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SINGLE-SERVER QUEUEING SYSTEM WITH
MARKOV-MODULATED ARRIVALS AND SERVICE TIMES

Mitko Dimitrov

Markov-modulated queueing systems are those in which the input process
or service mechanism is influenced by an underlying Markov chain. Several
models for such systems have been investigated .

In this paper we present heavy traffic analysis of single queueing system
with Poisson arrival process whose arrival rate is a function of the state of
Markov chain and service times depend on the state of the same Markov
chain at the epoch of arrivals.

1. Introduction

Markov process is natural random environment and is extensively used for model-
ing the arrival rate and service times in queueing theory and many other applica-
tions. The presence of this Markov process is attributed to stochastic variations
or heterogeneity of arrivals and service and actually it is a component of the
queueing system considered.

Significant effort is currently being devoted to the development of integrated
communication systems, which can support a wide range applications including
voice, video and data.

There are many exact analytical results, computational techniques and ap-
proximations of the basic characteristics of Markov-modulated queueing model
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(1], [2], [3], [4], [6]. The asymptotic behavior of performance characteristics of
such queues are derived in some limit cases as heavy traffic. Heavy traffic analy-
sis of Markov-modulated queueing models is suggested by Burman and Smith [2]
where an M/G/1 type queue with Markov-modulated arrivals was investigated.
Genadi Falin and Anatoli Falin [3] suggested another approach to the same prob-
lem. It is based on certain “semi-explicit” formula for the stationary distribution
of the virtual waiting time and its mean value in heavy traffic assumptions. We
applied this approach to single queueing system with arrival rate and service time
depending on the state of Markov chain at the arrival epoch.

2. Some preliminary results

Let us consider an irreducible continuous time Markov chain Z(t) with finite
state space S = {0,1,..., K}, transition rates ayum,, o, = —au, and stationary
distribution m = (mg,m1,...,7x). The infinitesimal matrix of the process is
denoted as Q.

The linear equations

Q(z0, 1, ..., xx)" = (bo,b1,. .., br)T

has a solution if the vector (bg, b1, ..., bx) is orthogonal to the stationary vector .
Now let f(n) be a nonnegative function defined on the state space of Z(t),H, (z)
is the probability distribution with two moments h,1, hn, n = 0,1,..., K and

K
f= Z ﬂ'nf(n)hn,L

n=0
Then the linear algebraic equations

K
(1) Zanmxm:f_f(n)hnlvoéngl(
m=0

with unknowns xg, 1, ...,k always has a solution.
Since the Markov chain Z(t) is finite and irreducible, it is also ergodic chain,
and m; > 0 for j = 0,1,2,..., K. Then the stationary distribution 7 = (my,

T1,...,Tk) can be found from the Kolmogorov equations 7@) = 0 and normal-
K

ization condition »_ m, = 1. In coordinate form Kolmogorov equations are
n=0

K
mov; + Zmaij =0,0<j5<K.
1=0
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If we consider the equations

K

71'00[0]‘4-271'1'0[1']‘:0, 0<j<K,
i=0
then 7'['0(0[01,0[02, e ,OéOK) = —(7‘(’1, e ,TFK)A
a1 192 . K
where A = : , and det A # 0.
OK1 QK2 ... QKK
Then (a01, ce ,OéOK)A_l = —M
o
00 ... 0
Now, if we define matrix R as R = . e , then matrix QR is
0
equal to
o o =&  IK
o o o
0 1 0 0
(2) 0 0 1 0
0 0 1

and for any vector ¥ = (yo, 91, ...,Yx) we have JQR =7 — LU
o
It is obvious that vector

z = (0,71,...,2x)" = R(f — f(Ohor, f — f(Dhor, ... f — F(EK)hk1)

is a solution to the linear equations (1).

3. An M/G/1 queueing system with Markov modulated arrivals
and service times

We make the following assumptions
1. The modulating Markov chain Z(t) is exactly as in the Section 2.

2. During a time-interval in which Z(t) = n, customers arrive in a Poisson
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process at arate Af(n)(0 < f(n) < oo) and then service times have a distribution
H,,. Given the states of the Markov chain, the service times are conditionally
independent and also independent of the arrival process.

3. There is a single server and the queue discipline is first come, first served.
We denote by W (t) the virtual waiting time. The system is ergodic if the
K

inequality p = > Af(n)hy1m, < 1 holds. From now on we assume that p < 1
n=0
and system is in steady state. The presence of the Markov chain Z(t) implies that

we need to designate the waiting time process as {W, Z} = {W (t), Z(t),t > 0}.
Given the state of Z(t) = n, the probability that a customer arrives during (¢,t+
dt] and make a service demand not exceeding x is given by Af(n)H;(x)dt+0(dt).
As in the standard model it is seen that (W, Z7) is a tlme—homogeneous Markov
process on the state space RyxS. To derive integro-differential equations for
F(x,t) = P{W(t) < z,Z(t) = n} we process as on the standard model but note
the presence of the modeling chain Z(t). Thus considering the process over the
intervals (0, ¢],(t,t + dt] we find that

Fy(z,t +dt) = Fy(z + dt,t)(1 — Af(n)dt + cnmdt)+

+/ n(x+dt —v,t)Af(n —i—Zamn )dt.
0 m#n

This leads to

Fl(2) = (Af(n) + ) Fa(2) + Af(n / Fo(a )+ 3 G Fn().
0 m#n
Let
Pa = P{W(t)=0,Z(t) = n}
onls) = Bl Z() =n) = Puo+ [ ¢7dF, ()
0+

>
3
=
I
—
Q)
o
8
QU
=
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In terms of Laplace transform we obtain for ¢,(s), n = 0,1,..., K the next
equations
K
(3) > om(s)amn = N (n)(1 = ha(s) = )] pn(s) + sPao.
m=0
K
From ) oy, = 0 and summing both sides of (3) we get
n=0
K K
B 1 — hy(s)
0 > Pi=3 1= A =2 o)
n=0 n=0
K 1—nh,
If s — 0 the sum [1 - )\f(n)i(s)} ©n(s) tends to
n=0 s
K K
S =AM =1=Y A ()hmm, =1-p
n=0 n=0

and Z P,o = 1— p. Taking the first derivative at the point s = 0 from the both

51des of (4) we have

K K
o) (A Sy Wy = 32 A2

Now multiplying both sides of (3) by z;, and summing with respect to n we
get

K K K K
Z Z Pm(8)mntn = Z [Af(n) [L = hn(s)] = sl on(s)an + s anol’n;
n=0m=0 n=0 n=0

or

K K
> om()(f = Fm)hm1) =D wn M (0)(1 = hns) = s]on(s) + s Z Pron.

Differentiating this equation with respect to s at the point s = 0 we have

K
(6) ZW (f = f(m an M)t = 1) + > Paot.

n=0
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Multiplying both sides of (6) with A and summing (5) and (6) we get the
equation

K K NI K K
Z W1 —p) = Z Tnﬁn + Z Aep T (Af(n)hny — 1) + Z AP, 0T,

m=0 n=0 n=0 n=0

Thus we obtain the main result.

Theorem 1. The mean virtual waiting time is given by the formula

K ( ) Tn n2 K
Zo ety ZAWH A f(n)hn1 — 1) + Y APuon
n= n=0

W:

L—=p
where the variables x, are a solution of the linear algebraic equations (1), and

K
the probabilities Py satisfy equation > P,y =1— p.
n=0

Our goal in this paper is to investigate the queue in heavy traffic condition.

K
If p=2A Z f(n)hpim, — 1 then all probabilities P9, n = 0,1,..., K tends

to 0 because ZPHO—I—pHOaSp—&

Thus we prove the next theorem.

Theorem 2. If p — 1 (under heavy traffic)

K K
1-pW = Z %W + Z xnﬂn(f(?;lhnl - f)
n=0

n=0

K
From P,y >0,n=0,1,...,K, > P, =1— p follows that:
n=0

ZP 0Zn € (1 — p)(x4,2"), o = min{z,}, and z* = max{z,},
n n

and the next theorem is proved.
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Theorem 3. Let x, = min{z,}, * = max{z,}.
n n
Then

K )\ n 7rnhn =
nzz:o % + nz;)/\:cmrn(/\f(n)hnl —1)

A < W — < \z*

L—p
We shall consider stationary distribution of the process (W (t), Z(t)) as p — 1.
Theorem 4.

a) random variables W (t) and Z(t) are asymptotically independent;
b) the random variable (1 — p)W (t) is asymptotically exponential with the mean

K K
Z than(n) Z 7"'n(hnlf(n) - f)q:n
n=0 + n=0
2f f?
Proof. Let us consider several notations as ¢(s) = (©o(s), p1(s), ..., ¢r(s)),

?io = (Poos- .-, Pro) and diagonal matrices F' = diag (f(0), f(1),..., f(K)),
H(s) = diag (1 — ho(s),1 — hi(s),...,1 = hx(s)) , Hy = diag(ho1, h11, ha1, ...,
hKl) and H2 = diag(hog, h12, . ,th), E = d1ag (1, 1, ey 1)

In this notations we can rewrite equation (3) as

(7) 2(5)Q = @(s) | (s)F — sE| + 5Py

Multiplying from the right both sides of (7) with € and Pye = 1 — p = ¢ we
get

(8) o(s) [Aﬁ(s)F — sE} el +es=0

From equation (2) multiplying again both sides of (7) from the right side by the
matrix R we have

5(s)OR = @(s) [Aﬁ(s)F — sE} R+ sPyR

or

9) 3(s) = po(s)— + @(s) [Aﬁ(s)F - SE} R+ sPyR

o



60 Mitko Dimitrov

Now, let us replace vector @(s) from (9) to the right side of (9), and after
some algebraic transformation we get the equation

™

?(s) = po(s) [E + [Mfl(s)F - sE]R] +

o

2

R| +sPoR |E+(s)F — sE|R| =

(10) +5%@(s) ”A@F —E

= wo(s)%[E + A\H(s)FR — sR] + sY (s)

where
2

R| +RR [E + [\H(s)F — sE|R

Y (s) = 5p(s) [[)\@F —-F

Substituting @(s) = goo(s)l[E + \H(s)FR — sR] + sY (s) into (8) we,ll find
0
an expression for @o(s) .
Really
{%(s)l[E + MA(s)FR — sR] + SY(S)] . [Aﬁ(s)F - SE] & 4 es =
0
_ po(s)

[7? [/\ﬁ(s)F —sElel + W[AI:I(S)F — sE]R[Aﬁ(S)F _ SE](;T} +

0

@o(s)
0

+5Y (s)[AH (s)F — sEJe’ +¢es = (B1(s) + Ba(s)) + A(s) = 0

where
A(s) = es+sY(s)[\H(s)F — sE]e’,
Bi(s) = w[\H(s)F — sEe"
Bo(s) = m[\H(s)F — sE]R[\H(s)F — sE]e’
Now, replace s by es and let \ increase to 1/f as ¢ — 0. Finally we obtain

H(es)F
£s

A(es) = e%s + p*s*Y (es) | A —E| &l =%+ o(e?),
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because Y (gs) — 0 as ¢ — 0.

Bi(es) = w[AH (es)F — AH Fes + AH,Fes — esE]e’ =

. Hyes — I
= —¢€s§ <7réT — )\ﬂ'HlFéT> — )\7r1852—2(85)5252FéT =
e2s
ArH,Fe” HyFe’
=—es(1—p)— 7rer&QsQ +o(e?) = —%s — %8282 + o(e?),
AH AH
Bo(es) = me2s? [ AMES) o gl g AMES) g
es es

= 1222 [AH F — E|R]\H,F — EJé’ 4 o(¢?) =
2 2

€ _ o
- _Tr—fz [HF — f|R[fe’ — H Fe'] + o(¢?)
H _ Hyes—H H
because (3) — Hy, M - =2
€S8 ] 2

Finally we get

0(c5) s + o(e?)
0 = To
H Fele242 B
25 4 % ;2 [HiE — fE|R | feT — H Fe’'| e2s* 4 o(?)
and (es)
. . woles)m T
1 = 1 =
elil(l)so(es) elil(l) 0 1 +M.S’
where
K
Zoﬂnf( n)hn
M = n—f an haif(n) — f)zn,
since 3
R[fE — HiFe' =z = (x9,x1,...,7K). O
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