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TWO-TYPE AGE-DEPENDENT BRANCHING PROCESSES

WITH INHOMOGENEOUS IMMIGRATION AS MODELS OF

RENEWING CELL POPULATION∗

Ollivier Hyrien, Nikolay M. Yanev

Two-type reducible age-dependent branching processes with inhomogeneous
immigration are considered to describe the kinetics of renewing cell pop-
ulations. This class of processes can be used to model the generation of
oligodendrocytes in the central nervous system in vivo or the kinetics of
leukemia cells. The asymptotic behavior of the first and second moments,
including the correlation, of the process is investigated.

1. Introduction

Biological problems have motivated a vast body of work on the theory of branch-
ing processes, including the first asymptotic result which is attributed to Kol-
mogorov [22]. Kolmogorov coined also the terminology “branching process”in
1946 when he established the famous seminar devoted to Branching Processes
at Moscow State University. This seminar lead to numerous developments of
the theory of branching processes and their multitype extensions due to himself
and his Ph.D. students (see e.g. Sevastyanov [25]). Overviews of the theory of
branching processes can be found also in Harris [10], Mode [24], Athreya and Ney
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[1], and Jagers [19], whereas comprehensive expositions of branching processes as
applied to biology can be found in Jagers [19], Yakovlev and Yanev [32], Kim-
mel and Axelrod [21], and Haccou et al. [9]. References dealing with statistical
inference for branching processes include Guttorp [8] and Yanev [34].

The objective of this paper is to investigate asymptotic properties for a class
of two-type reducible age-dependent branching processes. We consider branching
processes both with and without immigration. The immigration component is
formulated as a non-homogeneous Poisson process but the time-homogeneous
case is also investigated in detail. This work is a generalization of previous work
by Hyrien and Yanev [16] who considered similar processes with a single type of
cells.

The process under consideration can be used to model the kinetics of renew-
ing cell populations that consist of two (observable) cell types. Two examples of
cellular systems that can be modeled using this process include the pool of oligo-
dendrocytes and of their progenitor cells, which play an important role in the
central nervous system, and the leukemia progenitor and blast cells. It is worth
noting that Yanev et al. [33] investigated a two type Markov branching process
with homogeneous Poisson immigration to model the proliferation of leukemia
cells. The results presented herein offers an extension of this previous work to
age-dependent processes.

The paper is organized as follows. The biological background is presented in
Section 2. This motivating material will lead to the construction of the general
process in Section 3 where the basic integral equations for the p.g.f. and for the
means are derived. Some asymptotic results for renewal-type equations and for
the means of the process submitted in Hyrien and Yanev [17] are presented in
Section 4. These results are applied in Section 5 to investigate the asymptotic
behaviour of the second order moments and the correlations for the processes
with or without immigration. This study finds also motivation in parameter
estimation using asymptotic approximations to the moments.

2. Biological background and motivation

Recent advances in experimental techniques have made it possible to collect un-
precedented information about the state of individual cells isolated from disso-
ciated tissues. For instance, the power of high-thoughput flow cytometry allows
experimentalists to identify different cell types by combining together expres-
sion levels of multiple surface or intra-cellular protein or DNA markers measured
simultaneously in thousands or millions of individual cells. When collected re-
peatedly over time, such data provide snapshots about the temporal organization
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of multitype cellular populations (e.g., Hyrien and Zand [18], Hyrien, Chen and
Zand [13]).

One cellular system that can be studied using this experimental setup is that
of oligodendrocytes, the myelin-forming cells of the central nervous system, and
their immediate progenitor cells, called oligodendrocyte type-2 astrocyte progen-
itor cells (thereafter simply referred to as O2A-OPCs). This cellular system
has been extensively studied using multitype age-dependent branching processes
(Yakovlev et al. [ 27, 28, 29], von Collani et al. [6], Boucher et al. [2, 3], Zorin
et al. [35], Hyrien et al. [11 - 15, 17], Chen et al. [4]). These publications dealt
with analyses of in vitro experiments where the generation of oligodendrocytes
was observed at the clonal level in purified cultures of O2A-OPCs, and the pro-
posed models did not account for the influx of precursor/stem cells into the pool
of O2A-OPCs. In order to investigate the processes of division and differentiation
of these cells in vivo, we will propose a two-type age-dependent branching process
with immigration. In this model, O2A-OPCs and oligodendrocytes are referred
to as type-1 and type-2 cells, respectively.

A second example is provided by the progression of leukemia. The initia-
tion and perpetuation of leukemia is believed to rest on a pool of leukemic stem
cell (LSC), whereas the propagation of leukemic disease itself is ensured by the
immediate downstream progeny of LSC, the leukemic progenitor (LP) popula-
tion. Although stem cells are not always observable, it is generally possible to
experimentally quantify the number of LP cells (type-1 cells) and of their fur-
ther differentiated progenies, referred to as blast cells (BC) and corresponding to
type-2 cells in our model. The influx of stem cells into the pool of LP cells can
be modeled as an immigration process.

Motivated by the above examples, we investigated some asymptotic prop-
erties of a class of two-type reducible age-dependent branching processes with
time-inhomogeneous immigration. One of the ultimate goal of this work is to
develop associated statistical methods to estimate cell kinetics parameters using
flow cytometry experiments. The process that we will consider is general enough
so it includes models of the generation of oligodendrocytes and of the progression
of leukemia as particular cases.

3. Branching process models and equations

The kinetics of two-type renewing cell populations (in vivo) is described by a
branching process that starts off when the first zero age immigrant (stem cells)
appears in the population of type-1 (progenitors) cells. The lifespan of every type-
1 cell is modeled by a r.v. τ1 with c.d.f. G1(t) = P (τ1 ≤ t), satisfying G1(0+) = 0.
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Upon completion of its lifespan every type-1 cell produces a random number of
offsprings ξ = (ξ1, ξ2), where ξk, k = 1, 2, denotes the number of type-k cells

arising from any type-1 cell. Let h1(s1, s2) = E{sξ1
1 sξ2

2 }, | si |≤ 1, i = 1, 2, denote
the p.g.f. of ξ. Notice that h1(1, 1) = 1. The lifespan of every type-2 cell is
modeled by a r.v. τ2 with c.d.f. G2(t) = P (τ2 ≤ t), satisfying G2(0+) = 0. Upon
completion of its lifespan, every type-2 cells generates a random number η2 of
type-2 cells. Write h2(s2) = E{sη2

2 } for the p.g.f. of η2. We assume that every cell
is of zero age at birth, and that all cells complete their evolutions independently
of every other cell. The above formulated process is therefore an age-dependent
branching process (without immigration).

Let us introduce the following notation associated with the offspring distrib-
ution:

a1 = Eξ1 =
∂h1(s1, s2)

∂s1

∣∣∣∣∣
s1=s2=1

, a2 = Eξ2 =
∂h1(s1, s2)

∂s2

∣∣∣∣∣
s1=s2=1

,

a11 = Eξ1(ξ1 − 1) =
∂2h1(s1, s2)

∂s2
1

∣∣∣∣∣
s1=s2=1

, a12 = Eξ1ξ2 =
∂2h1(s1, s2)

∂s1∂s2

∣∣∣∣∣
s1=s2=1

,

a22 = Eξ2(ξ2 − 1) =
∂2h1(s1, s2)

∂s2
2

∣∣∣∣∣
s1=s2=1

,

b2 = Eη2 =
dh2(s2)

ds2

∣∣∣∣∣
s2=1

, b22 = Eη2(η2 − 1) =
d2h2(s2)

ds2
2

∣∣∣∣∣
s2=1

.

Let

µ1 =

∫
∞

0
xdG1(x) < ∞ and µ2 =

∫
∞

0
xdG2(x) < ∞

denote the lifespan means, assumed finite. The above defined parameters will
play a critical role in the asymptotic behavior of the process.

From a biological standpoint, the most relevant models (for the offspring p.g.f.
h1(s1, s2)) include the following cases:

• Model 1: h1(s1, s2) = p0 + p1s
2
1 + p2s2. Under this model, upon completion

of its lifespan, every type-1 cell can either die with probability p0, or it
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divides into two type-1 cells with probability p1, or it differentiates into a
single type-2 cell with probability p2.

• Model 2: h1(s1, s2) = p0 + p1s
2
1 + p2s

2
2;

• Model 3: h1(s1, s2) = p0 + p1s
2
1 + p2s1s2;

• Model 4: h1(s1, s2) = p0 + p1s
2
1 + p2s

2
2 + p3s1s2.

The offspring p.g.f. h2(s2) for type-2 cells is generally assumed to take the
form h2(s2) = 1 − q + qs2

2, 0 ≤ q ≤ 1. This p.g.f. is interpreted as follows: upon
completion of its lifespan, every type-2 cell either dies with probability 1 − q or
it divides into two new type-2 cells with probability q.

Let us define a stochastic process Z(t) = (Z1(t), Z2(t)), where Z1(t) and Z2(t)
denote the numbers of type-1 and type-2 cells at any time t ≥ 0. Introduce the
associated p.g.f.s

F1(t; s1, s2) = E{sZ1(t)
1 s

Z2(t)
2 | Z1(0) = 1}, F2(t; s2) = E{sZ2(t)

2 | Z2(0) = 1}.
Under the above assumptions, it is not difficult to show that F1(t; s1, s2) and

F2(t; s1, s2) are determined by the following system of nonlinear integral equations
(e.g., Harris [10] and Athreya and Ney [1])

(1) F1(t; s1, s2) =

∫ t

0
h1(F1(t − u; s1, s2), F2(t − u; s2))dG1(u) + s1(1 − G1(t)),

(2) F2(t; s2) =

∫ t

0
h2(F2(t − u; s2))dG2(u) + s2(1 − G2(t)),

with initial conditions F1(0; s1, s2) = s1 and F2(0; s2) = s2. Let us define the
associated expectations

A1(t) = E{Z1(t) | Z1(0) = 1} =
∂

∂s1
F1(t; s1, s2) |s1=s2=1,

A2(t) = E{Z2(t) | Z1(0) = 1} =
∂

∂s2
F1(t; s1, s2) |s1=s2=1,

B2(t) = E{Z2(t) | Z2(0) = 1} =
∂

∂s2
F2(t; s2) |s2=1 .

It is not difficult to deduce from (1) and (2) the following system of renewal-type
equations:

(3) A1(t) = a1

∫ t

0
A1(t − u)dG1(u) + 1 − G1(t),
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(4) A2(t) = a1

∫ t

0
A2(t − u)dG1(u) + a2

∫ t

0
B2(t − u)dG1(u),

(5) B2(t) = b2

∫ t

0
B2(t − u)dG2(u) + 1 − G2(t),

with the initial conditions: A1(0) = 1, A2(0) = 0, and B2(0) = 1.
To describe the process with immigration, we let 0 = S0 < S1 < S2 < S3 < ...

denote the random time points at which immigrants arrive in the pool of type-
1 cells. We assume that this sequence forms a non-homogeneous Poisson
process Π(t) with rate r(t) such that the cumulative rate of the process is given
by R(t) =

∫ t

0 r(u)du, r(t) ≥ 0, and Π(t) ∈ Po(R(t)). Let Ui = Si−Si−1 denote the

inter-arrival times. Notice that Sk =
k∑

i=1
Ui, k = 1, 2 · · · . We will assume also that

associated with every time point Sk is an immigration component Ik denoting
the number of immigrants arriving in the population of type-1 cells at time Sk.
These immigrants are assumed to be of zero age upon arriving in the pool of type-
1 cells. The collection {Ik}k=1,2··· form a sequence of independent and identically

distributed (i.i.d.) random variables (r.v.) with p.g.f. g(s) = EsIk =
∞∑
i=0

gis
i,

| s |≤ 1.
Notice that if {Ui} are i.i.d. exponentially distributed r.v. with c.d.f. G0(x) =

P (Ui ≤ x) = 1−e−rx, x ≥ 0, the immigration process Π(t) reduces to an ordinary
Poisson process with cumulative rate R(t) = rt.

Let Y1(t) and Y2(t) denote the number of type-1 cells at time t in the process
with immigration. Put Y(t) = (Y1(t), Y2(t)) and assume that Y(0) = (0, 0).
Therefore, Y(t) admits the following representation

(6) Y(t) =

{ ∑Π(t)
k=1 ZIk(t − Sk) if Π(t) > 0

0 if Π(t) = 0,

where ZIk(t) denotes i.i.d. copies of the branching processes Z(t) = (Z1(t), Z2(t))
started with a random number of ancestors Ik. In fact, the process Y(t) be-
gins from the first non-zero immigrants. The process Y(t), t ≥ 0, is time non-
homogeneous and non-Markov process.

Define the p.g.f. Ψ(t; s1, s2) = E{sY1(t)
1 s

Y2(t)
2 | Y(0) = (0, 0)}. It follows from

(6) that

(7) Ψ(t; s1, s2) = exp{−
∫ t

0
r(t − u)[1 − g(F1(u; s1, s2))]du},
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where Ψ(0; s1, s2) = 1 and where the p.g.f. F1(u; s1, s2) satisfies equation (1). The
proof of identity (7) is similar to that for the one-dimensional case by Yakovlev
and Yanev ([32], Theorem 1).

Introduce the expectations of the process with immigration

M1(t) = E{Y1(t) | Y(0) = (0, 0)} =
∂

∂s1
Ψ(t; s1, s2) |s1=s2=1,(8)

M2(t) = E{Y2(t) | Y(0) = (0, 0)} =
∂

∂s2
Ψ(t; s1, s2) |s1=s2=1 .(9)

Let γ = E{Ik} =
dg(s)

ds

∣∣∣∣∣
s=1

denote the immigration mean, and let γ2 =

d2g(s)

ds2

∣∣∣∣∣
s=1

= E{Ik(Ik − 1)}. It follows from (7) that

(10) M1(t) = γ

∫ t

0
r(t − u)A1(u)du,

(11) M2(t) = γ

∫ t

0
r(t − u)A2(u)du,

with M1(0) = 0 and M2(0) = 0 for the initial conditions, and where A1(t) and
A2(t) are determined by equations (3) − (5).

4. Renewal type equations and asymptotic behaviour of the

means

The moments of the process without immigration satisfy renewal equations as-
suming the general form

(12) U(t) = κ

∫ t

0
U(t − x)dG(x) + f(t),

where κ denotes a strictly positive constant, where G(x) denotes a c.d.f. with
Laplace transform Ĝ(λ) =

∫
∞

0 e−λxdG(x).

Recall that when κG(0+) < 1, equation (12) admits a unique solution that
is bounded on bounded intervals. The associated Malthus parameter α is defined
as the root to the equation κĜ(α) = 1. This parameters governs the asymptotic
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behavior of the function U(t). When κ ≥ 1, the equation κĜ(α) = 1 has a
unique real solution α ≥ 0. When κ < 1 a solution may not exist, but if it
does it has to be negative. In what follows, we will assume that the Malthus
parameter always exists. Introduce the c.d.f. G̃(t) = κ

∫ t

0 e−αxdG(x), and define

the means µ =
∫
∞

0 xdG(x) and µ̃ =
∫
∞

0 xdG̃(x). Whenever needed, we will
implicitly assume that they are finite.

The following theorem includes classical asymptotic results for renewal pro-
cesses (see e.g. Feller [7]).

Theorem 4.1. (i) Let κ = 1 and f(t) be a directly Riemann integrable
(d.R.i) function. Then lim

t→∞

U(t) =
∫
∞

0 f(x)dx/µ.

(ii) Let κ = 1 and lim
t→∞

f(t) = C, 0 < C < ∞. Then U(t) ∼ Ct/µ as t → ∞.

(iii) Let κ < 1 and lim
t→∞

f(t) = C, 0 < C < ∞. Then lim
t→∞

U(t) = C/(1 − κ).

Note that case (i) of Theorem 4.1 is well-known as Key Renewal Theorem.
Some further developments (including the case µ = ∞) are given in Mitov and
Yanev [23].

To investigate the asymptotic behavior of the first and second order moments
of the process, we will also need the following results derived by Hyrien and Yanev
[17].

Theorem 4.2. Assume that f(t) ∼ Ctρeβt, as t → ∞, where 0 < C < ∞
and ρ ≥ 0. Then we have

(a) If α < β, then U(t) ∼ Ctρeβt/[1 − κĜ(β)];

(b) If α > β, then U(t) ∼ eαt
∫
∞

0 f(x)e−αxdx/µ̃;

(c) If α = β, then U(t) ∼ Ctρ+1eαt/µ̃(ρ + 1).

Define the Malthus parameters α1 and α2 that solve the equations

(13) a1

∫
∞

0
e−α1xdG1(x) = 1, b2

∫
∞

0
e−α2xdG2(x) = 1.

We will classify the one-dimensional processes Zi(t), i = 1, 2, as subcritical if
αi < 0 (a1 < 1 or b2 < 1), critical if αi = 0 (a1 = 1 or b2 = 1) and supercritical
if αi > 0 (a1 > 1 or b2 > 1) (see e.g. Harris (1963) or Athreya and Ney (1972)).
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It is well known that in the critical case A1(t) ≡ 1 and B2(t) ≡ 1, whereas in
the non-critical processes we have

(14) A1(t) ∼ C1e
α1t and B2(t) ∼ C2e

α2t, as t → ∞,

where

(15) C1 = (a1 − 1)/α1a1µ̃1 < ∞ and C2 = (b2 − 1)/α2b2µ̃2 < ∞,

assuming that the corresponding integrals

µ̃1 = a1

∫
∞

0
xe−α1xdG1(x) =

∫
∞

0
xdG̃1(x),(16)

µ̃2 = b2

∫
∞

0
xe−α2xdG2(x) =

∫
∞

0
xdG̃2(x)(17)

are finite. Notice that G̃1(∞) = G̃2(∞) = 1 which is direct consequence of
equation (13).

The two-type process (Z1(t), Z2(t)) is of reducible type, which complicates
the asymptotic behaviour of A2(t). In particular, as shown by Hyrien and Yanev
(2010), it depends on both Malthus parameters:

Theorem 4.3. Assume (13) and (15) are satisfied. Then, as t → ∞, we
have that

∼ K1te
α1t δ = 0 K1 = a2C2/a1µ̃1,

A2(t) ∼ K2e
α1t δ < 0 K2 =

a2

a1µ̃1

∫
∞

0
eδxB2(x)dx,

∼ K3e
α2t δ > 0 K3 = a2C2Ĝ1(α2)/[1 − a1 Ĝ1(α2)]

where δ = α2 − α1 , B2(t) = e−α2tB2(t) and Ĝ1(α2) =

∫
∞

0
e−α2xdG1(x).

Corollary 4.1 (Markov case) . When G1(t) = 1 − e−β1t and G2(t) =
1−e−β2t, the Malthus parameters are given by α1 = β1(a1−1) and α2 = β2(b2−1).
It follows from (3)–(5) that A1(t) = eα1t and B2(t) = eα2t. Similarly A2(t) =
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a2β1te
α1t when α1 = α2 and A2(t) =

a2β1

α2 − α1
(eα2t − eα1t) when α1 6= α2. There-

fore, in accordance with the value of δ = α2 − α1, we deduce from Theorem 4.3
that

∼ K1te
α1t δ = 0 K1 = a2β1

A2(t) ∼ K2e
α1t δ < 0 K2 = a2β1/(−δ)

∼ K3e
α2t δ > 0 K3 = a2β1/δ.

The asymptotic behaviour of the means for the process with immigration
can be obtained using (8)-(11). Let α = max{α1, α2}, and define the following
quantities:

R(t) =

∫ t

0
R(u)du, R̂z(t) =

∫ t

0 e−zxdR(x), R̃
α1

(t) =
∫ t

0 R̂α1
(u)du,

Kα = {K1, if α = α1 = α2} ∨ {K2, if α = α1 > α2} ∨ {K3, if α = α2 > α1},

Rα(t) = {R̃
α1

(t), α = α1 = α2} ∨ {R̂α1
(t), α = α1} ∨ {R̂α2

(t), α = α2}.

Theorem 4.4. Assume that the conditions of Theorem 4.3 are satisfied.
Then, as t → ∞, we have

(18) M1(t) ∼
{

γR(t) if α1 = 0

γC1e
α1t R̂α1

(t) if α1 6= 0,

and

(19) M2(t) ∼ γKαeαtRα(t).

Corollary 4.2 (time-homogeneous immigration) . When R(t) = rt, we
have, as t → ∞, that

(20) M1(t) ∼





rγC1e
α1t/α1 if α1 > 0

M1(t) → rγC1/(−α1) if α1 < 0

rγt if α1 = 0.

When α1 6= α2, it follows from Theorem 4.4 that, as t → ∞,

(21) M2(t) ∼





rγKαeαt/α if α > 0

rγKαt if α = 0

rγKα/(−α) if α < 0.
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Similarly to (20) and (21), in the case where α = α1 = α2, we have, as t → ∞,

M2(t) ∼
rγ

α
K1te

αt, α > 0; M2(t) ∼
rγ

2µ1
t2, α = 0; M2(t) ∼ −rγ

α
K1, α < 0.

Comment 4.1. The two-type process can be classified as subcritical if α < 0,
critical if α = 0 and supercritical if α > 0. In particular, for time-homogeneous
immigration (R(t) = rt), the means increase exponentially in the supercritical
case; they converge to some constants in the subcritical case, and they may in-
crease linearly or even quadratically in the critical case. For time-inhomogeneous
immigration, the asymptotic behaviour of the means is more complicated as it
depends on the form of the immigration rate R(t).

The role of the critical parameter α = max{α1, α2} is further confirmed by
the following results. Note that the probability for extinction at t is given by

Q12(t) = P{Z1(t) = 0, Z2(t) = 0 | Z1(0) = 1, Z2(0) = 0} = F1(t; 0, 0)

and it is well determined through equations (1) and (2).

Proposition 4.1. If α ≤ 0 then q12 = lim
t→∞

Q12(t) = 1, and if α > 0 then

q12 < 1.

P r o o f. First it is not difficult to obtain that the probability for extinction
q12 = lim

t→∞

Q12(t) satisfies the equation q12 = h1(q12, q2), where q2 = h2(q2). Note

that q1 = P (Z1(t) → 0 | Z1(0) = 1} satisfies the equation q1 = h1(q1, 1), where
q1 = 1 if α1 ≤ 0 and q1 < 1 if α1 > 0. On one hand, if α2 ≤ 0, then q2 = 1 and
by the equation q12 = h1(q12, 1) it follows that q12 = q1. On the other hand, if
α2 > 0 then q2 < 1 and q12 = h1(q12, q2) < h1(q1, 1) = q1 ≤ 1. Finally, the proof
is completed by combining the above results. �

Note that the asymptotic behavior of Q12(t) can also be deduced using the
results of Vatutin [26].

5. Asymptotic Behaviour of the Second Moments

Introduce the second order moments for the process without immigration

Aij(t) =
∂2

∂si∂sj
F1(t; s1, s2) |s1=s2=1

= E{Zi(t)(Zj(t) − δij) | Z1(0) = 1, Z2(0) = 0}, i ≤ j = 1, 2,

B22(t) =
∂2

∂s2
2

F2(t; s2) |s2=1= E{Z2(t)(Z2(t) − 1) | Z2(0) = 1}.
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We deduce from equations (1) and (2) that these moments satisfy the following
equations:

A11(t) = a1

∫ t

0
A11(t − u)dG1(u) + a11

∫ t

0
A2

1(t − u)dG1(u),

A12(t) = a1

∫ t

0
A12(t − u)dG1(u)

+

∫ t

0
A1(t − u)[a11A2(t − u) + a12B2(t − u)]dG1(u),

A22(t) = a1

∫ t

0
A22(t − u)dG1(u) + a2

∫ t

0
B22(t − u)dG1(u)

+

∫ t

0
[a11A

2
2(t − u) + 2a12A2(t − u)B2(t − u) + a22B

2
2(t − u)]dG1(u),

B22(t) = b2

∫ t

0
B22(t − u)dG2(u) + b22

∫ t

0
B2

2(t − u)dG2(u).

Introduce now the second moments for the process with immigration

Mij(t) =
∂2

∂si∂sj
Ψ(t; s1, s2) |s1=s2=1

= E{Yi(t)(Yj(t) − δij) | Y(0) = (0, 0)}, i ≤ j = 1, 2.

It follows easily from equation (7) that the above moments satisfy the integral
equations

M11(t) = γ

∫ t

0
r(t − u)A11(u)du + [γ

∫ t

0
r(t − u)A1(u)du]2

+ γ2

∫ t

0
r(t − u)A2

1(u)du,

M12(t) = γ

∫ t

0
r(t − u)A12(u)du + γ2

∫ t

0
r(t − u)A1(u)du

∫ t

0
r(t − u)A2(u)du

+ γ2

∫ t

0
r(t − u)A1(u)A2(u)du,
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M22(t) = γ

∫ t

0
r(t − u)A22(u)du + [γ

∫ t

0
r(t − u)A2(u)du]2

+ γ2

∫ t

0
r(t − u)A2

2(u)du.

In what follows, the asymptotic behaviour of the second order moments is inves-
tigated by applying the limiting results presented in Section 4.

Let us first consider the second order factorial moments A11(t), A22(t), B22(t),
and the mixed moment A12(t) for the process without immigration. The func-
tional equations satisfied by these moments are particular cases of the general
renewal-type equation (12) where the asymptotic behaviour of the function f(t)
is determined by the asymptotic properties of the first order moments A1(t) and
B2(t) as given in (14)–(17) in the non-critical cases, and A1(t) ≡ B2(t) ≡ 1 in
the critical case. It is not difficult to check that the asymptotic behaviour of the
functions f(t) associated with these equations satisfies the conditions of Theo-
rems 4.1 – 4.4. Therefore, by applying the corresponding Theorems, we obtain
the following results as t → ∞:

∼ C01e
α1t, α1 < 0,

A11(t) ∼ a11

µ1
t, α1 = 0,

∼ C11e
2α1t, α1 > 0,

where C01 = a11C
2
1 Ĝ1(2α1)/(−α1)µ̃1, C11 = a11C

2
1 Ĝ1(2α1)/[1 − a1 Ĝ1(2α1)]

and

∼ C02e
α2t, α2 < 0,

B22(t) ∼ b22

µ2
t, α2 = 0,

∼ C22e
2α2t, α2 > 0,

where C02 = b22C
2
2 Ĝ2(2α2)/(−α2)µ̃2, C22 = b22C

2
2 Ĝ2(2α2)/[1 − b2 Ĝ2(2α2)].

The asymptotic behaviour of the moments A12(t) and A22(t) is more com-
plicated because the asymptotic properties of the corresponding functions f(t)
depend of the Malthus parameters α1 and α2. Nevertheless, by applying the
limiting statements from Section 4 to the functional equations satisfied by A12(t)
and A22(t), we obtain the following asymptotically equivalence as t → ∞:
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Table 1

Malthus parameters A12(t) ∼ A22(t) ∼
1) α1 > α2, α1 > 0 D11e

2α1t D21e
2α1t

2) α1 > α2, α1 = 0 D12t D22t

3) α1 > α2, α1 < 0 D13e
α1t D23e

α1t

4) α1 < α2, α2 > 0 D14e
(α1+α2)t D24e

2α2t

5) α1 < α2, α2 = 0 D15te
α1t D25t

6) α1 < α2, α2 < 0 D16e
α1t D26e

α2t

7) α1 = α2 = 0 D17t
2 D27t

3

8) α1 = α2 < 0 D18e
α1t D28e

α1t

9) α1 = α2 > 0 D19te
2α1t D29t

3e2α1t

The constants Dij appearing in the above Table are calculated as follows:

D11 = a11C1K2 Ĝ1(2α1)/[1 − a1 Ĝ1(2α1)],

D21 = a11K
2
2 Ĝ1(2α1)/[1 − a1 Ĝ1(2α1)],

D12 = D22 = a11a2C2/µ
2
1(−α2),

D13 = C1[a11(−α2)K2 + a12(−α1)C2]/a1α1α2,

D23 =
K2[2C2(−α1) + K2(−α2)]

a1α1α2
+

C2

a1

[
a22C2

α1 − 2α2
+

a2b2b22

µ̃2α2(α1 − α2)

]
,

D14 = [C1(a11K3 + a12C2)Ĝ1(α1 + α2)]/[1 − a1 Ĝ1(α1 + α2)],

D24 = Ĝ1(2α1)(a11K
2
3 + 2a11K3C2 + a22C

2
2 + a2C22)/[1 − a1 Ĝ1(2α1)],

D15 = C1(a11K3 + a12)/a1µ̃1,D25 = a1b2/µ2(1 − a1),

D16 = C1(a11K1 + a12C2)/a1µ̃1(−α2),D26 = C2b2b22 Ĝ1(α2)/[1 − a1Ĝ1(α2)],

D17 = a11K1/2µ1, D27 = a11K
2
1/3µ1,

D18 = [a11 − a1a12]/a1α
2
1µ̃1,D28 = 2a11K

2
1/µ̃1(−α1)

3,

D19 = a11C1K1 Ĝ1(2α1)/[1 − a1Ĝ1(2α1)],D29 = a11K
2
1/[1 − a1 Ĝ1(2α1)].

Comment 5.1. It is interesting to compare the asymptotic behaviour of
both moments. In general it is similar with an exception of cases 4) and 5). In
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case 4) A22(t) increases exponentially while A12(t) can either decrease to zero,
or convergence to a constant positive, or grow exponentially, when α1 + α2 is
negative, or zero, or positive, respectively. In case 5) A12(t) goes to zero whereas
A22(t) increases linearly.

Introduce the notations:

V1(t) = V ar{Z1(t) | (1, 0)} = A11(t) + A1(t)[1 − A1(t)],

V2(t) = V ar{Z2(t) | (1, 0)} = A22(t) + A2(t)[1 − A2(t)],

C12(t) = Cov{Z1(t), Z2(t) | (1, 0)} = A12(t) − A1(t)A2(t),

ρ12(t) = Corr{Z1(t), Z2(t) | (1, 0)} = C12(t)/
√

V1(t)V2(t).

First of all, it is not difficult to obtain the asymptotic behavior for V1(t) as t → ∞:

∼ (C01 + C1)e
α1t α1 < 0,

V1(t) ∼ a11

µ1
t α1 = 0,

∼ (C11 − C2
1 )e2α1t α1 > 0.

Now using Table 1 one can obtain the following asymptotic relations as t → ∞ :

Table 2

Malthus parameters V2(t) ∼ C12(t) ∼
1) α1 > α2, α1 > 0 (D21 − K2

2 )e2α1t (D11 − C1K2)e
2α1t

2) α1 > α2, α1 = 0 D22t D12t

3) α1 > α2, α1 < 0 (D23 + K2)e
α1t D13e

α1t

4) α1 < α2, α2 > 0 (D24 − K2
3 )e2α2t (D14 − C1K3)e

(α1+α2)t

5) α1 < α2, α2 = 0 D25t D15te
α1t

6) α1 < α2, α2 < 0 (D26 + K3)e
α2t D16e

α1t

7) α1 = α2 = 0 D27t
3 D17t

2

8) α1 = α2 < 0 K1te
α1t D18e

α1t

9) α1 = α2 > 0 D29t
3e2α1t (D19 − C1K1)te

2α1t
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Therefore by Table 2 one obtains the asymptotic behaviour of the correlation as
t → ∞ :

Table 3

Malthus roots ρ12(t) ∼

1) α1 > α2, α1 > 0 (D11 − C1K2)/
√

(C11 − C2
1 )(D21 − K2

2 )

2) α1 > α2, α1 = 0 D12/
√

D22a11/µ1

3) α1 > α2, α1 < 0 D13/
√

(C01 + C1)(D23 + K2)

4) α1 < α2, α2 > 0

α1 > 0 :
(D14 − C1K3)√

(C11 − C2
1 )(D24 − K2

3 )

α1 = 0 : t−1/2 (D14 − C1K3)√
(D24 − K2

3 )a11/µ1

→ 0

α1 < 0 : eα1t/2 (D14 − C1K3)√
(C01 + C1)(D24 − K2

3 )
→ 0

5) α1 < α2, α2 = 0
√

teα1t/2D15/
√

(C01 + C1)D25 → 0

6) α1 < α2, α2 < 0 e(α1−α2)t/2D16/
√

(C01 + C1)(D26 + K3) → 0

7) α1 = α2 = 0
√

3/4

8) α1 = α2 < 0 t−1/2D18/
√

K1(C01 + C1) → 0

9) α1 = α2 > 0 t−1/2(D19 − C1K1)/
√

(C11 − C2
1 )D29 → 0

Consider now the process with immigration where R∗(t) =
∫ t

0 udR(u). One
can obtain the following asymptotic behaviour using the corresponding expression
for M11(t):

∼ e2α1t{C01e
−α1tR̂α1

(t) + γ2C2
1 R̂2

α1
(t) + γ2C

2
1 R̂2α1

(t)}, α1 < 0,

M11(t) ∼ γa11{tR(t) − R∗(t)}/µ1 + γ2R2(t), α1 = 0,

∼ e2α1t{C11R̂2α1
(t) + γ2C2

1 R̂2
α1

(t) + γ2C
2
1 R̂2α1

(t)}, α1 > 0,

It is not difficult to show that, in the homogeneous case R(t) = rt, the
asymptotic behavior of M11(t) as t → ∞ simplifies to:
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→ r{C01(−α1) + 2rγ2C2
1 + γ2C

2
1 (−α1)}/2α2

1 α1 < 0,

M11(t) ∼ rγ(a11 + 2γµ1)t
2/2 µ1 α1 = 0,

∼ re2α1t{C11α1 + 2rγ2C2
1 + γ2C

2
1α1}/2α2

1 α1 > 0.

Denote R∗∗(t) =

∫ t

0
udR∗(u) and R̂∗

α1
(t) =

∫ t

0
udR̂α1

(u). Applying now as-

ymptotic results from Table 1 to the corresponding relation for M12(t) we obtain,
as t → ∞, that

Table 4

Malthus roots M12(t) ∼

0 < α1 > α2 e2α1t{(γD11 + γ2C1K2)R̂2α1 (t) + γ2C1K2R̂
2
α1

(t)}

0 = α1 > α2 γD12[tR(t) − R∗(t)] + γ2K2R
2(t)

0 > α1 > α2 e2α1t{γD13e
−α1tR̂α1(t) + C1K2[γ

2R̂2
α1

(t) + γ2R̂2α1(t)]}

α1 < α2 > 0
e(α1+α2)t{R̂α1+α2(t)[γD14 + γ2C1K3]

+γ2C1K3R̂α1(t)R̂α2(t)}

α1 < α2 = 0 eα1t{γD15[tR̂α1(t) − R̂∗

α1
(t)] + γ2C1K3R̂α1(t)R(t)}

α1 < α2 < 0
e(α1+α2)t{γD16e

−α2tR̂α1(t)

+C1K3[γ
2R̂α1(t)R̂α2(t) + γ2R̂α1+α2(t)]},

α1 = α2 = 0 γD17{t2R(t) + R∗∗(t) − 2tR∗(t)}

α1 = α2 < 0
e2α1t{γD18e

−α1tR̂α1(t) + γ2C1K1R̂α1(t)[tR̂α1(t) − R̂∗

α1
(t)]

+γ2C1K1[tR̂2α1(t) − R̂∗

2α1
(t)]},

α1 = α2 > 0
e2α1t{(γD19 + γ2C1K1)[tR̂2α1(t) − R̂∗

2α1
(t)]

+γ2C1K1R̂α1(t)[tR̂α1(t) + R̂∗

α1
(t)]},

It follows from Table 4 that, for time-homogeneous processes (R(t) = rt), the
asymptotic behavior of M12(t) can be presented in the following Table 5.
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Table 5

M. Roots M12(t) ∼
0 < α1 > α2 e2α1tr{α1(γD11 + γ2C1K2) + 2rγ2C1K2}/2α2

1,

0 = α1 > α2 t2r[γD12/2 + rγ2K2],

0 > α1 > α2 r{γD13 + C1K2[2rγ2 + γ2(−α1)]}/2α2
1,

α1 < α2 > 0

α1 > 0 : e(α1+α2)t

{
r

α1 + α2
[γD14 + γ2C1K3] +

r2

α1α2
γ2C1K3

}

α1 = 0 : teα2trγ2C1K3/α2

α1 < 0 : eα2tr2γ2C1K3/(−α1)α2

α1 < α2 = 0 tr2γ2C1K3/(−α1) + rγD15/α2
1,

α1 < α2 < 0 r{γD16/(−α1) + C1K3[rγ
2/α1α2 − γ2/(α1 + α2)]},

α1 = α2 = 0 rγD17t
3/3,

α1 = α2 < 0 r{γD18/(−α1) + rγ2C1K1/(−α3
1) + γ2C1K1/4α2

1},
α1 = α2 > 0 te2α1tr{α1(γD19 + γ2C1K1) + 2rγ2C1K1}/2α2

1.

Note that in the case α1 < 0 and α2 > 0, we need the second terms in the
asymptotic approximation:

eα2tr2γ2C1K3

(−α1)α2
+

e(α1+α2)tr[γD14 + γ2C1K3]

α1 + α2
α1 + α2 > 0

M12(t) ∼
eα2tr2γ2C1K3

(−α1)α2
+ rt[γD14 + γ2C1K3] α1 + α2 = 0

eα2tr2γ2C1K3

(−α1)α2
+

r[γD14 + γ2C1K3]

−(α1 + α2)
α1 + α2 < 0

Now, by applying results from Table 1 along with Theorem 4.3 to the corre-
sponding relation for the moment M22(t) one can obtain as t → ∞ the following

relations where R̂∗∗

2α1
(t) =

∫ t

0
u2dR̂2α1

(u) and R̂∗∗∗

2α1
(t) =

∫ t

0
u3dR̂2α1

(u) :
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Table 6

Malthus roots M22(t) ∼

0 < α1 > α2, e2α1t{(γD21R̂2α1(t) + γ2K2
2 R̂2

α1
(t) + γ2K

2
2 R̂2α1(t)},

0 = α1 > α2, γD22[tR(t) − R∗(t)] + γ2K2
2R2(t),

0 > α1 > α2, e2α1t{γD23e
−α1tR̂α1(t) + γ2K2

2 R̂2
α1

(t) + γ2K
2
2 R̂2α1(t)},

α1 < α2 > 0, e2α2t{R̂2α2(t)[γD24 + γ2K
2
3 ] + γ2K2

3R̂2
α2

(t)},

α1 < α2 = 0, γD25[tR(t) − R∗(t)] + γ2K2
3R2(t),

α1 < α2 < 0, e2α2t{γD26e
−α2tR̂α2(t) + K2

3 [γ2R̂2
α2

(t) + γ2R̂2α2(t)]},

α1 = α2 = 0,
γD27{t3R(t) − 3t2R∗(t) + 3tR∗∗(t) − R∗∗∗(t)}

+γ2K2
1 [tR(t) − R∗(t)]2,

α1 = α2 < 0,
γD28e

α1tR̂α1(t) + γ2K1e
2α1t[tR̂α1(t) − R̂∗

α1
(t)]2

+γ2K
2
1e2α1t[t2R̂2α1(t) − 2tR̂∗

2α1
(t) + R̂∗∗

2α1
(t)]},

α1 = α2 > 0,
γD29e

2α1t[t3R̂2α1(t) − 3t2R̂∗

2α1
(t) + 3tR̂∗∗

2α1
(t) − R̂∗∗∗

2α1
(t)]

+γ2K2
1eα1t[tR̂α1(t) − R̂∗

α1
(t)]

Table 7

Malthus roots M22(t) ∼

0 < α1 > α2, e2α1tr{α1(γD21 + γ2K
2
2 ) + 2rγ2K2

2}/2α2
1,

0 = α1 > α2, t2rγ[D22/2 + rγK2
2 ],

0 > α1 > α2, r{2γD23 + 2rγ2K2
2 + γ2K2(−α1)}/2α2

1,

α1 < α2 > 0, e2α2tr{2α2γD24 + 2rγ2K2
3 + α2γ2K

2
3}/2α2

2,

α1 < α2 = 0, t2rγ[D25/2 + rγK2
3 ],

α1 < α2 < 0, r{2(−α2)γD26 + 2rγ2K2
3 + (−α2)γ2 K3}/2α2

2,

α1 = α2 = 0, t4rγ[D27 + rγK2
1 ]/4,

α1 = α2 < 0, r{4(−α3
1)γD28 + 4rγ2K2

1 + γ2K
2
1(−α1)}/4α4

1,

α1 = α2 > 0, t3e2α1trγD29/2α1.
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From Table 6 it is not difficult to deduce the asymptotic behaviour for the
homogeneous immigration (R(t) = rt) (see Table 7)

Introduce the notation:

W1(t) = V ar{Y1(t) | (0, 0)} = M11(t) + M1(t)[1 − M1(t)],

W2(t) = V ar{Y2(t) | (0, 0)} = M22(t) + M2(t)[1 − M2(t)],

J12(t) = Cov{Y1(t), Y2(t) | (0, 0)} = M12(t) − M1(t)M2(t),

Λ12(t) = Corr{Y1(t), Y2(t) | (0, 0)} = J12(t)/
√

W1(t)W2(t).

We deduce from Theorem 4.3 and the asymptotic behavior for M11(t) that

∼ e2α1t{(C01 + γC1)e
−α1tR̂α1

(t) + γ2C
2
1 R̂2α1

(t)} α1 < 0,

W1(t) ∼ γa11{tR(t) − R∗(t)}/µ1 α1 = 0,

∼ e2α1t(C11 + γ2C
2
1 )R̂2α1

(t) + γC1e
α1tR̂α1

(t) α1 > 0.

From here it is not difficult to deduce asymptotic expansion for the homoge-
neous case (R(t) = rt)

→ rγ2C
2
1/2(−α1) α1 < 0,

W1(t) ∼ rγa11t
2/2 µ1 α1 = 0,

∼ re2α1t(C11 + γ2C
2
1 )/2α1 α1 > 0.

By applying Table 6 and Theorem 4.3, we also obtain the asymptotic behavior
for W2(t) (as t → ∞) (see Table 8).

In the case of an homogeneous immigration, the expressions in Table 8 sim-
plify to the following Table 9.

Using Table 4 and Theorem 4.3. one can obtain the corresponding limit
behavior for the covariance J12(t) as t → ∞

From Table 10 we deduce the asymptotic behavior of J12(t) in the homoge-
neous case (R(t) = rt) given in the following Table 11.

Finally, we deduce from Tables 11 and Table 9 the asymptotic behavior for
the correlation between the numbers of type-1 and type-2 cells in the case of a
time-homogeneous immigration given in the following Table 12.
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Table 8

Malthus roots W2(t) ∼

0 < α1 > α2, e2α1t{(γD21R̂2α1(t) + γ2K
2
2R̂2α1(t) + γK2

2e−α1tR̂α1(t)},

0 = α1 > α2, γD22[tR(t) − R∗(t)]

0 > α1 > α2, e2α1t{γ[D23 + K2]e
−α1tR̂α1(t) + γ2K

2
2 R̂2α1(t)},

α1 < α2 > 0, e2α2t{R̂2α2(t)[γD24 + γ2K
2
3 ] + γK3e

−α2tR̂α2(t)},

α1 < α2 = 0, γD25[tR(t) − R∗(t)],

α1 < α2 < 0, e2α2t{γ[D26 + K3]e
−α2tR̂α2(t) + γ2K

2
3 R̂2α2(t)},

α1 = α2 = 0,
γD27{t3R(t) − 3t2R∗(t) + 3tR∗∗(t) − R∗∗∗(t)}

+γ2K2
1 [tR(t) − R∗(t)]2 + γK1R(t)[1 − γK1R(t)],

α1 = α2 < 0,

γD28e
α1tR̂α1(t) + γ2K1e

2α1t[tR̂α1(t) − R̂∗

α1
(t)]2

+γ2K
2
1e2α1t[t2R̂2α1(t) − 2tR̂∗

2α1
(t) + R̂∗∗

2α1
(t)]

+γK1e
α1tR̃

α1
(t)[1 − eα1tR̃

α1
(t)],

α1 = α2 > 0,
γD29e

2α1t[t3R̂2α1(t) − 3t2R̂∗

2α1
(t) + 3tR̂∗∗

2α1
(t) − R̂∗∗∗

2α1
(t)]

+γK1e
α1t{γK1[tR̂α1(t) − R̂∗

α1
(t)] + R̃

α1
(t)[1 − eα1tR̃

α1
(t)]}.

Table 9

Malthus roots W2(t) ∼

0 < α1 > α2, e2α1tr(γD21 + γ2K
2
2)/2α1,

0 = α1 > α2, t2rγD22/2,

0 > α1 > α2, r{2γD23 + (2γ + γ2)K2}/2(−α1),

α1 < α2 > 0, e2α2tr{2γD24 + γ2K
2
3}/2α2,

α1 < α2 = 0, t2rγD25/2,

α1 < α2 < 0, r{2γD26 + γ2 K3}/2(−α2),

α1 = α2 = 0, t4rγD27/4,

α1 = α2 < 0, r{4α2
1γD28 + 4(−α1)γK1 + γ2K

2
1}/4(−α3

1),

α1 = α2 > 0, t3e2α1trγD29/2α1.
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Table 10

Malthus roots J12(t) ∼
0 < α1 > α2, e2α1t(γD11 + γ2C1K2)R̂2α1(t),

0 = α1 > α2, γD12[tR(t) − R∗(t)],

0 > α1 > α2, e2α1t[γD13e
−α1tR̂α1(t) + γ2R̂2α1(t)],

α1 < α2 > 0, e(α1+α2)t{R̂α1+α2(t)[γD14 + γ2C1K3] + γ2C1K3R̂
2
α1

(t)},
α1 < α2 = 0, eα1tγD15[tR̂α1(t) − R̂∗

α1
(t)],

α1 < α2 < 0, e(α1+α2)t[γD16e
−α2tR̂α1(t) + C1K3γ2R̂α1+α2(t)],

α1 = α2 = 0, γD17{t2R(t) + R∗∗(t) − 2tR∗(t)} − γ2K1R(t)R(t),

α1 = α2 < 0,
e2α1t{γD18e

−α1tR̂α1(t) + γ2C1K1[tR̂2α1(t) − R̂∗

2α1
(t)]}

+γ2C1K1R̂α1(t)[tR̂α1(t) − R̂∗

α1
(t) − R̃

α1
(t)],

α1 = α2 > 0,
e2α1t{(γD19 + γ2C1K1)[tR̂2α1 (t) − R̂∗

2α1
(t)]

+γ2C1K1R̂α1(t)[tR̂α1(t) + R̂∗

α1
(t) − R̃

α1
(t)]}.

Table 11

M. Roots J12(t) ∼
0 < α1 > α2 e2α1tr(γD11 + γ2C1K2)/2α1,

0 = α1 > α2 t2rγD12/2,

0 > α1 > α2 r{γD13 + C1K2γ2(−α1)}/2α2
1,

α1 < α2 > 0

α1 > 0 : e(α1+α2)tr[γD14 + γ2C1K3]/(α1 + α2)

α1 = 0 : teα2trγ2C1K3/α2

α1 < 0 :

α1 + α2 > 0 : e(α1+α2)tr[γD14+γ2C1K3]
α1+α2

α1 + α2 = 0 : tr[γD14 + γ2C1K3]

α1 + α2 < 0 : r[γD14+γ2C1K3]
−(α1+α2)

α1 < α2 = 0 rγD15/α2
1,

α1 < α2 < 0 r{γD16/(−α1) − C1K3γ2/(α1 + α2)},
α1 = α2 = 0 rγD17t

3/3,

α1 = α2 < 0 r{4γD18(−α1) + γ2C1K1}/4α2
1,

α1 = α2 > 0 te2α1tr(γD19 + γ2C1K1)/2α1.
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Table 12

M. Roots Λ12(t) ∼

0 < α1 > α2 (γD11 + γ2C1K2)/
√

(γD21 + γ2K2
2 )(C11 + γ2C2

1 )

0 = α1 > α2

√
a2C2/µ1(−α2)

0 > α1 > α2 {γD13 + C1K2γ2(−α1)}/C1

√
γ2{2γD23 + (2γ + γ2)K2}

α1 < α2 > 0

α1 > 0 :
2[γD14 + γ2C1K3]

√
α1α2

(α1 + α2)
√

(2γD24 + γ2K2
3 )(C11 + γ2C2

1 )

α1 = 0 : 2γ2C1K3
√

µ1/
√

α2γa11{2γD24 + γ2K2
3}

α1 < 0 :

α1 + α2 > 0 :
eα1t[γD14 + γ2C1K3]2

√
(−α1)α2

(α1 + α2)C1

√
γ2(2γD24 + γ2K2

3)
→ 0

α1 + α2 = 0 :
te−α2t[γD14 + γ2C1K3]2

√
(−α1)α2

C1

√
γ2(2γD24 + γ2K2

3 )
→ 0

α1 + α2 < 0 :
te−α2t[γD14 + γ2C1K3]2

√
(−α1)α2

−(α1 + α2)C1

√
γ2(2γD24 + γ2K2

3)
→ 0

α1 < α2 = 0 t−1D15

√
γ(−α1)/α2

1C1

√
γ2D25 → 0

α1 < α2 < 0
2
√

α1α2{γD16(−α1 − α2) − α1γ2C1K3}
α1(α1 + α2)C1

√
γ2{2γD26 + γ2 K3}

α1 = α2 = 0
√

2/3

α1 = α2 < 0
4γD18(−α1) + γ2C1K1

γC1

√
2{4α2

1γD28 + 4(−α1)γK1 + γ2K2
1}

α1 = α2 > 0 t−1/2(γD19 + γ2C1K1)/
√

γD29(C11 + γ2C2
1 ) → 0
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6. Conclusions

The main conclusion of this work is that the asymptotic behavior of the sec-
ond order moments and correlations can be quite diverse for reducible two-type
branching processes with immigration. Based on Tables 1–12, we can distinguish
9 different cases depending on the values of the Malthus parameters α1 and α2.
For time-inhomogeneous immigration, the asymptotic behavior of the process is
also governed by the rate of immigration R(t).

In the time-homogeneous case R(t) = rt we identified a number of additional
cases. As indicated in Table 3, the asymptotic behavior of the correlation ρ12(t)
when α1 < α2 > 0 admits three, quite distinct, subcases which additionally
depend on whether α1 > 0, or α1 = 0, or α1 < 0. The situation is similar for
M12(t) (Table 5). In Tables 11 and 12 the subcase α1 < α2 > 0, α1 < 0 yields
also three additional subcases depending on whether α1 +α2 > 0, or α1 +α2 = 0,
or α1 + α2 < 0.

In the case where α1 = α2 = 0, it is interesting to point out that the con-
vergence of the correlations to constants that do not dependent on any model
parameters. Specifically, we have ρ12(t) = Corr{Z1(t), Z2(t) | (1, 0)} →

√
3/4

(Table 3) and Λ12(t) = Corr{Y1(t), Y2(t) | (0, 0)} →
√

2/3 (Table 12).

Finally, estimation theory relying solely on the means of the process may lead
to problem of non-identifiability of some model parameters. Estimator using
higher order moments may resolve the problem (Chen and Hyrien [4]). The
application of these asymptotic results for statistical purposes will be presented
in another paper.

Dedication. This article is dedicated to the memory of our friends and
collaborators Dr. Andrei Yakovlev and Dr. Alexander Zorin. We will always
remember our friendship, and continue to develop the ideas that germinated
during stimulating discussions with both of them.
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