
Serdica J. Computing 7 (2013), No 2, 115–134

PROGRAMMING AND TESTING A TWO-TREE

ALGORITHM

Tzvetalin S. Vassilev, Joanna Ammerlaan

Abstract. Recently, Markov, Vassilev and Manev [2] proposed an algo-
rithm for finding the longest path in 2-trees. In this paper, we describe
an implementation of the algorithm. We briefly discuss the algorithm and
present example that helps the reader grasp the main algorithmic ideas. Fur-
ther, we discuss the important stages in the implementation of the algorithm
and justify the decisions taken. Then, we present experimental results and
discuss them in the light of the dependence on the platform and machine
architecture. We present timing analysis of the implementation, as well as
results on the average length of the longest path.

1. Introduction. A two-tree is a particular type of graph. The small-
est possible two-tree consists of a single line segment (u, v) known as an edge.
All larger two-trees are constructed by adding a single vertex w and two more
line segments to an existing two-tree. One line will contain the endpoint a and
the other the endpoint b of an existing edge, (a, b), on the two-tree. Both line
segments will contain w as the other endpoint (Figures 1 and 2)[2].

ACM Computing Classification System (1998): G.2.2, F.2.2.
Key words: longest path, 2-trees, divide-and-conquer, experimental analysis.

116 Tzvetalin S. Vassilev, Joanna Ammerlaan

Fig. 1. A two-tree is created by adding a vertex w and two edges (w, a) and (w, b) to an
edge (a, b) of an existing two-tree. The most trivial two-tree consists of a single edge

A path in a two-tree is described as a sequence of vertices connected by
edges which contains no vertex twice. There exists an algorithm for finding the
longest path in a two-tree, we are going to describe it briefly, and then will present
an implementation of this algorithm. When the testing of the implementation is
complete and the program runs with a certain degree of confidence, the timing
of the implementation should be found. Though the timing of the algorithm is
linear, it says little of the timing of the program which implements it as some
designs will be more efficient than others.

2. The Algorithm. All non-trivial two-trees can be viewed as a graph
of triangular faces attached along their edges, where each face is identified by it’s
three vertices (x, y, z) (Figure 2) [2]. Considering a two-tree in this fashion, all
edges can be classified as either periphery or interior. A periphery edge is an edge
that belongs to a single face and an interior edge is common to multiple faces [2].
From the two-tree in Figure 2, it is apparent that edge (w, v) is peripheral while
edge (v, u) is interior.

In order to find the longest path in a given two-tree, the graph is recur-
sively broken down into smaller independent subgraphs whose longest paths are
easier to find. The simplest subtree is the trivial case where the tree consists of
a single root edge. Careful consideration is needed to preserve the links between
these subgraphs in order to find the correct longest path in the original graph.
This demands care in the breaking down, or rather splitting, of the graph, a
process which is carried out relative to the edges and faces of a graph.

Every non-trivial graph, G is split on it’s root edge e(u, v), G ⊖ e. This
means that each face, F which contains both vertices u and v is ”peeled” off along
with any structures that are built upon F . What is now present is a collection
of smaller two-trees known as folios or the subtrees of G (G1, G2, G3, . . .) and
in each subgraph, whose root edge is also (u, v), the root edge is peripheral [2]
(Figures 3 and 4). If the root edge of G is peripheral, G⊖e, we will find a single

Programming and Testing a Two-Tree Algorithm 117

Fig. 2. An example of a two-tree graph G with root edge e(u, v)

Fig. 3. The subgraphs resulting from G ⊖ e

subgraph identical to G.

At this point trying to break down any of the subgraphs by this process
of splitting on edge Gi⊖e would be futile. Instead, the split is now done on the
one face containing the root edge. If this root face contains the edges (u, v,w)
with e(u, v) being the root edge, the tree Gi can be split on face (Gi − e)⊖w,
into two subtrees Gi1 and Gi2. Gi1 will have root edge (u,w) and Gi2 will have
root edge (v,w) (Figure 4). It’s impossible to tell whether or not either of these
subtree root edges are peripheral or interior. The best way to split these trees
would be to once again split on their root edges ej , Gij⊖ej.

In this manner any two-tree can be broken down continuously until all
that remains is a single face F (a, b, c), which is split into the two trivial subtrees
(a, c) and (b, c), assuming a root edge of (a, b). The longest path for any trivial
tree is clearly of length one. However, it becomes increasingly difficult to keep
track of the longest path as trees become much larger, so each tree’s root edge,

118 Tzvetalin S. Vassilev, Joanna Ammerlaan

Fig. 4. The subgraphs resulting from (G − (w, v)) ⊖ u

e, is associated with a label λ̃(e), which systematically keeps track of the tree’s
longest path and the lengths of the longest paths with starting or ending vertices
at the roots of the tree [2]. This later information is needed for finding the longest
path of a tree G from the labels of its subtrees G1, G2, G3, . . .

Suppose G is a graph with root edge e(u, v). There are exactly 6 ways in
which a path may be formed relative to e. By finding the longest path for each
possible route, and from that the longest path for G, an ordered septuple:

λ̃(e) = (λ1, λ2, λ3, λ4, λ5, λ6, λ7)

known as a label for e may be found, where λi is described by the following [2]:

λ1 = {p|p is a max path in G}
λ2 = {p|p is a max path in G with endpoints u and v}
λ3 = {p|p is a max path in G with endpoint u and internal vertex v}
λ4 = {p|p is a max path in G with endpoint u and not containing v}
λ5 = {p|p is a max path in G with endpoint v and internal vertex u}
λ6 = {p|p is a max path in G with endpoint v and not containing u}
λ7 = {< p, q > | < p, q > are max-sum < u, v > paths in G}

Now, rather than reconstructing every subgraph beginning from the trivial
trees, the labels of the trivial trees can be used to acquire the labels of the
subtrees which they are derived from [2]. In this way a label can be found for
every subtree’s root edge working backwards up until finally a label is found for
the original tree, G’s, root edge (u, v).

As two methods are needed to break down a tree, the algorithm con-
sists of two mutually recursive functions; computeLabel and computeSimple.

Programming and Testing a Two-Tree Algorithm 119

ComputeLabel will recognize a graph of a two-tree G as trivial and assign it the
appropriate label, or it will split G on it root edge creating a listing of all the
subtrees Gi. For each of these subtrees the function computeSimple is called to
further subdivide each of Gi into two more trees. Continuing to decompose the
original tree G, computeSimple then calls the function computeLabel for each
of these two subtrees Gij . Together the two functions work to decompose the
graph.

When all subtrees have been broken down to trivial edges whose labels are
known to be (1, 1, 0, 0, 0, 0, 0), a second part to the above functions, computeLabel
and computeSimple, works to calculate the longest path. This requires the use of
two private internal functions: combineOnEdge and combineOnFace. As their
names would suggest, the combineOnEdge function is called by computeLabel
as it splits a tree on its edge and the combineOnFace function is called by
computeSimple as it splits a tree on its face. Both combine functions take all the
subtrees created in the reciprocal split and use the subtrees’ root edge labels to
calculate the label of their root tree’s root edge and thus the longest path in G.

For example, consider the tree T shown in Figure 5 with root edge (a, b).
Following the algorithm, in order to find the longest path in the tree, (a, b) and
T are passed to the function computeLabel.

Fig. 5. An example of a two-tree T with root edge (a,b)

Since T is not trivial, the function will split the graph on the edge
(a, b), T ⊖ (a, b), creating two subgraphs T 1 and T 2 in which their root edges
(a, b) are peripheral (Figure 6).

Both subgraphs are held by the function computeLabel((a, b), T) and for
each graph the function computeSimple is called. ComputeSimple((a, b), T 1)
will be called first. From the peripheral root edge (a, b) the function will locate
the vertex d and split T 1 on the root face (a, b, d), producing two more subgraphs,

120 Tzvetalin S. Vassilev, Joanna Ammerlaan

Fig. 6. The two-trees T 1 and T 2 resulting from T⊖(a,b)

Fig. 7. (T 1 − (a, b))⊖d results in two more subgraphs, T 11 with root edge (a,d) and T 12

with root edge (d,b)

Fig. 8. Subtrees T 121 and T 122 resulting from T 12⊖(d,b)

T 11 and T 12 (Figure 7).

ComputeSimple((a, b), T 1) next calls for both newly created subgraphs
and their root edges to be passed to computeLabel. T 11 and its root edge are
passed first. ComputeLabel((a, d), T 11) will recognize the tree as trivial. Rather
than attempting to break it down any further, computeLabel((a, d), T 11) will
assign values to the edge’s associated label, λ̃ = (1, 1, 0, 0, 0, 0, 0). T 12 and the

Programming and Testing a Two-Tree Algorithm 121

root edge (b, d) are now passed to computeLabel. As this graph is not trivial
computeLabel((b, d), T 12) will split the subtree on its root edge resulting in further
subtrees T 121 and T 122 (Figure 8).

Control will pass to computeSimple((b, d), T 121). The function will split
the T 121 on face into two trivial trees T 1211 and T 1212 (Figure 9). ComputeLabel
((d, e), T 1211) will then recognize T 1211 as trivial and assign it the appropriate
label, and ComputeLabel((b, e), T 1212) will find T 1212 to be trivial and so also
assign its label (1, 1, 0, 0, 0, 0, 0).

Fig. 9. T 121 split on face, (T 121 − (b, d)) ⊖ e creates two trivial graphs T 1211 and T 1212

and (T 122 − (b, d)) ⊖ f creates two trivial subtrees T 1221 and T 1222

As both subtrees T 1211 and T 1212 resulting from (T 121−(b, d))⊖e now have
associated labels, computeSimple((b, d), T 121)–the function which created these
trees–can find the label of the root edge of the subtree T 121 which it was passed.
To do so it calls the function combineOnFace with the labels of the two subtrees
as the arguments. This function will return the label (2, 2, 2, 1, 2, 1, 1) associated
with the root edge of the tree T 121. This completes computeSimple((b, d), T 121).

Control will return to computeLabel((b, d), T 12) which will now call
computeSimple for the other subtree, T 122. ComputeSimple((b, d), T 122) will
split T 122 on the face (b, d, f) producing the pair of subtrees T 1221 and T 1222

(Figure 9). The function call computeLabel((d, f), T 1221) is made and the trivial
tree (d, f) is given the label (1, 1, 0, 0, 0, 0, 0). Similarly, the same label is attached
to the trivial two-tree (b, f) after the function call computeLabel((b, f), T 1222).
Returning to computeSimple((b, d), T 122), combineOnFace is now called to com-
bine the two trivial labels and returns the label (2, 2, 2, 1, 2, 1, 1) which is associ-
ated with the edge (b, d) of the subtree T 122.

All subtrees, that is to say T 121 and T 122, resulting from T 12⊖(d, b) of the
function call computeLabel((b, d), T 12) (Figure 7) have at this point been passed
to computeSimple and now have labels. The final step in computeLabel((b, d), T 12)
is to combine these labels by calling the method combineOnEdge using the labels
of the subtrees as arguments. This will result in the label (3, 2, 3, 1, 3, 1, 2) and
complete computeLabel((b, d), T 12).

122 Tzvetalin S. Vassilev, Joanna Ammerlaan

Fig. 10. Possible longest paths in T

Now both subtrees T 11 and T 12, which are results within computeSimple
((a, b), T 1), have labels associated with their root edges. The final command in
computeSimple((a, b), T 1) is the function call combineOnFace. It takes the two
labels, (1, 1, 0, 0, 0, 0, 0) and (3, 2, 3, 1, 3, 1, 2), combines them on the root face of
T 1 and produces the label (4, 3, 4, 2, 3, 3, 3).

The program will move onto computing computeSimple((a, b), T 2). Split-
ting the single face will result in two trivial trees T 21 = (a, c) and T 22 = (b, c).
Both will immediately be assigned the trivial label when passed to computeLabel
and both labels will be passed to combineOnFace. The returned label will be
(2, 2, 2, 1, 2, 1, 1) completing computeSimple((a, b), T 2).

The final step in competing the algorithm is to combineonEdge the la-
bels of the first subtrees created; that of T 1, (4, 3, 4, 2, 3, 3, 3), and that of T 2,
(2, 2, 2, 1, 2, 1, 1). The function will return the label (5, 3, 5, 2, 4, 3, 4). The first
term in this label represents the length of the longest path, so the longest path
possible in the two-tree T is 5 as shown in Figure 10.

3. Programming the Algorithm. It was apparent from the modular
design of the algorithm that an object oriented approach would work out neatly.
It also had the advantage of allowing for relatively easy modification of the pro-
gram as needed and the partitioning involved would make testing and debugging
easier. With the idea of using an adjacency matrix for input, there was no ob-
vious need for any pointers for the programming of the algorithm, so Java was
chosen as the language. Specifically, Eclipse was used as the Java programming
environment.

Much of the program structure is provided in algorithm itself but to bridge
the gap between algorithm and program a few new functions had to be added

Programming and Testing a Two-Tree Algorithm 123

Fig. 11. The complete trace of the algorithm for finding the longest path in the tree T

and, using an object-oriented approach, classes and subclasses had to be decided
upon (Figure 12).

The first class to consider is the TwoTree class. As two-trees are rep-
resented as adjacency matrices in the program, the class contains the member

124 Tzvetalin S. Vassilev, Joanna Ammerlaan

Fig. 12. A general outline of the main methods in the program. Class Two − Tree
is the parent to the class Algorithm. In the Algorithm class computeLabel() calls the
recursive function findPoint() to aid in the creation of the subclasses. Once they are
created computeLabel() calls computeSimple() for each subtree. This function also calls
findPoint() to make it’s two subtrees. Each of these subtrees calls the computeLabel()
commencing the mutual recursion. After reaching it base case computeSimple() calls

the function combineOnFace(). Likewise, compluteLabel() calls conbinOnEdge()

graph[][] which will hold the matrix representation of the tree; it holds the
graph itself. Since the longest path in a two-tree is invariant to the choice of
a root edge, and as the whole point of the label in the algorithm is to find the
longest path, a single label is attached to a graph rather than an edge of the
graph. Thus, another member of the Graph class is label. Along with these
two members come various getter, setter, and manipulator functions: getAij,
and setAij for graph[][]; and setLabels for label. There is also a function
colCompare(Integer firstCol, Integer secondCol, Graph g) which compares
two columns in graph[][] and returns a vector of the row numbers for which both
columns contain a one. In a two-tree this corresponds to finding the set of all
vertices that are connected to a given edge (w, x), described by the first two para-

Programming and Testing a Two-Tree Algorithm 125

meters of the colCompare. This effectively determines the set of all faces incident
to the edge (w, x), as illustrated in Figure 13. Another function, Label simply
returns the label of the Graph instance which called it. To read a tree-from a file
the method getGraphFile(Stringfile) was created. The only private function
in the class is assertGraph, which stands as a safety net and double checks a
matrix for a line of symmetry over the diagonal which must be all zeros.

Fig. 13. colCompare function finds all faces containing the edge (w, x)

Using simple inheritance then, the class Algorithm publicly extends
TwoTree. As the name describes, the class carries out the requests of the al-
gorithm including its functions and all secondary methods needed to carry out
these functions. First off, the class contains a constructor function to allow
for the immediate creation of an instance of TwoTree, whose adjacency matrix
is contained in the file sGraph.txt. The only public function in the class is
longestPath(TwoTree g, Integer u, Integer v) which is passed a two-tree g
and the vertices of its root edge e(u, v). The function does little other than set
the values for g’s associated label by calling the public method setLabels from
the class TwoTree with the returned label from the function computeLabel :
g.setLabels(computeLabel(g, u, v));. LongestPath then returns the first term in
the label; the longest path in the two-tree g.

As described in the Algorithm (see Section 2) computeLabel splits a
graph on its edge and computeSimple splits a graph on a periphery face. Pro-
gramming this process relative to a matrix is a little more complicated than
simply understanding it relative to a two-tree diagram. However, once a root
edge has been found for a subtree, the process of building the subtree relative
to the adjacency matrix representation of the parent tree is the same regard-
less of the type of split allowing a single function to be reused. The recursive
method findPoint(Integer u, Integer v, Integer x, TwoTree graph, V ector <
Integer > subGraphV ert) has been designed to find the third vertex of every
face in the subtree (which is equivalent to all vertices less those of the root edge)
given a singe root face (u, v, x), the parent two-tree, and a vector to store the

126 Tzvetalin S. Vassilev, Joanna Ammerlaan

vertices in. Please refer to Figure 14.

Fig. 14. An example of a two-tree with root face Fx. The method findPoint() would
recursively locate vertices B through H given Fx

The findPointmethod works by considering each face as containing a
root edge (u, v) and a vertex x. Now every other vertex can be found simply
by comparing the root edge columns in graph[][]. This is done by calling the
function colCompare(Integer firstCol, Integer secondCol, Graph g) which
produces the vertex list. This list is then appended to subGraphV ert, the final
argument in the method. FindPoint considers two root edges; the left (u, x) and
the right (v, x). Each root edge is examined by colcompare to find the final vertex
in any further existing faces. The recursive call stops when the resulting vector
is found to be empty. For each vertex that is found in the vector, two new left
and right roots are created and findPoint is called recursively. The end result is
a vector list subGraphV ert containing every vertex in the subgraph. This list is
then to be sorted, and a new adjacency matrix is created by copying terms from
the original.

Other additional methods include max and positive. Max has been
overloaded to find and return to the caller the maximum integer in an array:
max(Integer[]list) or the maximum of two integers: max(Integer x, Integer y).
The method positive(Integer otherwise, Integer isZero) returns otherwise if
iszero is not equivalent to zero and zero if it is.

As described in the algorithm if the two-tree passed to the function
computeLabel(TwoTree g, Integer u, Integer v) is trivial, then the trivial label

Programming and Testing a Two-Tree Algorithm 127

is immediately returned. Otherwise, the two-tree graph g is split on its root edge
[2]. To split a graph on an edge e(u, v) all the folios are separated to form the
subtrees. Each of these folios contains a root face with the periphery edge e. The
first step is to find all faces containing e. These will be the root faces of the folios.
The number of faces found will then be equivalent to the number of subtrees as
the trees are ”built” upon these faces. Again, the colcompare function is used.
Now, for each vertex in the resulting vector the findPoint method is called and a
subtree is created. The function computeSimple is called for each of the subtrees
returning a label for each. These labels are then combined with the function
combineOnEdge which returns a single label for g.

The method computeSimple(TwoTree g, Integer u, Integer v) is passed
a subtree g with peripheral root edge e(u, v) and calls for the splitting of g on
its face. By calling the colcompare function for the root edge, the root face
F (u, v,w) is found. Repeating this action with the edge (u,w) will result in
a list subMatrixChildren, of folios’ root faces—more precisely a list of the
third vertex z in each face; the other two vertices are u and w. After each
face F ′(u,w, z) and the vector subGraphV ert has been passed to the method
findPoint, subGraphV ert, which was originally empty, contains a list of all the
vertices in the folios formed by the (u,w) edge of F . This list is then used to
form a subtree in the same way as those subtrees are formed in the function
computeLabel. Similarly, the subtree formed by the folio with root edge (v,w) is
found completing (g−e)⊖w. ComputeSimple begins the recursion by calling the
method computeLabel for each of the two subtrees just formed. The two labels
that result are then combined by the method combineOnFace.

With the functions max and positive defined, programming the method
combineOnFace(Integer[] labelG1, Integer[] labelG2) was relativel straight for-
ward. The code follows the algorithm nearly line for line. The functions is passed
the labels of the two subgraphs, labelG1 and labelG2, and combines them to find
each term in the label of the root graph. These terms are stored in the ar-
ray combinedLabel which is returned as the root graph label when the function
completes execution.

Completing computeSimple, the execution returns to computeLabel.
When each of the subgraphs gi created by g ⊖ e has obtained its label λi, these
labels are passed to the function combineOnEdge(Integer[][] subGraphLabels)
in the form of a n × 7 integer matrix. The method combineOnEdge was not
as simple to program as combineOnFace. Due to the restrictions of the Java
compiler, a single command in the algorithm such as y = max{λi

4 + λj
6
|1 ≤ i ≤

k, 1 ≤ j ≤ k, i 6= j} cannot be written as a single line of code. Rather the set

128 Tzvetalin S. Vassilev, Joanna Ammerlaan

{λi
4 + λj

6
|1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j} must be created and stored as a list,

known as L4L6 in the program, before the maximum of the list may be found.
To construct L4L6 from the parameter subGraphLabels an embedded for loop
is used as it allows every combination possible to be found. Similarly, for the
list L2L4L6 to be created, an embedded for loop is embedded in another for
loop. With the list constructed the maximum can be found by passing the list to
the function max. Once all the sets have been created the function follows the
designed algorithm once again nearly line for line and returns a single label for
the graph g.

Having just completed the combineOnEdge method, the function
computeLabel returns the same label to its caller longestPath. The driver func-
tion receives the length of the longest path from longestPath and prints it.

4. Random Two-Tree Generation and Timing Trials. To test
the timing of the program, it was decided to run 1000 trials of random two-trees
for each of the sizes: 100, 200, 400, 800, 1600, 3200, 6400, and 12800 vertices. In
order to do this, a random two-tree generator had to be created. As two-trees are
represented as adjacency matrices, this was merely a matter of creating random
adjacency matrices of the desired size which accurately represents a unique two-
tree. The first set of trials were run on a 32-bit machine with 3GB of RAM.

In order to get the running time for the implemented algorithm, several
lines of code were added to the driver, one before the function longestPath was
called:

long startTime = System.currentTimeMillis();

and two after.

long endTime = System.currentTimeMillis();

String aString = Integer.toString((int) (endTime-startTime));

Simply stated, the time in milliseconds is recorded both before and after the
function call. The difference in this time is the time needed to carry out the
demands of the function, which will be the time it takes for the longest path
algorithm to complete. To make recording easier, the process of creating of a
graph, finding it’s longest path, and recording the path length in a file is looped
in the driver function.

A small public class, Generator, was designed to create two-tree graphs.
It was added to the program so it could be called with the same driver as the
longest path algorithm. In this way only one program has to be run to create and
find the longest path of a two-tree rather than having to run a separate program

Programming and Testing a Two-Tree Algorithm 129

to create the tree. The original design consists of for loop that creates a new
matrix with every iteration. An original matrix of size two represents the most
basic two-tree possible. A vector, edges, is used to keep track of every edge in
the tree. Each term in the vector represents an edge, and thus contains the two
vertex integers which describe the edge. Every time a new vertex is added to the
tree it creates two new edges which are added to the vector. The original vector
has only one term as there is only one edge to begin with. In order to create
random two-trees, new vertices are added to random edges. A counter is used to
keep track of the number of edges.

The loop runs until the desired graph size is acquired. First it asks for a
random number between 0 and the counter value be chosen. The number chosen
will correspond to an edge in the vector. It is to this edge that the next vertex
is added. A new matrix, one size larger than the current matrix, is created and
the contents of the current matrix are copied to the new one. The final row and
column of the new matrix, which represents the new vertex, are determined by
the random edge which was just picked; the edge the new vertex was attached to.
Lastly, the current matrix is discarded and the new matrix becomes the current
matrix. This cycle will continue until the end of the loop.

Though the design worked well for the fist few matrix sizes (100, 200, and
400 vertices), when the graph size increased to 800, the time needed to create a
single graph–the timing of the generator class–increased dramatically. Further,
when the graph size was increased again to 3200, the generator class would cause
the program to fail every 50 or so trials having used up all available heap space.

A few minor changes were made to the program in an attempt to decrease
the amount of memory being used. In this case, Java was limiting. Its use of the
garbage collection disallows the programmer to allocate and deallocate memory
with the same precision as is possible in C++. A few lines of code–requesting
a garbage collection, deleting or resetting a matrix to null–could, however, be
added to the program at various appropriate points to help conserve memory.
All these changes were in vain though as the program continued to run out of
memory with what appeared to be the same frequency as before. Thus the first
set of trials, run off the 32 bit system were carried out only to a size of 1600.

Two changes were made in an effort to get the desired number of trials
complete: the design of the generator program was improved and it was decided
to use a larger machine on which to complete the trials. The main change in
the design is that one single matrix is used. It is initialized at the beginning of
the program setting all terms to zero. From there on it follows the same general
pattern as its predecessor, using a for loop and choosing random edges to attach

130 Tzvetalin S. Vassilev, Joanna Ammerlaan

a new vertex. However, no longer is it ever the case that there is more than
one matrix or graph being held in the memory at any time. In this manner the
design is incredibly more efficient. Consider a graph of size 3200. At it’s worst
moment the previous design would have demanded that two matrices of size 3199
and 3200 be held simultaneously in the heap space memory. In the newer design
this number is nearly halved. What is more in the previous design 3200 matrices
were created and 3199 of them had to be copied. The new design also changed
the dynamic edge, vector edges, to a static array initialized to the desired size of
the graph. The second change was opting for a larger machine. All further trials
were run on a 64–bit machine with 8G of RAM.

The running trials resumed with the changes in effect. To maintain ac-
curacy and avoid any unnecessary discrepancies however, the trials had to be
restarted from the initial size of 100 vertices. With the loop in the diver function
set to 1000 iterations, the first few sets of trials were quickly attained. Even
through sizes of 800 and 1600 there was no significant jump in the time needed
to create graphs. Everything ran along smoothly until trials of size 3200 were
being run. Once again it was noticed that not all trials could complete, some
were running out of heap space memory. The matrix used was of type Integer
but in reality an adjacency matrix uses nothing other than zeros and ones. It
seemed obvious that in order to get more memory the matrix type should be
replaced by another data type that is more efficient.

Using boolean sounds as the most obvious choice as there are only two
options available, zero and one. A few modifications were created to the Integer
version and the boolean version was created. Trials were once again run starting
from scratch, but again memory became an issue in size 3200. It was as if no
change had been made. A further look into java’s built in boolean type found
that in spite of representing only a single bit of information, its actual size cannot
be precisely defined. The likely cause of the the memory problem lies in this
vagueness [1].

After a few similar changes to the program, the boolean type was replaced
with byte. In this case it is as the name suggests, an 8-bit integer. The type
Integer must be at least 32-bit as it wraps the type int into an object [1].

Much better results were expected as there is an obvious place where
memory will be saved. Once again trials were run from the start but once again,
despite there being an improvement, there was not enough memory available to
complete the trials to 12800.

Between the running of trials for boolean and byte types, having not
yet lost hope in the Integer matrix version, a way to allocate more memory to

Programming and Testing a Two-Tree Algorithm 131

Eclipse was found. Using another identical machine, the trials from type Integer
were continued. If the program (ever) run out of memory before all the trials
of given size were completed, more memory would automatically be allocated to
Eclipse. This continued, until it became apparent that enough memory could be
reserved to complete all sets of trials including those graphs of size 12800. At
times possibly as much as 7G of the 8G RAM were being used for Eclipse and
the running of the program.

5. Experimental Results. With the necessary information at hand,
the timing of the program could be analyzed. Though the timing of the algorithm
is linear, the timing of the implementation, namely the program and the way it
has been designed, was expected to be quadratic. This is exactly what was found.
The running time results from the trials with Integer type matrices (Table 1) con-
firmed this hypothesis. The column T/N2 is the most constant revealing that the
algorithm’s implementation is closest to quadratic in time, O(N2). The diver-
gency of the column T/N shows how O(N) is an underestimate for the timing.
The increasing nature of columns T/

√
N and T/(N log2 N) show the same for es-

timates of O(
√

N) and O(N log2 N) respectively. On the other hand, the column
T/N3 appears to be converging to zero confirming O(N3) is an overestimate [3].

This conclusion is only confirmed by the other trials.
As it was necessary to run trials to obtain the program’s timing, it was

decided to take a look at the lengths of the longest paths at the same time.
This in no way interfered with finding the timing of the program as all that had
to be done was requesting that the longest path length be recorded to a file,
Longest Path.txt, when it was found. So for every trial completed, not only
was a running time recorded in a file Times.txt, but the length of the longest
path was recorded in Longest Path.txt.

The data collected was handled similar to that of the timing. An average

Table 1. Trials of type Integer

N T (msec) T/
√

N T/N T/N2 T/N3 T/(N log
2
N)

100 2.48 0.002482 0.0248 0.000248 2.482 × 10−6 0.00374
200 7.02 0.002482 0.0351 0.000176 8.775 × 10−7 0.00459
400 25.48 0.003185 0.0637 0.000159 3.981 × 10−7 0.00737
800 107.31 0.004743 0.1341 0.000168 2.096 × 10−7 0.01391
1600 455.37 0.007115 0.2846 0.000178 1.112 × 10−7 0.02674
3200 2061.11 0.011386 0.6441 0.000201 6.290 × 10−8 0.05532
6400 9004.01 0.017586 1.4068 0.000220 3.435 × 10−8 0.11127
12800 45095.34 0.031140 3.5231 0.000275 2.510 × 10−8 0.25822

132 Tzvetalin S. Vassilev, Joanna Ammerlaan

Table 2. Trials of Type Boolean

N T (msec) T/
√

N T/N T/N2 T/N3 T/(N log2 N)

100 2.891 0.00289 0.0289 0.000289 2.891 × 10−8 0.00435
200 7.501 0.00265 0.0375 0.000188 9.377 × 10−7 0.00491
400 25.229 0.00315 0.0631 0.000158 3.941 × 10−7 0.00730
800 98.234 0.00434 0.1228 0.000153 1.919 × 10−7 0.01273
1600 424.097 0.00662 0.2651 0.000165 1.035 × 10−7 0.02490
3200 1966.671 0.01086 0.6146 0.000192 6.002 × 10−8 0.05278
6400 8584.170 0.01677 1.3413 0.000210 3.274 × 10−8 0.10608

Table 3. Trials of Type Byte

N T (msec) T/
√

N T/N T/N2 T/N3 T/(N log
2
N)

100 2.639 0.00269 0.0269 0.000269 2.693 × 10−6 0.00405
200 6.723 0.00238 0.0336 0.000168 8.404 × 10−7 0.00440
400 23.449 0.00293 0.0586 0.000147 3.664 × 10−7 0.00678
800 77.381 0.00342 0.0967 0.000121 1.511 × 10−7 0.01003
1600 290.444 0.00454 0.1815 0.000113 7.091 × 10−8 0.01705
3200 1355.711 0.00749 0.4237 0.000132 4.137 × 10−8 0.03638
6400 6792.514 0.01327 1.0613 0.000166 2.591 × 10−8 0.08394

Table 4. Trials from 32-bit Machine

N T (msec) T/
√

N T/N T/N2 T/N3 T/(N log2 N)

100 63.389 0.06339 0.6339 0.00634 6.334× 10−5 0.09541
200 142.772 0.09339 0.7139 0.00357 1.785× 10−5 0.09339
400 327.005 0.04088 0.8175 0.00204 5.109× 10−6 0.09458
800 939.713 0.04153 1.1746 0.00147 1.835× 10−6 0.12180
1600 3902.231 0.06097 2.4389 0.00152 9.527× 10−7 0.22914

longest path was found for each of the different two-tree sizes and the general
growth factor can be seen by looking at the summarizing tables below.

From the tables it can be observed that the length of the average longest
path in a two-tree relative to the size of the tree, N , decreases to zero. It is
less than linear and N3/4 but greater than both log2 N and

√
N . This was not

surprising given that the expected diameter of an Euclidean minimum spanning
tree of a uniformly distributed set of N points is known to be O(

√
N). Here

the problem concerns the longest path rather than the minimum or the diameter.
Further, distance is not a concern. However, the expected diameter of a tree with
N nodes is expected to be O(

√
N), and a two-tree can in fact be represented as

a standard tree of N nodes, by representing the tree’s faces as edges and the

Programming and Testing a Two-Tree Algorithm 133

Table 5. Trials of type Integer

N Average Longest
Path length

T/(log2 N) T/
√

N T/(N3/4) T/N

100 51.746 7.7885 5.1746 1.6363 0.5174
200 82.739 10.8242 5.8505 1.5557 0.4137
400 130.787 15.1306 6.5393 1.4622 0.3270
800 204.257 21.1800 7.2215 1.3579 0.2553
1600 317.737 29.8517 7.9434 1.2560 0.1986
3200 497.496 42.7261 8.7946 1.1693 0.1554
6400 770.193 60.9144 9.6274 1.0763 0.1203
12800 1187.736 87.0528 10.4982 0.9867 0.0928

Table 6. Trials of type Boolean

N Average Longest
Path length

T/(log2 N) T/
√

N T/(N3/4) T/N

100 51.590 7.7650 5.159 1.6314 0.1590
200 81.948 10.7208 5.7946 1.5409 0.4097
400 130.133 15.0550 6.5067 1.4549 0.3253
800 204.687 21.2246 7.2368 1.3607 0.2559
1600 320.834 30.1427 8.0209 1.2682 0.2005
3200 496.660 42.6543 8.7798 1.1673 0.1552
6400 770.193 60.7225 9.5971 1.0723 0.1200

Table 7. Trials of type Byte

N Average Longest
Path length

T/(log2 N) T/
√

N T/(N3/4) T/N

100 51.619 7.7694 5.1619 1.6323 0.5162
200 82.132 10.7448 5.8076 1.5443 0.4107
400 130.206 15.0634 6.5103 1.4557 0.3255
800 203.984 21.1517 7.2119 1.3561 0.2550
1600 316.2 29.7072 7.9050 1.2499 0.1976
3200 497.756 42.7583 8.7991 1.1699 0.1555
6400 765.721 60.5607 9.5715 1.0701 0.1196

tree’s edges as vertices. With this in mind it is believed that the longest path
would increase at about the same rate,

√
N . Results show that this is actually an

underestimate. It would be interesting whether the average length of the longest
path in a 2-tree with N vertices can be tied to a function of N from general
theoretical considerations.

134 Tzvetalin S. Vassilev, Joanna Ammerlaan

Table 8. Trials from a 32-bit Machine

N Average Longest
Path length

T/(log2 N) T/
√

N T/(N3/4) T/N

100 52.439 7.8928 5.2439 1.6582 0.5244
200 82.911 10.8467 5.8626 1.5590 0.4146
400 130.738 15.1250 6.5369 1.4617 0.3268
800 204.903 21.2470 7.2444 1.3622 0.2561
1600 318.751 29.9470 7.9688 1.2600 0.1992

6. Acknowledgments. Dr. Vassilev’s research is supported by NSERC
Discovery Grant. Joanna Ammerlaan’s work on this project was funded partially
by Nipissingu University Undergraduate Summer Research Awards (USRA) and
partially by Dr. Vassilev’s NSERC Discovery Grant. Both authors would like to
acknowledge the friendly and collegial atmosphere of the 2nd Annual Workshop
on Algorithmic Graph Theory held on May 16–20, 2011 at Nipissing University
in North Bay, Ontario. In particular, we would like to thank Dr. Minko Markov
for his suggestions, insights and discussion which helped us in carrying out this
project.

REFERE NC ES

[1] Primitive data types (the javaTM tutorials learning the java language basics).
http://download.oracle.com/javase/tutorial/java/nutsandbolts/

datatypes.html, 1995.

[2] Markov M., T. Vassilev, K. Manev. A linear time algorithm for com-
puting longest paths in 2-trees. Ars Combinatoria, 112 (2013), 329–351.

[3] Weiss M. A. Data Structures and Problem Solving Using C. Addison-
Wesley, 2nd edition, 2000.

Department of Computer Science and Mathematics

Nipissing University

Box 5002, 100 College Drive

North Bay, Ontario P1B 8L7

Canada

e-mails: tzvetalv@nipissingu.ca,

jammerlaan894@community.nipissingu.ca

Received March 13, 2013

Final Accepted August 12, 2013

