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APPROACH BASED ON A STOCHASTIC DAILY

PRECIPITATION MODEL

N. Neykov, P. Neytchev and W. Zucchini

Abstract. We consider development of daily precipitation models based
on [3] for some sites in Bulgaria. The precipitation process is modelled as
a two-state first-order nonstationary Markov model. Both the probability
of rainfall occurrance and the rainfall intensity are allowed depend on the
intensity on the preceeding day. To investigate the existence of long-term
trend and of changes in the pattern of seasonal variation we use a synthesis
of the methodology presented in [3] and the idea behind the classical running
windows technique for data smoothing. The resulting time series of model
parameters are used to quantify changes in the precipitation process over
the territory of Bulgaria.

1. Introduction

We consider development of daily precipitation models for some sites in Bul-
garia. The precipitation process is described as a two-state first-order Markov
chain which has been found to be an adequate model in many different regions,
e.g. [2], [6], [9], [10] and [11]. Finite Fourier series are used to approximate the
seasonal cycle in the probability of rainfall occurrence and in the parameters of
the intensity (amount when it rains) distribution. The resulting generalized lin-
ear model (glm), see [5], can be fitted using standard software. A good overview
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concerning daily precipitation modelling techniques is given in [10]. Following
that methodology [11] developed a stochastic model to describe the process of
daily precipitation for 133 sites in southwest Bulgaria for which suitable records
with lengths at least 20 years were available. Their work provided the opportu-
nity to assess the performance of the model for a large number of sites and, in
particular, to check that the estimates were plausible when considered spatially.
For example one would expect the estimates at neighboring sites to be similar
unless the local topography varies substantially. A second advantage of having
estimates on a dense network of sites is that selected properties of the process
can be interpolated and mapped.

The methodology developed in [9] is designed to describe the daily rainfall
process under the assumption that there have been no changes in the process,
i.e that there are no long-term trend and that the seasonal pattern remains the
same in each year. Furthermore their analysis is based on that the probability
of rain occurring on a given day depends only whether it was wet or dry on the
preceeding day. However, it is plausible that this probability also depends on how
much it rained on the previous day. The dependency on the previous intensities
simultaneously in the occurrence and intensity models was studied for the first
time in [3]. Moreover, apart from seasonal– and temporal–dependence effects,
some slowly-varying trend function (linear spline with unknown knots) over the
years were considered in [1] and [3] using glms, which are able to accommodate
the high variability present in the data.

In order to analyse not only the long-term changes (slowly-varying trend,
temporal variation) but also the changes of the seasonal variation pattern [12]
propose a synthesis between the methodology presented in [3] and the basic idea
behind the classical running windows technique for data smoothing, that is to
estimate the parameters of the model for each year using only the data from a
symmetric ”window” of neighbouring years. (The neighborhoods are necessarily
asymmetric at the start and at the end of the rainfall record.) In this way the
model is fitted for each year separately using only the 365m observations from
it’s corresponding window of length m years. Thus, for example, the data used to
model the rainfall occurrances for a given year data comprise 365m Bernoulli (wet
day or dry day)observations; the covariates are day of the year and the rainfall
intensities on the previous day. Logistic regression is used to fit these Bernoulli
(binary) data.

The aim of the paper is to demonstrate the statistical technique developed
in [11] for the detection of precipitation climate changes over the territory of
Bulgaria and to quantify these changes.
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2. Description of the daily precipitation model

The daily rainfall totals can be considered as a time series of amounts, where the
amount can also be zero. In our application a day was defined to be dry if less
than 0.1mm was recorded. Let Yt be a nonnegative random variable denoting the
amount on day t, t = 1, . . . , n and let yt be its observed value. The stochastic
process Yt is referred to as the amount process. The distribution of Yt is assumed
to be a mixture of a discrete component (Yt = 0) and a continuous component
(Yt > 0). Let ft(y|Xt = xt) denote the transition mixed density of Yt, where
Xt denotes a vector of covariates including Yt−1, and possibly other explanatory
variables. It is convenient to express the density of Yt in an explicit form by the
so-called occurrence and intensity processes (see, e.g., [6] and [9]).

The occurrence process is defined as

Jt =

{

0, if Yt = 0
1, if Yt > 0, where t=1, . . . ,n.

Denote by πt
w = Pr(Jt = 1) and πt(xt) = Pr(Jt = 1|Xt = xt) the uncon-

ditional and conditional Bernoulli distribution of the process Jt, where Xt =
(Jt−1, . . . , Jt−p, Yt−1, . . . , Yt−p, X1t, . . . , Xk−p,t)

T is a vector of possible covariates.
Interactions between the components of Xt may be included in the standard way.
Xt = (Jt−1, Yt−1, . . . , Yt−p, X1t, . . . , Xk−p,t)

T , then

Pr(Jt = jt|Xt = xt) =

{

1 − πt(jt−1, yt−1, . . . , yt−p, x1t, . . . , xkt), if jt = 0
πt(jt−1, yt−1, . . . , yt−p, x1t, . . . , xkt), if jt = 1.

We note that Jt is not strictly Markovian since we allow dependence of Jt on xt,
not just on jt−1.

The intensity process is defined to be Wt = Yt when Yt > 0 and missing oth-
erwise. The intensity process Wt has a positively skewed continuous conditional
distribution with density qt(w|Xt) for w > 0 and 0 otherwise. Common assump-
tions for the form of qt(w|Xt) are exponential, lognormal, Weibull or gamma.

The transition distribution of precipitation amount Yt under the above as-
sumptions is a mixture of the occurrence and intensity distribution

ft(y|Xt = xt) = (1 − πt(xt)) δ0(y) + πt(xt)qt(y|xt),

where δ0(y) is the Dirac delta function with zero support. Inference about Yt can
be done provided πt(xt) and qt(w|xt) are known.

In what follows we will restrict our attention to the special case in which the
covariate vector is Xt = (Jt−1, Yt−1)

T .



94 N. Neykov, P. Neytchev and W. Zucchini

2.1. Models for occurrence

Let πt
w|d(xt) = πt(jt−1 = 0) = Pr(Jt = 1|jt−1 = 0) and πt

w|w(xt) = πt(jt−1 =

1, Yt−1 = yt−1) = Pr(Jt = 1|jt−1 = 1, Yt−1 = yt−1) be the two-state nonstation-
ary Markov chain transition probabilities that a wet day follows a dry day, and
a wet day follows a wet day respectively, conditional on the amount on previous
day. Given the previous state of the occurrence process and using arguments
based on the total probability we can express the unconditional probability for a
wet state on day t as

πt
w = πt−1

w πt
w|w(xt) + (1 − πt−1

w )πt
w|d(xt).

Under the plausible assumption that πt
w ≈ πt−1

w for any t, the unconditional
probability of wet day is given by

πt
w = πt

w|d(xt)/(π
t
w|d(xt) + 1 − πt

w|w(xt)).

In order to model the transition probabilities πt
w|w(xt) and πt

w|d(xt), [9] and
many others, have used the logit link function

π(xt) = l(u(xt)) = exp(u(xt))/ (1 + exp(u(xt))) .

The function u(xt) should be a periodic parametric function, approximately si-
nusoidal in shape, that links the covariates and the unknown parameters in order
to account for various temporal and seasonal effects. So it should be composed
of seasonal terms that repeat each year and represent a ’typical’ year, and a re-
mainder term that represents deviation from this regular pattern. We will use
the following function

u(xt) = α0 + α1
√

yt−1 + α2 sin (2πtk/365) + α3 cos (2πtk/365) .

Of course some other smooth function, such as logarithm, cubic root, or power
transformation could be used instead the square root.

The probabilities πt
w|w(xt) and πt

w|d(xt) are estimated using the same method

(maximum likelihood) but with different data sets. In the case of π t
w|w(xt), t =

1, . . . , n the state of the previous day is wet and so the data are regarded as
Bernoulli observations, indexed by the day, year, state and the corresponding
rainfall amount on the previous day. In the case of πt

w|d(xt) the state of the pre-
vious day is dry and so the data are regarded as Bernoulli observations, indexed by
the day, year and the state. In practice one finds that πt

w|d(xt) ≤ πt
w ≤ πt

w|w(xt),
reflecting the persistent nature of daily rainfall occurrence.
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2.2. The Intensity Models

The distribution of precipitation depths on wet days is positively skewed (i.e.
smaller amounts occurr more frequently than larger amounts) and also exhibits
seasonal variability. A simple and widely accepted technique to model this be-
haviour (see, e.g., [3], [9] and [11]) is to fit a single family of distributions whose
parameters are allowed to vary smoothly over the year, usually by representing
them as a Fourier series.

In this region the gamma distribution was found to be suitable ([11]); its
probability density function given by

γ(z, µ, β) =











(β/µ)β zβ−1 exp (−βz/µ)

Γ(β)
z > 0

0 z = 0,

where Γ(β) is the gamma function, µ the mean and β the shape parameter. The
following log link function was used for the intensity model

log (µt(xt)) = θ0 + θ1
√

yt−1 + θ2 sin (2πtk/365) + θ3 cos (2πtk/365) ,

where θ0, . . . , θ3)
T are the unknown parameters. In place of the square root

another smooth function, e.g, logarithm, a cubic root, or power transformation
could be used.

2.3. The amplitude-phase interpretation

The sine-cosine representation used in the rainfall model specification is conve-
nient for computational purposes, but for interpretating the parameters, or for
comparing the parameters of different sites, the (equivalent) amplitude-phase rep-
resentation is preferable. For example the phase parameters indicate the time of
year of maximum probability of rain, or of maximum mean intensity; the ampli-
tudes describe the maximum size of the seasonal change in mean intensity, or in
the probability of rainfall. The intercepts represent the average rainfall intensity,
or the average probability of rain over the year.

2.4. Computational aspect and model choice

As the Bernouli and Gamma distribution belong to the exponential family, es-
timates of πt

w|w(xt), πt
w|d(xt), µt(xt) and β can be obtained using standard glm

estimation methodology [5].
Our parameter estimates were computed by the method of fitting the expec-

tation using a standard nonlinear least squares regression program which employs
a modified Gauss-Newton algorithm in iteratively reweighted mode [4].
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3. Applications

Many different aspects of the precipitation process are of interest in meteorolog-
ical and hydrological applications, for example the monthly, seasonal and annual
means, the distribution n-day extreme precipitation totals, the expected number
of wet days, the expected length of dry spells, and so on.

An important feature of the proposed model is that it can be applied to
quantify complex features of daily precipitation without special knowledge of the
underlying statistical theory. Once the model has been calibrated at a given
site one uses it to generate long sequences of artificial precipitation for that site.
These sequences can be used to estimate any statistic, or probablity, relating
to precipitation event of interest in exactly the way one would do so if a long
sequence of real rainfall data were available. Furthemore, by using appropriate
adjustments that are considered in the next sections, some properties of the
process can be obtained approximately but directly from the model.

3.1. Seasonal adjustments

Because the transition probabilities of the amount process Yt depend on the in-
tensity of the previous day, the main findings and results of the well developed
stationary theory of chain-dependent Markov process do not apply. One way to
overcome this problem of dependence (approximately) is to replace the expres-
sions πt

w|w(xt) and µt(xt) by their expectations with respect of the preceding day

amount, namely by πt
w|w and µt, respectively. Alternatively we can make the

approximation that the transition probabilities of occurrence π t
w|d and πt

w|w, and
the intensity mean µt, are roughly constant over a short T -day period of time, e.g.
week, month or, in some cases, even season. Taking the expectation over a T-day
period of time the corresponding transition probabilities πw|w and πw|d, and the
intensity µ of a stationary two-state first-order Markov chain can be determined
using a fixed point algorithm such as the following:

πw|d = l
(

s̄d + α̂d
0

)

π
(i)
w|w ≈ l

(

s̄w + α̂w
0 + α̂w

1

√

µ(i−1)

)

π(i)
w ≈

πw|d

πw|d + 1 − πw|w

µ(i) ≈ µ̄s exp(θ̂0)

(

1 − πw + exp(θ̂1

√

µ(i−1))π(i)
w

)

,
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where,

s̄d = Et{αd
2 sin(2πt/365) + αd

3 cos(2πt/365)}
s̄w = Et{αw

2 sin(2πt/365) + αw
3 cos(2πt/365)}

µ̄s = Et{exp(θµ
2 sin(2πt/365) + θµ

3 cos(2πt/365))}

where the hats indicate parameter estimates of the daily rainfall model fitted
using observations in the relevant (running) window; l(.) is logit link function
and i is the current iteration number. Starting with µ(0) equal to the mean daily
precipitation (approximately 2 mm) convergence is reached in about 3 iterations.

The annual period of time can be treated similarly because the expectations
s̄w, s̄d and µ̄s equal to zero over an year and thus the above technique reduces to
the seasonal adjustment.

For a given T-day period of time this procedure is repeated for each year in
the rainfall record; the output of the running windows technique comprises four
time series of the estimates πw, πw|w, πw|d and µ which can be used for further
analysis.

3.2. Monthly, seasonal, annual and extreme statistics

Having the quantities outlined in the previous subsection, the methodology con-
cerning the monthly, seasonal, annual and maximum precipitation developed in
[6] and [7] can now be applied.

Recall that the number of wet days N(T ) =
∑T

j=1 Jj and the total precipi-

tation amount S(T ) =
∑N(T )

j=1 Wj in a T-day time period are random variables.
Therefore, the expected number of rainy days, the total precipitation amount and
their variances over a T-day time period are given by

E [N(T )] = Tπw and Var [N(T )] ≈ Tπw(1 − πw) [(1 + ρ)/(1 − ρ)]

E [S(T )] = Tπwµ and Var [S(T )] ≈ Tπw

(

σ2 + (1 − πw) [(1 + ρ)/(1 − ρ)] µ2
)

,

where ρ = Corr(Jt, Jt+1) = πw|w − πw|d is the first-order auto-correlation coeffi-
cient and σ2 = V ar(Wt) = V ar(Yt|Jt = 1), see [7].

4. Assessment of the effects of climate change

In order to assess the effect of climate change on the precipitation the running
windows technique is applied, i.e., the time series of estimates are produced for
each gauge. The series comprise intercepts, amplitudes, phases for the model
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parameters and also the deviances. For the purpose of exploring this series, an
appropriate graphical technique based on the R environment, was developed.

The plots in Figures 1 - 3 show the time series of the model parameter
estimates at the Plovdiv gauge. They are are based on a 5-year running windows.
The continuous lines shown are the lowess smoother of the data presented in the
subplots.

A formal goodness-of-fit test on the fitted model can be carried out using
the fact that (under the hypothesis) the relevant deviance for the linear logistic
model for each running window is approximately equal to its degrees of freedom,
i.e., the ratios of the deviances to their degrees of freedom are approximately
equal to one.

The plots exhibit long-term trends as well as changes of the seasonal variation
patterns. However, the visual inspection alone is not sufficient for identifying
changes in the parameter estimates series. Thus a modification of the Mann-
Whitney test [8] was used to detect the years of changes. In all the subplots
the sub-intervals means determined by the change-point technique are marked.
A significant level of α = 0.05% was used. The results of these tests provide
evidence that change-points did indeed occur in the period considered.

Figure 4 refers to May precipitation characteristics at Plovdiv. The plots are
based on a 5-year running window. The top left-hand window in each case is a
scatterplot of the observed rainfall amounts against the corresponding expected
amount under the model. The term ”relative error” in the legend is the average
ratio of the observed and to expected rainfall amounts. The subplots entitled
”Rainfall Probability”, ”Rainfall Intensity” and ”Expected Amount” correspond
to the estimates of the basic rainfall model elements πw, µ and πwµ, respectively,
and their values are marked as by small circles.

Figure 5 is analogous to Figure 4 but refers to annual precipitation. Cor-
respondingly the headings of the plots are prefixed with the words ”seasonally
adjusted”. The observed rainfall data amounts in the subplots ”Observed and
Expected Amount” are marked as small circles.

Figures 1 to 5 illustrate the nature of the changes in the rainfall process
over the period of observation. Interesting (Figure 5) is the indication that the
seasonaly adjusted rainfall intensity decreased in the 1930’s (and possibly again in
around 1990) whereas the seasonaly adjusted probability increased in the 1930’s
but there is a hint that it is gradually decreasing again. Until recent times these
two (opposing) features compensated each other so that the seasonally adjusted
expected amount was approximately constant until about 1980.
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Figure 1: πt
w|d model estimates for gauge Plovdiv — 5-years window. The means

of the sub-interval, determined by the change points are marked.
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Figure 2: πt
w|w model estimates for gauge Plovdiv — 5-years window. The means

of the sub-interval, determined by the change points are marked.
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5. Conclusions and prospects for future research

Stochastic daily rainfall models have a long history and have been sucessfully
applied in many parts of the world. The main advantage that they offer is that,
via simulation, they can be used to estimate any aspect of the daily precipation
process, no matter how complex. In most applications they have been fitted under
the assumption that the process has not changed, i.e. that there were no trends
and that the seasonal pattern has remained unchanged and (if one wishes to base
decisions on the model) that it will remain unchanged. However it is becoming
increasingly apparent that such an assumption cannot be taken for granted. Our
analysis provides a case in point. The technique outlined in this paper is to fit
a daily model in a running window of observations. This enables one not only
to detect the existence changes but also to quantify such changes in terms of the
model parameters, and hence to arbitrary properties of the process.

Of course such a model does not enable us to forecast the future behaviour of
the process. One possibile way doing that would be to identify an appropriately
strong relationship between the model parameters and some indicator for which
long-term forecasts can be made, perhaps global temperature. Such a relationship
has not yet been identified. Nevertheless for the present one can use of the model
as a mechanism to generate ”scenarios”. Under the stationarity assumption very
dry (or very wet) years are regarded as extreme observations from the model.
If one relaxes the assumption of stationarity then such years can be regarded
as ”normal” years in a dry (or wet) period. One can use the estimates of the
parameters from such periods in the historical record to assess the properties of
the process under a dry (or a wet) scenario.
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