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ESTIMATION OF THE OFFSPRING AND IMMIGRATION

MEAN VECTORS FOR BISEXUAL BRANCHING

PROCESSES WITH IMMIGRATION OF FEMALES

AND MALES∗

M. González, M. Molina, M. Mota, I. del Puerto

This paper concerns with the bisexual branching model with immigration
of females and males in each generation introduced in [4]. For this model
the problem of estimating the offspring and immigration mean vectors is
dealt. The estimation is considered in two sample situations, depending on
the ability to observe the number of female and male immigrants or the
impossibility to do it. The asymptotic properties of the proposed estimators
are investigated in the supercritical case. The behaviour of the estimators
is illustrated through a simulated example.

1. Introduction

Bisexual Galton-Watson branching processes are appropriate mathematical mod-
els to describe the evolution of two-sex populations where females and males co-
exist, form couples, and after that, reproduce. The first bisexual process was
introduced by D.J. Daley in 1968 (see [2]), since then, this class of branching
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processes has aroused a lot of interest being numerous the modifications intro-
duced to the original model. Surveys of the literature associated with bisexual
branching proceses are those of D.M. Hull (see [12]), G. Alsmeyer (see [10]), and
M. Molina (see [13]). In particular, bisexual branching processes allowing, in
each generation, immigration of females and males, or the immigration of mating
units in the population were investigated in [4], [5], [6], [7] and [16]. Also, a class
of bisexual processes with immigration depending on the number of mating units
in the population was studied in [14] and [15]. In this work, we are interested
in the bisexual process with immigration of females and males introduced in [4].
Some probabilistic results about such a model were derived in [5] and [7]. The
aim of this paper is to develop its inferential theory, providing several estimators
for the offspring and immigration mean vectors by considering the moment and
least squares methods.

The bisexual branching process with immigration of females and males, by
simplicity BPI, is a bitype sequence {(Fn,Mn)}n≥1 defined in the form, for n =
0, 1, . . .:

(1) (Fn+1,Mn+1) =

Zn∑

i=1

(γ1
ni, γ

2
ni) + (F I

n+1,M
I
n+1), Zn+1 = L(Fn+1,Mn+1),

where the process starts with a positive number N of mating units, i.e. Z0 = N ,
and the empty sum is considered to be (0, 0). {(γ1

ni, γ
2
ni), i = 1, 2, . . . ;n =

0, 1, . . . } and {(F I
n ,M

I
n), n = 1, 2, . . . } are independent sequences of i.i.d. non-

negative integer valued random variables. L : R
+ × R

+ → R
+ is the mating

function, assumed to be non-decreasing in each argument, integer valued for
integer arguments and such that L(x, y) ≤ xy. We will consider superadditive
mating functions, i.e., satisfying for every positive n that

L

(
n∑

i=1

xi,
n∑

i=1

yi

)
≥

n∑

i=1

L(xi, yi), xi, yi ∈ R
+, i = 1, . . . , n.

This is not a serious restriction, as was pointed out in [11] the vast majority of
mating functions used in the literature on two-sex population models are super-
additive.

Intuitively, (γ1
ni, γ

2
ni) represents the number of females and males produced

by the ith mating unit in generation n and (F I
n ,M

I
n) is the number of immigrant

females and males in this generation. Thus, (Fn,Mn) is the total number of
females and males in the nth generation, which form Zn = L(Fn,Mn) mating
units. These reproduce independently through the same probability distribution
for each generation.

The distributions of (γ1
ni, γ

2
ni) and (F I

n ,M
I
n) are called offspring and immi-

gration distributions, respectively. We denote by µ = (µ1, µ2) and µI = (µI
1, µ

I
2)
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their respective mean vectors, and by Σ = (σij) and ΣI = (σI
ij) their respec-

tive covariance matrices. In order to avoid trivialities, we will assume all these
parameters positive and finite.

It can be shown that {Zn}n≥0 and {(Fn,Mn)}n≥1 are homogeneous Markov
chains. We will use the simplified notation, for n = 1, 2, . . .:

Γn = (Γ1n,Γ2n) where Γ1n = Fn and Γ2n = Mn,

ΓI
n = (ΓI

1n,Γ
I
2n) where ΓI

1n = F I
n and ΓI

2n = M I
n.

Analogously to the classification established for the classical Galton-Watson
process, the BPI can be classified attending to the value of its asymptotic mean

growth rate (see [7]), that is, r = limk→∞ k−1E[Zn+1 | Zn = k]. The BPI will be
called subcritical, critical or supercritical, depending on whether r < 1, r = 1 or
r > 1, respectively.

In order to investigate the asymptotic properties of the estimators, we will
suppose that r > 1. Under this framework it has been proved in [7] that, on
[Zn → ∞]:

i) {Z−1
n−1Γn}n≥1 and {Z−1

n−1Γ
I
n}n≥1 converge almost surely to µ and 0, respec-

tively, as n→ ∞.

ii) {r−nZn}n≥1 and {r−nΓn}n≥1 converge almost surely to W and r−1Wµ,
respectively, as n → ∞, where W is a random variable satisfying P [0 <
W <∞] = 1.

The paper is organized as follows: In Section 2. the problem of estimating
the offspring and immigration vectors is dealt. The estimation is considered in
two situations. First, it is assumed that the sample available is the number of
mating units and of female and male immigrants in each generation. On the
other hand, we also consider that we can only observe the number of the mating
units in each generation. In order to obtain the estimators, it is used for the
first sample scheme the method of the moments and for the second one the least
squares method. Asymptotic properties of the estimators are investigated in both
schemes and, as illustration, a simulated example is provided. Finally, Section 3.
is devoted to proving the results previously established.

2. Estimation of the offspring and immigration vectors

From now on, we will denote by Q = [W > 0], PQ[·] = P [· | Q], FQ(y) =
PQ[W ≤ y], φ(x) the distribution function of the standard normal distribution

and φ∗(x) =
∫∞

0 φ(xy1/2)dFQ(y).
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2.1. Estimation when observations about the immigration are avail-

able

In this section we consider the situation in which the number of immigrants
(females and males) per generation may be observed.

If for some k ≥ 1 the sample {Zk−1, Γk, ΓI
k} is available then, from (1), we

deduce that

E[Γk | Zk−1,Γ
I
k] = Zk−1µ+ ΓI

k a.s.

Thus, providing that Zk−1 > 0, the method of the moments suggests the following
estimator for µ :

(2) µk = (µ1k, µ2k) = Z−1
k−1(Γk − ΓI

k).

Remark 2.1. For convention, when Zk−1 = 0, we will assume that (1, 1) is
a razonable estimation for µ.

Theorem 2.1. For a supercritical BPI one has:

i) E[µk | Zk−1 > 0] = µ.

ii) µk converges almost surely to µ, as k → ∞, on [Zn → ∞].

iii) For every real number x, PQ[(σ−1
ii Zk−1)

1/2(µik − µi) ≤ x] converges to

φ(x), as k → ∞, i = 1, 2.

iv) For every real number x, PQ[(σ−1
ii r

k−1)1/2(µik − µi) ≤ x] converges to

φ∗(x), as k → ∞, i = 1, 2.

If the sample {Zk−1, Γk, ΓI
k, k = 1, 2, . . . , n} is available then it seems

reasonable to find the best linear convex combination of the estimators µk, given
in (2), for k = 1, . . . , n, i.e., an estimator of the form

n∑

k=1

βkµk.

Taking into account that, for i = 1, 2, V ar[Γik | Zk−1,Γ
I
k] = Zk−1σii almost

surely, it is justifiable to consider βk ∝ Zk−1, k = 1, . . . , n. Imposing that
n∑

k=1

βk =

1, we obtain the following estimator for µ :

(3) µ̃n = (µ̃1n, µ̃2n) =

(
n∑

k=1

Zk−1

)−1 n∑

k=1

(Γk − ΓI
k).
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Obviously, the estimator proposed for µI will be

(4) µ̃I
n = (µ̃I

1n, µ̃
I
2n) = n−1

n∑

k=1

ΓI
k.

It is clear that, from strong law of large numbers, µ̃I
n converges almost surely to

µI as n→ ∞. Moreover

Theorem 2.2. For a supercritical BPI one has:

i) E[µ̃n] = E

[(
n∑

k=1

Zk−1

)−1 n−1∑
k=1

(Γk − ΓI
k)

]
+ E

[(
n∑

k=1

Zk−1

)−1

Zn−1

]
µ.

ii) µ̃n converges almost surely to µ, as n→ ∞, on [Zn → ∞].

iii) For every real number x, PQ

[
(σ−1

ii

n∑
k=1

Zk−1)
1/2(µ̃in − µi) ≤ x

]
converges

to φ(x), as n→ ∞, i = 1, 2.

iv) For every real number x, PQ[((σii(r − 1))−1(rn − 1))1/2(µ̃in − µi) ≤ x]
converges to φ∗(x), as n→ ∞, i = 1, 2.

Example 2.1. Consider a BPI with offspring and immigration laws given
respectively by:

P [f01 = i,m01 = j] =
6

(3 − i− j)!i!j!
(0.5)i(0.35)j(0.15)3−i−j

for i, j = 0, 1, 2, 3; i+ j ≤ 3

and

P [F I
1 = i,M I

1 = j] = e−2(i!j!)−1; i, j = 0, 1, . . . ,

i.e. we take a trinomial distribution with parameters 3, 0.5 and 0.35 as offspring
distribution and considering that F I

n andM I
n are i.i.d. random variables according

to a Poisson distribution with mean 1. We also suppose that the process is
governed by the mating function L(x, y) = min{x, y}. Under these conditions, it
can be derived that µ = (1.5, 1.05), µI = (1, 1) and r = 1.05.

Starting with Z0 = 1 we simulated 200 generations for such a model (see
Table 1). From (2), (3) and (4) we calculated the corresponding estimates for µ
and µI . Figures 1, 2 and 3 show the evolution of the estimates obtained.
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n Fn Mn Zn−1 F I
n M I

n

1 3 0 1 0 0
25 1 3 0 1 3
50 46 24 28 0 0
75 472 329 311 3 1

100 1622 1187 1090 2 1
125 5866 4177 3946 1 1
150 19563 13943 13108 3 1
175 68117 47649 45453 1 0
200 227197 158917 151345 2 2

Table 1: Simulated data
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Figure 1: Estimates obtained from µ̄1n

(solid line) and µ̄2n (dashed line)
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Figure 2: Estimates obtained from µ̃1n

(solid line) and µ̃2n (dashed line)
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Figure 3: Estimates obtained from µ̃I

1n

(solid line) and µ̃I
2n (dashed line)
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2.2. Estimation when observations about the immigration are not

available

Next, we consider the situation for which the number of immigrants in each
generation can not be observed.

Denote by Fn = σ(Z0,Γ1, . . . ,Γn), n = 1, 2, . . ., (F0 = σ(Z0)). Then, for
i = 1, 2, . . .,

(5) E[Γi | Fi−1] = Zi−1µ+ µI a.s.

If, for n ≥ 2, the sample {Zk−1, Γk, k = 1, . . . , n} is available, using the
conditional least squares method and (5), estimators for µ and µI are obtained
by minimizing the expression:

(6) ϕ(µ, µI) =

2∑

i=1

n∑

k=1

(Γik − Zk−1µi − µI
i )

2.

It can be verified that the values of µ and µI that minimize (6) are respec-
tively:

(7) µ̂n = (µ̂1n, µ̂2n) =

n
n∑

k=1

Zk−1Γk −
n∑

k=1

Zk−1

n∑
k=1

Γk

n
n∑

k=1

Z2
k−1 −

(
n∑

k=1

Zk−1

)2

and

(8) µ̂I
n = (µ̂I

1n, µ̂
I
2n) =

n∑
k=1

Z2
k−1

n∑
k=1

Γk −
n∑

k=1

Zk−1

n∑
k=1

Zk−1Γk

n
n∑

k=1

Z2
k−1 −

(
n∑

k=1

Zk−1

)2 .

These estimators verify the following properties:

Theorem 2.3. For a supercritical BPI, on [Zn → ∞], one has that µ̂n con-

verges almost surely to µ as n→ ∞.

Theorem 2.4. Consider a supercritical BPI. Then, for every real number x,
one has that

PQ



((

n∑

k=1

Zk−1 + n

)
(r2 + r + 1)(r + 1)−2σ−1

jj

)1/2

(µ̂jn − µj) ≤ x
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Figure 4: Estimates obtained from µ̂1n (solid line) and µ̂2n (dashed line)

converges to φ(x), as n→ ∞, j = 1, 2.

Example 2.2. Consider again the BPI given in the previous example. The
estimates for µ and µI calculated from expressions (7) and (8) are showed in
Figures 4 and 5, respectively. Note that µ̂I

n has a very irregular behaviour, as
n→ ∞. In fact, it can be proved that it is not a consistent estimator for µI .

Remark 2.2. Using the results in [8], it can be established that [W > 0] =
[Zn → ∞] almost surely. In consequence, one can replace in Theorems 2.1, 2.2
and 2.4, PQ by P[Zn→∞]. Also, by considering Lemma 2.3 in [9], P[Zn→∞] can
be replaced by P[Zn−1>0]. This is important from a practical viewpoint since the
condition [Zn−1 > 0] is a more verifiable condition that [Zn → ∞].

Remark 2.3. Taking into account the previous remark and the results es-
tablished in Theorems 2.1 (iii), Theorem 2.2 (iii) and Theorem 2.4, depending on
the sample available, one can determine asymptotic confidence intervals for µi,
i = 1, 2.
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Figure 5: Estimates obtained from µ̂I
1n (solid line) and µ̂I

2n (dashed line)

3. Proofs

P r o o f o f T h e o r em 2.1.

i) E[µk | Zk−1] = (P [Zk−1 > 0])−1
∞∑

j=1
j−1P [Zk−1 = j]

j∑
l=1

E[γ0l] = µ, where it

has been used that E[γk−1l] = E[γ0l] = µ, l = 1, . . . , j.

ii) It is a direct consequence of (3)(ii).

In order to prove iii) and iv) we define the sets:

C1 = [Zi > 0 , i ≥ 1]
⋂
Q

and

Cj = [Zj−1 = 0 , Zi > 0 , i ≥ j]
⋂
Q, j = 2, 3, . . .

Obviously the sets Cj are disjoint and
⋃∞

j=1Cj = Q. Moreover, if Pj [·] =

P [· | Cj], we have that:

Pj [(σ
−1
ii Zk−1)

1/2(µik − µi) ≤ x] = Pj [Sik(x)], i = 1, 2,

where Sik(x) = [(σiiZk−1)
−1/2

Zk−1∑
l=1

(γi
k−1l − µi) ≤ x].



72 M. González, M. Molina, M. Mota, I. del Puerto

Making use, for i ∈ {1, 2}, of Proposition A.1 (see Appendix) with an =
rn, νn = Zn, ν = W and

Yn(t, w) = (σiiZn(w))−1/2

[Zn(w)t]∑

l=1

(γi
n−1l(w) − µi),

we get lim
k→∞

Pj [Sik(x)] = φ(x), j = 1, 2, . . ., and therefore

lim
k→∞

PQ[Sik(x)] = lim
k→∞

(P [Q])−1
∞∑

j=1

Pj [Sik(x)]P [Cj ] = φ(x),

where it has been used that

lim
k→∞

∞∑

j=1

Pj [Sik(x)]P [Cj ] = P [Q] lim
k→∞

Pj [Sik(x)] = P [Q]φ(x).

Thus, iii) is proved.

On the other hand, it is clear that

Pj [(σ
−1
ii r

k−1)1/2(µik − µi) ≤ x] = Pj [S
′
ik(x)], i = 1, 2,

where S′
ik(x) = [(rk−1Z−1

k−1)
1/2(σiiZk−1)

−1/2
Zk−1∑
l=1

(γi
k−1l − µi) ≤ x].

Taking into account Proposition A.2 (see Appendix) it can be derived that
lim

k→∞
Pj [S

′
ik(x)] = φ∗(x). Then, using a similar argument to that one used

in the proof of iii) we deduce iv).

P r o o f o f Th e o r e m 2.2. Consider the σ-algebras Fn = σ(Z0,Γ1, . . . ,Γn)

and FI
n = σ(ΓI

1, . . . ,Γ
I
n), and denote by Xn =

n∑
k=1

Zk, n = 1, 2, . . .

i)

E[µ̃n] = E

[
E[X−1

n−1

n∑

k=1

(Γk − ΓI
k) | Fn−1 ∨ FI

n−1]

]
=

E

[
X−1

n−1

(
n−1∑

k=1

(Γk − ΓI
k) + E[Γn − ΓI

n | Fn−1 ∨ FI
n−1]

)]
=

E[X−1
n−1

n−1∑

k=1

(Γk − ΓI
k)] + E[(Xn−1)

−1Zn−1]µ.
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ii) It is proved taking into account Theorem 1 (ii) and Toeplitz’s lemma. In
fact, on [Zn → ∞], we have that:

lim
n→∞

µ̃n = lim
n→∞

X−1
n−1

n∑

k=1

Zk−1[Z
−1
k−1(Γk − ΓI

k)] =

lim
n→∞

Z−1
n−1(Γn − ΓI

n) = µ a.s.

iii)

PQ[(σ−1
ii Xn−1)

1/2(µ̃in − µi) ≤ x] =

PQ[(σiiXn−1)
−1/2

n∑

k=1

Zk−1∑

l=1

(γi
k−1l − µi) ≤ x] =

PQ[(σiiXn−1)
−1/2

Xn−1∑

l=1

(γi
0l − µi) ≤ x].(9)

From Toeplitz’s lemma we deduce that

lim
n→∞

r−nXn = r(r − 1)−1W PQ − a.s.,

and therefore

lim
n→∞

(r − 1)(rn+1 − 1)−1Xn = W PQ − a.s.

Thus, from (9) and making use of Proposition A.1 with
an = (r − 1)−1(rn+1 − 1), νn = Xn, ν = W and

Yn(t, w) = (σiiXn(w))−1/2

[Xn(w)t]∑

l=1

(γi
0l(w) − µi),

the result is derived.

iv) It can be deduced in a similar way to that one used in iii), applying Propo-
sition A.2 and taking into account that

PQ[(σ−1
ii cn)1/2(µ̃in − µi) ≤ x] =

PQ[(c−1
n Xn−1)

−1/2(σiiXn)−1

Xn−1∑

l=1

(γi
0l − µi) ≤ x],

where cn = (r − 1)−1(rn − 1).
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P r o o f o f T h e o r em 2.3. µ̂n can be rewritten in the form:

(10) µ̂n =

r−2n
n∑

k=1

Zk−1Γk − n−1

(
r−n

n∑
k=1

Γk

)(
r−n

n∑
k=1

Zk−1

)

r−2n
n∑

k=1

Z2
k−1 − n−1

(
r−n

n∑
k=1

Zk−1

)2 .

Using (3)(ii) and Toeplitz’s lemma it is obtained, on [Zn → ∞], that:

lim
n→∞

r−2n
n∑

k=1

Zk−1Γk = (r2 − 1)−1W 2µ a.s.,

lim
n→∞

r−n
n∑

k=1

Γk = (r − 1)−1Wµ a.s.,

lim
n→∞

r−n
n∑

k=1

Zk−1 = (r − 1)−1W a.s.,

lim
n→∞

r−2n
n∑

k=1

(Zk−1)
2 = (r2 − 1)−1W 2 a.s.

Consequently, from (10), the proof is concluded.

P r o o f o f T h e o r e m 2.4. Previously it will be necessary to prove, for
j = 1, 2, and x ∈ R , that:

(11) lim
n→∞

PQ[(σjj

∞∑

k=1

b2k)
−1/2

n∑

k=1

bk(Zn−k + 1)−1/2ηj
nk ≤ x] = φ(x)

and

(12) lim
n→∞

PQ




(r2α+1 − 1)1/2
n∑

k=1

(Zk−1 + 1)α

((r − 1)2α+1σjj)1/2

(
n∑

k=1

Zk−1 + n

)α+1/2
ηj

nk ≤ x


 = φ(x),

where ηj
nk = Γjn−k+1 −Zn−kµj − µI

j , {bn}n≥1 is a sequence of real numbers such

that
∞∑

k=1

b2k <∞ and α > −1/2.

To prove (11) we consider the random variables:
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U j
kn =

k∑

i=1

biξ
j
ni , U j

k =

k∑

i=1

biξ
j
i , U j =

∞∑

i=1

biξ
j
i ,

where

ξj
ni = (Zn−i + 1)−1/2ηj

ni if i = 1, . . . , n or 0 if i ≥ n+ 1,

and {ξj
i } is a sequence of i.i.d. random variables with normal distribution of

mean 0 and variance σjj.
It is clear that:

ξj
ni = (Zn−i + 1)−1/2

Zn−i∑

i=1

γj
ni if i = 1, . . . , n or 0 if i ≥ n+ 1.

Then, by a similar argument to that one used in Theorem 3.1 of [17], it can be
proved that, for j = 1, 2, and any positive integer m

(13) (ξj
n1, . . . , ξ

j
nm) converges in distribution to (ξj

1, . . . , ξ
j
m) as n→ ∞.

From (13) we obtain that {U j
kn} converges in distribution to U j

k , as n → ∞,

and clearly {U j
k} converges in distribution to U j , as k → ∞.

Obviously, for k ≥ n, U j
kn = U j

nn. For k = 1, . . . , n, taking into account that

E[Γjk − Zk−1µj − ΓI
jk | Fk−1] = 0 almost surely and Chebyshev’s inequality, we

deduce that:

PQ[|U j
kn − U j

nn| > ǫ] ≤ ǫ−2E[(U j
kn − U j

nn)2] ≤ σjjǫ
−2

∞∑

i=k+1

b2i .

Thus, PQ[|U j
kn−U

j
nn| > ǫ] converges to 0 as k → ∞, and applying Proposition A.3

(see Appendix) we derive that {U j
nn} converges in distribution to U j as n→ ∞.

Now

(14)

n∑

i=1

bi(Zn−i + 1)−1/2ηj
ni = U j

nn +

n∑

i=1

bi
ΓI

jn−i+1 − µI
j

(Zn−i + 1)1/2

and since

PQ

[∣∣∣∣∣

n∑

i=1

bi
ΓI

jn−i+1 − µI
j

(Zn−i + 1)1/2

∣∣∣∣∣ > ǫ

]
≤ 2ǫ−1µI

jE

[
n∑

i=1

|bi|(Zn−i + 1)−1/2

]
,

the second term of the sum in (14) converges in probability to 0, as n→ ∞, and
(11) holds.
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On the other hand, on Q and for j = 1, 2, it may be written:

n∑
k=1

(Zk−1 + 1)α

(
n∑

k=1

Zk−1 + n)α+1/2

ηj
nk =

(
W−1(

n∑

k=1

Zk−1 + n)

)−(α+1/2) n∑

k=1

r(k−1)(α+1/2)

(Zk−1 + 1)1/2
ηj

nk+

(
n∑

k=1

Zk−1 + n)−(α+1/2)

(Zk−1 + 1)1/2

n∑

k=1

(
(Zk−1 + 1)α+1/2 − (rk−1W )α+1/2

)
ηj

nk(15)

Now (Wrn)−1(r − 1)(
n∑

k=1

Zk−1 + n) converges almost surely to 1, as n→ ∞,

and from (11),

(r − 1)α+1/2

(Zk−1 + 1)1/2

n∑

k=1

r−(n−k+1)(α+1/2)ηj
nk

converges in distribution to a normal of mean 0 and variance σ∗jj where

σ∗jj = σjj(r
2α+1 − 1)−1(r − 1)2α+1,

so that, it is deduced that the first summand in (15) converges in distribution to
a normal of mean 0 and variance σ∗jj.

It is not difficult to verify that:

(
n∑

k=1

Zk−1 + n

)−(α+1/2)

(Zk−1 + 1)1/2

n∑

k=1

(
(Zk−1 + 1)α+1/2 − (rk−1W )α+1/2

)
ηj

nk ≤

(
r−n

n∑

k=1

Zk−1 + n

)−(α+1/2)

A1/2
n (Bj

n)1/2

where

An = r−n(α+1/2)
n∑

k=1

r(k−1)(α+1/2)
[
(r−(k−1)(Zk−1 + 1))α+1/2 −Wα+1/2

]2
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and

Bj
n = r−n(α+1/2)

n∑

k=1

r(k−1)(α+1/2)

(
Γjk − Zk−1µj − µI

j

Zk−1 + 1

)2

.

We know that r−n

(
n∑

k=1

Zk−1 + n

)
converges almost surely to W (r − 1)−1

as n → ∞. Then, by Toeplitz’s lemma, it is obtained that An converges almost
surely to 0, as n→ ∞.

It is matter of some calculations to verify, for j = 1, 2, that:

E[Bj
n] = r−n(α+1/2)

n∑

k=1

r(k−1)(α+1/2)E

[
σjjZk−1 + σI

jj

Zk−1 + 1

]
.

Consequently, on Q , it is derived that sup
n
E[Bj

n] <∞ , j = 1, 2, and (12) holds.

We now prove the Theorem. It is readily obtained that:

(
n∑

k=1

Zk−1 + n

)1/2

(µ̂jn − µj) =
A

j
n − n−1B

j
n

Cn − n−1
,

where:

A
j
n =

(
n∑

k=1

Zk−1 + n

)−3/2( n∑

k=1

Zk−1 + n

)
(Γjk − Zk−1µj − µI

j ),

B
j
n =

(
n∑

k=1

Zk−1 + n

)1/2 n∑

k=1

(Γjk − Zk−1µj − µI
j ),

and

Cn =

(
n∑

k=1

Zk−1 + n

)−2 n∑

k=1

(Zk−1 + 1)2.

From (12), with α = 1, we obtain that A
j
n converges in distribution to a

normal of mean 0 and variance (r2 + r+ 1)−1(r− 1)2σjj as n→ ∞. Using again

(12), with α = 0, we have that B
j
n converges in distribution to a normal of mean

0 and variance σjj and therefore n−1B
j
n converges in distribution to 0, as n→ ∞.

Then, taking into account that Cn converges almost surely to (r+ 1)−1(r− 1) as
n→ ∞, the proof is concluded.
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Appendix

Consider a sequence of i.i.d. random variables {ξn}n≥1 on the probability space

(Ω,A, P ) such that E[ξ1] = 0 and E[ξ21 ] = σ2 < ∞. Denote by Sn =
n∑

i=1
ξi ,

n = 1, 2, . . . and, for t ∈ [0, 1], we shall define, for n = 1, 2, . . .,

Xn(t, w) = σ−1n−1/2S[nt](w) , w ∈ Ω,

and

Yn(t, w) = Xνn
(t, w) if νn(w) > 0 or 0 otherwise,

where {νn}n≥1 is a sequence of non negative integer-valued random variables on
(Ω,A, P )

Proposition A.1. If there exists a sequence of real numbers {an}n≥1 such

that:

i) {an}n≥1 converges to ∞, as n→ ∞.

ii) {a−1
n νn}n≥1 converges in probability to a non negative random variable ν

such that P [ν > 0] > 0.

Then, for every probability P ≪ PD, where PD[·] = P [· | D], being D = [ν >
0], we have, for t ∈ [0, 1] and x ∈ R, that:

lim
n→∞

P ∗[w : Yn(t, w) ≤ x] = P ∗[w : V ∗(t, w) ≤ x],

where {V ∗(t, ·), 0 ≤ t ≤ 1)} is a Wiener process.

The proof can be read in [3].

Proposition A.2. Under the hypotheses of Proposition A.1 if, for t ∈ [0, 1],
we define, for n = 1, 2, . . .:

Y ′
n(t, w) = ν−1/2

n (w)a1/2
n Yn(t, w) , w ∈ D.

Then, for every probability P ∗ << PD , t ∈ [0, 1], x ∈ R, we have that

lim
n→∞

P ∗[w : Y ′
n(t, w) ≤ x] = P ∗[w : V (t, w)ψ−1/2 ≤ x],

where ψ is P ∗-independent of the Wiener process {V ∗(t, ·), 0 ≤ t ≤ 1)} and

such that P ∗[w : ψ(w) ≤ x] = P ∗[w : ν(w) ≤ x].

The proof can be read in [3].

Proposition A.3. Consider the sequences of random variables {Vn}n≥1 and

{Ukn}n,k≥1 on (Ω,A, P ) such that:
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i) For each k = 1, 2, . . ., {Ukn}n≥1 converges in distribution to Uk, as n→ ∞.

ii) {Uk}k≥1 converges in distribution to U as k → ∞.

iii) For every ε > 0, lim
k→∞

lim
n→∞

P [|Ukn − Vn| ≥ ε] = 0.

Then {Vn}n≥1 converges in distribution to U , as n→ ∞.

The proof can be read in [1], p. 28.
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