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SINGLE-SERVER QUEUEING SYSTEM WITH
MARKOV-MODULATED ARRIVALS AND SERVICE TIMES

Mitko Dimitrov

Markov-modulated queueing systems are those in which the input process
or service mechanism is influenced by an underlying Markov chain. Several
models for such systems have been investigated .

In this paper we present heavy traffic analysis of single queueing system
with Poisson arrival process whose arrival rate is a function of the state of
Markov chain and service times depend on the state of the same Markov
chain at the epoch of arrivals.

1. Introduction

Markov process is natural random environment and is extensively used for model-
ing the arrival rate and service times in queueing theory and many other applica-
tions. The presence of this Markov process is attributed to stochastic variations
or heterogeneity of arrivals and service and actually it is a component of the
queueing system considered.

Significant effort is currently being devoted to the development of integrated
communication systems, which can support a wide range applications including
voice, video and data.

There are many exact analytical results, computational techniques and ap-
proximations of the basic characteristics of Markov-modulated queueing model
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[1], [2], [3], [4], [5]. The asymptotic behavior of performance characteristics of
such queues are derived in some limit cases as heavy traffic. Heavy traffic analy-
sis of Markov-modulated queueing models is suggested by Burman and Smith [2]
where an M/G/1 type queue with Markov-modulated arrivals was investigated.
Genadi Falin and Anatoli Falin [3] suggested another approach to the same prob-
lem. It is based on certain “semi-explicit” formula for the stationary distribution
of the virtual waiting time and its mean value in heavy traffic assumptions. We
applied this approach to single queueing system with arrival rate and service time
depending on the state of Markov chain at the arrival epoch.

2. Some preliminary results

Let us consider an irreducible continuous time Markov chain Z(t) with finite
state space S = {0, 1, . . . ,K}, transition rates αnm, αn = −αnn and stationary
distribution π = (π0, π1, . . . , πK). The infinitesimal matrix of the process is
denoted as Q.

The linear equations

Q(x0, x1, . . . , xK)T = (b0, b1, . . . , bK)T

has a solution if the vector (b0, b1, . . . , bK) is orthogonal to the stationary vector π.
Now let f(n) be a nonnegative function defined on the state space of Z(t),Hn(x)
is the probability distribution with two moments hn1, hn2, n = 0, 1, . . . ,K and

f =
K
∑

n=0
πnf(n)hn,1.

Then the linear algebraic equations

(1)

K
∑

m=0

αnmxm = f − f(n)hn1, 0 ≤ n ≤ K

with unknowns x0, x1, . . . , xK always has a solution.

Since the Markov chain Z(t) is finite and irreducible, it is also ergodic chain,
and πj > 0 for j = 0, 1, 2, . . . ,K. Then the stationary distribution π = (π0,
π1, . . . , πK) can be found from the Kolmogorov equations πQ = 0 and normal-

ization condition
K
∑

n=0
πn = 1. In coordinate form Kolmogorov equations are

π0α0j +
K
∑

i=0
πiαij = 0, 0 ≤ j ≤ K.
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If we consider the equations

π0α0j +

K
∑

i=0

πiαij = 0, 0 ≤ j ≤ K,

then π0(α01, α02, . . . , α0K) = −(π1, . . . , πK)A

where A =







α11 α12 . . . α1K

...
αK1 αK2 . . . αKK






, and det A 6= 0.

Then (α01, . . . , α0K)A−1 = −
(π1, . . . , πK)

π0

Now, if we define matrix R as R =











0 0 . . . 0
0
... A−1

0











, then matrix QR is

equal to

(2)

















0
−π1

π0

−π2

π0
. . .

−πK

π0
0 1 0 . . . 0
0 0 1 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . . . . 1

















and for any vector y = (y0, y1, . . . , yK) we have yQR = y −
y0

π0
π.

It is obvious that vector

x = (x0, x1, . . . , xK)T = R(f − f(0)h01, f − f(1)h01, . . . , f − f(K)hK1)

is a solution to the linear equations (1).

3. An M/G/1 queueing system with Markov modulated arrivals
and service times

We make the following assumptions

1. The modulating Markov chain Z(t) is exactly as in the Section 2.

2. During a time-interval in which Z(t) = n, customers arrive in a Poisson
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process at a rate λf(n)(0 < f(n) < ∞) and then service times have a distribution
Hn. Given the states of the Markov chain, the service times are conditionally
independent and also independent of the arrival process.

3. There is a single server and the queue discipline is first come, first served.

We denote by W (t) the virtual waiting time. The system is ergodic if the

inequality ρ =
K
∑

n=0
λf(n)hn1πn < 1 holds. From now on we assume that ρ < 1

and system is in steady state. The presence of the Markov chain Z(t) implies that
we need to designate the waiting time process as {W,Z} = {W (t), Z(t), t ≥ 0}.
Given the state of Z(t) = n, the probability that a customer arrives during (t, t+
dt] and make a service demand not exceeding x is given by λf(n)Hj(x)dt+0(dt).
As in the standard model it is seen that (W,Z) is a time-homogeneous Markov
process on the state space R+xS. To derive integro-differential equations for
F (x, t) = P{W (t) < x,Z(t) = n} we process as on the standard model but note
the presence of the modeling chain Z(t). Thus considering the process over the
intervals (0, t],(t, t + dt] we find that

Fn(x, t + dt) = Fn(x + dt, t)(1 − λf(n)dt + αnndt)+

+

∞
∫

0

Fn(x + dt − ν, t)λf(n)dHn(ν) +
∑

m6=n

αmnFm(x, t)dt.

This leads to

F ′
n(x) = (λf(n) + αn)Fn(x) + λf(n)

x
∫

0

Fn(x − y)dHn(y) +
∑

m6=n

αmnFm(x).

Let

Pn0 = P{W (t) = 0, Z(t) = n}

ϕn(s) = E{e−sW (t);Z(t) = n} = Pn0 +

∞
∫

0+

e−sxdFn(x)

hn(s) =

∞
∫

0

e−sxdHn(x).
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In terms of Laplace transform we obtain for ϕn(s), n = 0, 1, . . . ,K the next
equations

(3)

K
∑

m=0

ϕm(s)αmn = [λf(n)(1 − hn(s) − s)] ϕn(s) + sPn0.

From
K
∑

n=0
αmn = 0 and summing both sides of (3) we get

(4)

K
∑

n=0

Pn0 =

K
∑

n=0

[

1 − λf(n)
1 − hn(s)

s

]

ϕn(s).

If s → 0 the sum
K
∑

n=0

[

1 − λf(n)
1 − hn(s)

s

]

ϕn(s) tends to

K
∑

n=0

[1 − λf(n)hn,1]πn = 1 −
K

∑

n=0

λf(n)hn1πn = 1 − ρ

and
K
∑

n=0
Pn0 = 1− ρ. Taking the first derivative at the point s = 0 from the both

sides of (4) we have

(5)

K
∑

n=0

(1 − λf(n)hn1) Wn =

K
∑

n=0

λf(n)hn2

2
πn.

Now multiplying both sides of (3) by xn and summing with respect to n we
get

K
∑

n=0

K
∑

m=0

ϕm(s)αmnxn =

K
∑

n=0

[λf(n) [1 − hn(s)] − s]ϕn(s)xn + s

K
∑

n=0

Pn0xn,

or

K
∑

m=0

ϕm(s)(f − f(m)hm1) =

K
∑

n=0

xn [λf(n)(1 − hns) − s]ϕn(s) + s

K
∑

n=0

Pn0xn.

Differentiating this equation with respect to s at the point s = 0 we have

(6) −

K
∑

m=0

Wm (f − f(m)hm1) =

K
∑

n=0

xnπn(λf(n)hn1 − 1) +

K
∑

n=0

Pn0xn.
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Multiplying both sides of (6) with λ and summing (5) and (6) we get the
equation

K
∑

m=0

Wm(1 − ρ) =

K
∑

n=0

λf(n)hn2

2
πn +

K
∑

n=0

λxnπn(λf(n)hn1 − 1) +

K
∑

n=0

λPn0xn.

Thus we obtain the main result.

Theorem 1. The mean virtual waiting time is given by the formula

W =

K
∑

n=0

λf(n)πnhn2

2
+

K
∑

n=0

λxnπn (λf(n)hn1 − 1) +

K
∑

n=0

λPn0xn

1 − ρ

where the variables xn are a solution of the linear algebraic equations (1), and

the probabilities Pn0 satisfy equation
K
∑

n=0
Pn0 = 1 − ρ.

Our goal in this paper is to investigate the queue in heavy traffic condition.

If ρ = λ
K
∑

n=0
f(n)hn1πn → 1 then all probabilities Pn0, n = 0, 1, . . . ,K tends

to 0 because
K
∑

n=0
Pn0 = 1 − ρ → 0 as ρ → 1.

Thus we prove the next theorem.

Theorem 2. If ρ → 1 (under heavy traffic)

(1 − ρ)W =

K
∑

n=0

xnf(n)πnhn2

2f
+

K
∑

n=0

xnπn(f(n)hn1 − f)

f2

From Pn0 > 0, n = 0, 1, . . . ,K,
K
∑

n=0
Pn0 = 1 − ρ follows that:

K
∑

n=0

Pn0xn ∈ (1 − ρ)(x∗, x
∗), x∗ = min

n
{xn}, and x∗ = max

n
{xn},

and the next theorem is proved.
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Theorem 3. Let x∗ = min
n

{xn}, x∗ = max
n

{xn}.

Then

λx∗ ≤ W −

K
∑

n=0

λxnf(n)πnhn2

2
+

K
∑

n=0

λxnπn(λf(n)hn1 − 1)

1 − ρ
≤ λx∗

We shall consider stationary distribution of the process (W (t), Z(t)) as ρ → 1.

Theorem 4.

a) random variables W (t) and Z(t) are asymptotically independent;
b) the random variable (1 − ρ)W (t) is asymptotically exponential with the mean

K
∑

n=0
πnhn2f(n)

2f
+

K
∑

n=0
πn(hn1f(n) − f)xn

f2
.

P r o o f. Let us consider several notations as ϕ(s) = (ϕ0(s), ϕ1(s), . . . , ϕK(s)),
P 0 = (P00, . . . , PK0) and diagonal matrices F = diag (f(0), f(1), . . . , f(K)),
H̃(s) = diag (1 − h0(s), 1 − h1(s), . . . , 1 − hK(s)) , H̃1 = diag(h01, h11, h21, . . . ,
hK1) and H̃2 = diag(h02, h12, . . . , hK2), E = diag (1, 1, . . . , 1).

In this notations we can rewrite equation (3) as

(7) ϕ̄(s)Q = ϕ̄(s)
[

λH̃(s)F − sE
]

+ sP̄0

Multiplying from the right both sides of (7) with ē and P̄0ē = 1 − ρ ≡ ε we
get

(8) ϕ̄(s)
[

λH̃(s)F − sE
]

ēT + εs = 0

From equation (2) multiplying again both sides of (7) from the right side by the
matrix R we have

ϕ̄(s)QR = ϕ̄(s)
[

λH̃(s)F − sE
]

R + sP̄0R

or

(9) ϕ̄(s) = ϕ0(s)
π

π0
+ ϕ̄(s)

[

λH̃(s)F − sE
]

R + sP̄0R
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Now, let us replace vector ϕ̄(s) from (9) to the right side of (9), and after
some algebraic transformation we get the equation

ϕ̄(s) = ϕ0(s)
π

π0

[

E + [λH̃(s)F − sE]R
]

+

(10) +s2ϕ̄(s)

[[

λ
H̃(s)

s
F − E

]

R

]2

+ sP̄0R
[

E + [λH̃(s)F − sE]R
]

=

= ϕ0(s)
π

π0
[E + λH̃(s)FR − sR] + sȲ (s)

where

Ȳ (s) = sϕ̄(s)

[[

λ
H̃(s)

s
F − E

]

R

]2

+ P̄0R
[

E + [λH̃(s)F − sE]R
]

Substituting ϕ̄(s) = ϕ0(s)
π

π0
[E + λH̃(s)FR − sR] + sȲ (s) into (8) we,ll find

an expression for ϕ̄0(s) .
Really

[

ϕ0(s)
π

π0
[E + λH̃(s)FR − sR] + sȲ (s)

]

.
[

λH̃(s)F − sE
]

ēT + εs =

=
ϕ0(s)

π0

[

π
[

λH̃(s)F − sE
]

ēT + π[λH̃(s)F − sE]R[λH̃(s)F − sE]ēT

]

+

+sY (s)[λH̃(s)F − sE]ēT + εs =
ϕ0(s)

π0
(B1(s) + B2(s)) + A(s) = 0

where

A(s) = εs + sȲ (s)[λH̃(s)F − sE]ēT ,

B1(s) = π[λH̃(s)F − sE]ēT

B2(s) = π[λH̃(s)F − sE]R[λH̃(s)F − sE]ēT

Now, replace s by εs and let λ increase to 1/f as ε → 0. Finally we obtain

A(εs) = ε2s + ϕ2s2Ȳ (εs)

[

λ
H̃(εs)F

εs
− E

]

ēT = ε2s + o(ε2),
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because Ȳ (εs) → 0 as ε → 0.

B1(εs) = π[λH̃(εs)F − λH̃1Fεs + λH̃1Fεs − εsE]ēT =

= −εs
(

πēT − λπH̃1F ēT
)

− λπ
H̃1εs − H̃(εs)

ε2s2
ε2s2F ēT =

= −εs(1 − ρ) −
λπH̃2F ēT

2
ε2s2 + o(ε2) = −ε2s −

πH̃2F ēT

2f
ε2s2 + o(ε2),

B2(εs) = πε2s2

[

λH̃(εs)

εs
F − E

]

R[
λH̃(εs)

εs
F − E]ēT =

= πε2s2[λH̃1F − E]R[λH̃1F − E]ēT + o(ε2) =

= −π
ε2s2

f2
[H̃1F − f ]R[f ēT − H̃1F ēT ] + o(ε2)

because
H̃(εs)

εs
→ H̃1,

H̃1εs − H̃(εs)

ε2s2
→

H̃2

2
.

Finally we get

ϕ0(εs) = π0
ε2s + o(ε2)

ε2s +
πH̃2F ēT ε2s2

2f
+

π

f2
[H1E − fE]R

[

f ēT − H̃1F ēT
]

ε2s2 + o(ε2)

and

lim
ε→0

ϕ̄(εs) = lim
ε→0

ϕ0(εs)π

π0
=

π

1 + M.s
,

where

M =

K
∑

n=0
πnf(n)hn2

2f
+

1

f2

K
∑

n=0

πn(hn1f(n) − f)xn,

since
R[fE − H̃1F ]ēT = x̄ = (x0, x1, . . . , xK). �
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