Zn = ∞ | Z0 = N

)

= 0, N ≥ 1.

By (2), QN = 1, N ≥ 1.

(ii) Assume R > 1. Since R = lim
Nր∞

RN , there exists a positive integer K such

that, for N ≥ K, RN > 1.

Let {Z ′
n}n≥0 be the process defined in the form:

Z ′
0 = N0, Z ′

n = ZnI{Z′

n−1≤ K} + LK(F ′
n,M ′

n)I{Z′

n−1> K}, n = 1, 2, . . .

where

(F ′
n,M ′

n) = (Fn,Mn)I{Z′

n−1≤ K} +

Z′

n−1
∑

i=1

(fn,i;K,mn,i;K)I{Z′

n−1> K},

IA denoting the indicator function of the set A. It can be verified that Z ′
n �

Zn, n ∈ Z+. Thus, see Müller and Stoyan (2002), p. 3, one deduces, for N ≥ 1,
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(4) P

(

lim
nր∞

Zn = ∞ | Z0 = N

)

≥ P

(

lim
nր∞

Z ′
n = ∞ | Z ′

0 = N

)

.

Let
{

(F
(K)
n ,M

(K)
n )

}

n≥1
be the two-sex process:

(

F (K)
n ,M (K)

n

)

=

Z
(K)
n−1
∑

i=1

(fn,i;K,mn,i;K) , Z(K)
n = LK

(

F (K)
n ,M (K)

n

)

, n = 1, 2, . . .

with Z
(K)
0 = N0.

By Daley et al. (1986), one has that R(K) = lim
Nր∞

R
(K)
N = sup

N≥1
R

(K)
N , where

R
(K)
N = N−1E

[

Z(K)
n | Z

(K)
n−1 = N

]

, N = 1, 2, . . .

Clearly R(K) ≥ R
(K)
K . Now,

R
(K)
K = K−1E

[

Z(K)
n | Z

(K)
n−1 = K

]

= K−1E [Zn | Zn−1 = K] = RK > 1.

Consequently, R(K) > 1. By bisexual Galton-Watson process theory, there exists

K∗ ∈ Z+ such that, for N ≥ K∗,

P

(

lim
nր∞

Z(K)
n = ∞ | Z

(K)
0 = N

)

> 0.

Taking K0 = max{K, K∗},

P

(

lim
nր∞

Z(K)
n = ∞, Z(K)

n ≥ K, n ≥ 1 | Z
(K)
0 = K0

)

> 0.

Hence,

(5) P

(

lim
nր∞

Z ′
n = ∞ | Z ′

0 = K0

)

> 0.

From (4) and (5),

P

(

lim
nր∞

Zn = ∞ | Z0 = N

)

> 0, N ≥ K0.
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Finally, by (2), ones derives that QN < 1 for N ≥ K0. �

P r o o f o f T h e o r em 3.2. It is sufficient to prove that, under conditions

in Theorem 3.2, R = R∗.

For each N ∈ Z+, let
{

(F
(N)
n ,M

(N)
n )

}

n≥1
be the process defined, for n ≥ 1,

in the form:

(

F (N)
n ,M (N)

n

)

=

Z
(N)
n−1
∑

i=1

(fn,i;N ,mn,i;N ), Z(N)
n = L

Z
(N)
n−1

(

F (N)
n ,M (N)

n

)

.

where Z
(N)
0 = N0. It is a two-sex process with only mating depending on

the number of couples, being the offspring probability distribution the law of

(f1,1;N ,m1,1;N ). Hence, for N ∈ Z+, there exists R(N) = lim
kր∞

R
(N)
k and,

R(N) = sup
k≥1

R
(N)
k , R

(N)
k = k−1E[Z(N)

n | Z
(N)
n−1 = k], k = 1, 2, . . .

Taking into account (a4), by stochastic order properties (see Müller and Stoyan

(2002)),

E

[

LN

(

N
∑

i=1

fn,i;N ,

N
∑

i=1

mn,i;N

)]

≤ E

[

LN

(

N
∑

i=1

fn,i,

N
∑

i=1

mn,i

)]

.

Therefore,

R = lim sup
Nր∞

RN ≤ lim sup
Nր∞

R∗
N = R∗.

On the other hand, given j ≥ 1 fixed, for N ≥ j,

E

[

LN

(

N
∑

i=1

fn,i;N ,

N
∑

i=1

mn,i;N

)]

≥ E

[

LN

(

N
∑

i=1

fn,i;j,

N
∑

i=1

mn,i;j

)]

Thus,

R = lim inf
Nր∞

RN ≥ lim inf
Nր∞

R
(j)
N = R(j)

Taking limit, as j ր ∞, R ≥ lim
jր∞

R(j).

Finally, it is matter of straightforward calculation to deduce that

lim
jր∞

R(j) = R∗. �
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P r o o f o f T h e o r em 3.3. First, we will proved that, under conditions in

Theorem 3.3, if φ is an increasing function then E[φ(Wn)] ≤ E [φ(W ∗
n)], n ∈

Z+, whenever such expectations exist. In fact, by (a4) and using that LN0 is

monotonic nondecreasing in each argument,

LN0

(

N0
∑

i=1

f1,i;N0,

N0
∑

i=1

m1,i;N0

)

� LN0

(

N0
∑

i=1

f1,i,

N0
∑

i=1

m1,i

)

.

Hence,

P (Z1 > t | Z0 = N0) ≤ P (Z∗
1 > t | Z∗

0 = N0), t ∈ R.

Now, by (a1), (a2), and (a4), ones derives, see Molina et al. (2008), that

{Zn}n≥0 and {Z∗
n}n≥0 are stochastically monotone sequences, namely, given

N1, N2 ∈ Z
+ with N1 < N2, it is verified, for t ∈ R and n ≥ 1,

P (Zn ≤ t | Zn−1 = N2) ≤ P (Zn ≤ t | Zn−1 = N1)

P (Z∗
n ≤ t | Z∗

n−1 = N2) ≤ P (Z∗
n ≤ t | Z∗

n−1 = N1).

Thus, see Daley (1968b) for details, for n ≥ 2,

P (Zn > t | Z0 = N0) ≤ P (Z∗
n > t | Z∗

0 = N0), t ∈ R.

Therefore, given that Z0 = N0, Zn � Z∗
n, n ∈ Z

∗ and using the fact that,

under assumptions in Theorem 3.3, R = R∗, one obtains that Wn � W ∗
n . Taking

into account that φ is an increasing function, φ(Wn) � φ(W ∗
n) which implies that

E[φ(Wn)] ≤ E[φ(W ∗
n)] whenever such expected values exist.

We now prove the Theorem.

If {W ∗
n}n≥0 converges in Lp to W ∗, for some p > 0,

lim
nր∞

E[(W ∗
n)p] = E[(W ∗)p] < ∞.

Thus, sup
n≥0

E[(W ∗
n)p] < ∞. By previous result, sup

n≥0
E[(Wn)p] < ∞.

Now, by Proposition A1 (see Appendix), for α ∈ (0, p), {Wn}n≥0 is αth-order

uniformly integrable, that is, {(Wn)α}n≥0 is uniformly integrable.

Finally, using that {Wn}n≥0 converges almost surely to W , by Proposition A2
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in Appendix, one derives that {Wn}nր∞ converges in Lα to W , for α ∈ (0, p). �

P r o o f o f Th e o r em 3.4. It is proved by applying a similar methodology,

suitable adapted to the class of processes (1), to that considered for the two-sex

process with only mating depending on the number of couples in the population

(see Theorem 7 in Molina et al. (2004)).

Appendix

Proposition A1. Let {Xα : α ∈ A} be a system of extended real valued random

variables on a probability space (Ω,F , P ). If supα∈A ‖Xα‖p0 < ∞ for some p0 ∈

(0,∞), then {Xα : α ∈ A} is pth-order uniformly integrable, that is, {|X|p : α ∈

A} is uniformly integrable for every p ∈ (0, p0).

Proposition A2. Let Xn ∈ Lp(Ω,F , P ), n ∈ Z
+ where p ∈ (0,∞). let X be an

extended real valued random variable on (Ω,F , P ) and assume that lim
nր∞

Xn = X

in probability. Then the following three conditions are equivalent:

(a) {Xn : n ∈ Z
+} is pth-order uniformly integrable.

(b) X ∈ Lp(Ω,F , P ) and lim
nր∞

‖Xn − X‖p = 0.

(c) X ∈ Lp(Ω,F , P ) and lim
nր∞

‖Xn‖p = ‖X‖p.

where, given a random variable Y on (Ω,F , P ), ‖Y ‖p = (
∫

Ω |Y |pdP )1/p.

P r o o f s. We refer the reader to the Theorems 4.12 and 4.16 in Yeh (1995).
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