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QUEUING AND THEIR PROBABILITY

CHARACTERISTICS

K. E. Avrachenkov, G. L. Shevlyakov and N. O. Vilchevski

Abstract.The non-preemptive priority queueing with a finite buffer is con-
sidered. A randomized push-out buffer management mechanism that allows
to control very efficiently the loss probability of priority packets is intro-
duced. The packet loss probabilities for priority and non-priority traffic are
derived with the use of the generating function approach. For the standard
non-randomized push-out scheme, the explicit analytic expressions are ob-
tained. A procedure for the numerical calculation of mean queues is also
proposed.

1. Introduction

Priority queueing disciplines have a number of important applications in com-
puter networks, for example, in the Differentiated Services architecture for the
Internet [7].

Consider the non-preemptive priority queueing system with two classes of
packets. Class 1 packets have priority over class 2 packets. The packets of
class 1 (2) arrive into the buffer according to the Poisson process with rate λ1

(λ2), respectively. The service time has the exponential distribution with the
same rate µ for each class. The service times are independent of the arrival
processes. The buffer has a finite size N and it is shared by both types of
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customers. If the buffer is full, a new coming customer of class 1 can push out
of the buffer a customer of class 2 with the probability α. Note that if α = 1 we
retrieve the standard non-randomized push-out mechanism.

The infinite buffer priority queueing has been thoroughly studied in [4, 8, 9].
The case of finite buffer priority queueing received considerably less attention.
The M/M/C/K type finite buffer non-preemptive priority queueing with non-
randomized push-out mechanism is analyzed by Kapadia et al [5, 6]. Bondi [1]
considers the M/M/1/K type preemptive and non-preemptive priority queueing
with the following buffer management schemes: complete partitioning, complete
sharing and sharing with minimum allocation. Wagner and Krieger [10] analyze
the M/M/1/K type non-preemptive priority queueing with the complete shar-
ing buffer management scheme and with the class-dependent service rates. In
[2] Cheng and Akyildiz consider the priority queueing with general service time
distributions and a general service discipline function.

Most of the above works use recursive relations to solve steady state Kol-
mogorov equations. We use a generating function approach, which only requires
the solution of a linear system of N equations. As far as we know, the randomized
push-out mechanism is analyzed for the first time.

2. The generating functions

Denote by p(i, n) the stationary probability of the event that there are n packets
in the queue including i packets of class 1. We also use p0 for the stationary prob-
ability of the event that there are no packets in the system. These probabilities
satisfy the following stationary Kolmogorov equations:

(λ1 + λ2)p0 = µp(0, 0);

• n = 0

(λ1 + λ2 + µ)p(0, 0) = µp(1, 1) + µp(0, 1) + (λ1 + λ2)p0;

• 0 < n < N

(λ1 + λ2 + µ)p(0, n) = µp(1, n + 1) + µp(0, n + 1) + λ2p(0, n − 1),
(λ1 + λ2 + µ)p(i, n) = µp(i + 1, n + 1) + λ1p(i − 1, n − 1) + λ2p(i, n − 1),
(λ1 + λ2 + µ)p(i, n) = µp(n + 1, n + 1) + λ1p(n − 1, n − 1);

• n = N
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(αλ1 + µ)p(0, N) = λ2p(0, N − 1),
(αλ1 + µ)p(i,N) = λ1p(i − 1, N − 1) +λ2p(i,N − 1) +αλ1p(i − 1, N),

µp(N,N) = λ1p(N − 1, N − 1) +αλ1p(N − 1, N).

Next we introduce the generating function for p(i, n) by the index i

Fn(x) =
n
∑

i=0

p(i, n)xi.

Using the above given Kolmogorov equations, we obtain the following rela-
tions for the generating functions Fn(x), n = 0, 1, ..., N :

• n = 0

(λ1 + λ2 + µ)F0(x) =
µ

x
[F1(x) − p(0, 1)] + µp(0, 1) + (λ1 + λ2)p0,

• 0 < n < N

(λ1 +λ2 +µ)Fn(x) =
µ

x
[Fn+1(x) − p(0, n + 1)]+µp(0, n+1)+(λ1x+λ2)Fn−1(x).

In particular, we get the following boundary condition

• n = N

(αλ1 + µ)FN (x) − αλ1p(N,N)xN = (λ1x + λ2)FN−1(x)(1)

+αλ1xFN (x) − αλ1x
N+1p(N,N).

Now we introduce the generating function for Fn(x) by the index n

Φ(x, y) =
N−1
∑

n=0

Fn(x)yn.

The generating function Φ(x, y) satisfies equation (2) given in Lemma 1 below.

Lemma 1. The generating function Φ(x, y) satisfies the following equation

[(ρ + 1)xy − xy2(ρ1x + ρ2) − 1]Φ(x, y) = −yN+1x(ρ1x + ρ2)FN−1(x)(2)

+yNFN (x) + y(x − 1)A(y) + (xy − 1)ρp0,

where ρi = λi/µ, ρ = ρ1 + ρ2 and A(y) =
∑N−1

n=0 p(0, n + 1)yn.
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The generating function Φ(x, y) is determined by the next result.

Theorem 1. The generating function Φ(x, y) is given by

Φ(x, y) =

[1 − xy + αρ1xy(x − 1)]yNVN−1(x) + y(x − 1)A(y)

(ρ + 1)xy − xy2(ρ1x + ρ2) − 1

+
[1 − xy]xNyNp(N,N) + ρ[xy − 1]p0

(ρ + 1)xy − xy2(ρ1x + ρ2) − 1
,

where

VN−1(x) =
N−1
∑

k=0

xkp(k,N),

A(y) = −αρyN−1p(0, N)

+
N−1
∑

k=1

[ρ2y
N−k Uk−1(t)

ρ
(k+1)/2
1

− αρyN−k−1 Uk(t)

ρ
k/2
1

+αyN−k−1 Uk−1(t)

ρ
(k−1)/2
1

]p(k,N) + ρ2
UN−1(t)

ρ
(N+1)/2
1

p(N,N)

with t = (ρ + 1− ρ2y)/(2ρ
1/2
1 ) and where probabilities p(k,N), k = 0, ..., N can be

obtained as a solution to the following system of linear equations

• s = 0

αρ1C
1
N−1(t0)p(N − 1, N)

+
[

ρC1
N−1(t0) − ρ1

1/2C1
N (t0)

]

p(N,N) + ρρ1
(N+1)/2p0 = 0,

• 0 < s < N

s−1
∑

k=0

[

ρ
Cs−k

N−s−1(t0)ρ1
k+1

(−ρ2)k+1
− ρ1

3/2(1 + αρ)
Cs−k

N−s(t0)ρ1
k

(−ρ2)k+1

+ρ1α
Cs−k+1

N−s−1(t0)ρ1
k

(−ρ2)k

]

p(N − 1−k,N)+αρ1
s+1 C1

N−s−1(t0)

(−ρ2)s
p(N − 1− s,N)

+
[

ρCs+1
N−s−1(t0) − ρ1

3/2Cs+1
N−s(t0)

]

p(N,N) = 0,
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• s = N

−ρ1
3/2(1+αρ)

N−1
∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
p(N−1−k,N)−ρ1

1/2CN+1
0 (t0)p(N,N) = 0

with Un(x) and Cν
n(x) denoting the Chebyshev polynomials of the second kind

and the Gegenbauer polynomials [3], respectively, and

p0 = (1 − ρ)/(1 − ρN+2), t0 = (ρ + 1)/(2ρ
1/2
1 ).

The proof is carried out into Section 4.

3. The loss probabilities

Once we know the value of p(N,N), we can derive the loss probabilities of class 1
and class 2 packets.

Theorem 2. The loss probabilities of class 1 and class 2 packets are given

by the following formulae

P
(1)
loss = p(N,N) + (1 − α)[PN − p(N,N)],(3)

P
(2)
loss = PN + α

ρ1

ρ2
[PN − p(N,N)],(4)

where

PN =
1 − ρ

1 − ρN+2
ρN+1.

Proof: A priority packet can be lost either when the whole buffer is filled only
with priority packets or when there are some packets of class 2 but with prob-
ability 1 − α the push-out mechanism is not enabled. The probability of the
first event is p(N,N) and the probability of the second event is

∑N−1
k=0 p(k,N) =

PN − p(N,N). Thus, we obtain formula (3).

The stream of lost packets of class 2 consists of the stream of packets with rate
λ2PN lost when the buffer is full and the stream of packets with rate αλ1(Pn −

p(N,N)) pushed out by packets of class 1. Since the system is ergodic, we obtain
formula (4).
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Note that if α = 0 (no push-out), the loss probabilities or two classes coincide
and are equal to PN . Furthermore, due to the fact that the service time distri-
bution is the same for the two classes, the expressions for p0, FN (1) and Φ(1, 1)
could be obtained immediately by elementary considerations.

In the particular case of the non-randomized push-out mechanism, that is,
when α = 1, we can calculate the loss probabilities explicitly.

Theorem 3. The loss probabilities of class 1 and class 2 packets in the case

of non-randomized push-out mechanism are given by

P
(1)
loss = ρρN

1

(1 − ρ1)(1 − ρN+1)

(1 − ρN+1
1 )(1 − ρN+2)

,(5)

P
(2)
loss = PN +

ρ1

ρ2
[PN − P

(1)
loss].(6)

In the case of non-randomized push-out mechanism (α = 1), the equation for
the generating function (2) takes the form

[(ρ + 1)xy − xy2(ρ1x + ρ2) − 1]Φ(x, y) = yN [1 − xy + ρ1x(x − 1)y]FN (x)(7)

+y(x − 1)A(y) + ρ1(1 − x)xN+1yN+1p(N,N) + (xy − 1)ρp0.

Setting x = 1 in (7), and then reducing it by the term (y − 1), we get

(1 − ρy)Φ(1, y) = ρp0 − yNFN (1).

Then in the above equation we take subsequently y = 1 and y = 1/ρ to obtain

(1 − ρ)Φ(1, 1) = ρp0 − FN (1)(8)

and

0 = ρp0 −
1

ρN
FN (1).(9)

Solving equations (8) and (9) together with the normalization condition

Φ(1, 1) + p0 + FN (1) = 1,

we obtain the following expressions for p0, FN (1) and Φ(1, 1):

p0 =
1 − ρ

1 − ρN+2
, FN (1) =

1 − ρ

1 − ρN+2
ρN+1, Φ(1, 1) =

1 − ρN+1

1 − ρN+2
ρ.



Randomized push-out mechanisms 29

Next we take y = 1 in equation (7) and then reduce it by the term (x − 1)

(1 − ρ1x)Φ(x, 1) = −(1 − ρ1x)FN (x) + A(1) − ρ1x
N+1p(N,N) + ρp0.

We now set subsequently x = 1 and x = 1/ρ1 in the above equation. This results
in the following two equations:

(1 − ρ1)Φ(1, 1) = −(1 − ρ1)FN (1) + A(1) − ρ1p(N,N) + ρp0,(10)

0 = A(1) −
1

ρN
1

p(N,N) + ρp0.(11)

Solving equations (10) and (11), we obtain

p(N,N) =
(1 − ρ1)(1 − ρN+1)

(1 − ρN+1
1 )(1 − ρN+2)

ρρN
1 .

The loss probability of class 1 packets P
(1)
loss is given by p(N,N). Then, we note

that the stream of lost packets of class 2 consists of the stream of packets with
rate λ2FN (1) lost when the buffer is full and the stream of packets with rate
λ1(FN (1)−p(N,N)) pushed out by packets of class 1. Hence, using the ergodicity

property of the system, we obtain formula (6) for P
(2)
loss.

4. Proof of Theorem 1

By substituting boundary condition (1) into equation (2) for the generating func-
tion Φ(x, y), we get

[(ρ + 1)xy − xy2(ρ1x + ρ2) − 1]Φ(x, y) = [1 − xy + αρ1xy(x − 1)]yNVN−1(x)

+[1 − xy]xNyNp(N,N) + y(x − 1)A(y) + ρ[xy − 1]p0,(12)

where VN−1(x) =
∑N−1

i=0 xip(i,N), and hence the expression for Φ(x, y).
Next, we set z := xy and rewrite equation (12) as follows:

[(ρ1+ρ2+1)z−ρ1z
2
−ρ2yz−1]Φ

(

z

y
, y

)

= [(1−z)y+ρ1α(z−y)z]yN−1VN−1

(

z

y

)

+(z − y)A(y) + (1 − z)zNp(N,N) + ρ(z − 1)p0.

Let us now consider the analyticity condition for the generating function Φ(z/y, y).
Namely, the following two conditions have to be satisfied simultaneously

(ρ1 + ρ2 + 1)z − ρ1z
2
− ρ2yz − 1 = 0,
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[(1 − z)y + ρ1α(z − y)z]yN−1VN−1

(

z

y

)

+(z − y)A(y) + (1 − z)zNP (N,N) + ρ(z − 1)p0 = 0.

The first condition can be rewritten as

ρ2(y − z)z = (1 − z)(ρz − 1),

which gives

y − z =
(1 − z)(ρz − 1)

ρ2z
.

We substitute the above expression for y−z into the first two terms of the second
analyticity condition and then reduce it by 1 − z, to get

(

y −

ρ1

ρ2
α(ρz − 1)

)

yN−1VN−1

(

z

y

)

(13)

−

ρz − 1

ρ2z
A(y) + zNp(N,N) − (ρ1 + ρ2)p0 = 0.

Next we denote by a and b the roots of the following quadratic equation with
respect to the variable z

(ρ1 + ρ2 + 1)z − ρ1z
2
− ρ2yz − 1 = 0.

Now we substitute subsequently the roots a and b into (13), which allows us to
eliminate A(y)

ρb − 1

b

(

y −

ρ1

ρ2
α(ρa − 1)

)

yN−1VN−1

(

a

y

)

−

ρa − 1

a

(

y −

ρ1

ρ2
α(ρb − 1)

)

yN−1VN−1

(

b

y

)

+

(

ρb − 1

b
aN

−

ρa − 1

a
bN
)

p(N,N)

−ρ

(

ρb − 1

b
−

ρa − 1

a

)

p0 = 0.

Taking into account the properties of roots of the quadratic equation

ab = 1/ρ1, (ρa − 1)(ρb − 1) =
ρ2

ρ1
(ρy − 1),

we have

((ρ−ρ1a)y−q(ρy−1)ρ1a)yN−1VN−1

(

a

y

)

−((ρ−ρ1b)y−q(ρy−1)ρ1b)y
N−1VN−1

(

a

y

)
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+(ρ(aN
− bN ) − ρ1(a

N+1
− bN+1))p(N,N) + ρρ1(a − b)p0 = 0,

ρyN
(

VN−1

(

a

y

)

− VN−1

(

b

y

))

− ρ1(y + q(ρy − 1))

(

aVN−1

(

a

y

)

−

bVN−1

(

b

y

))

yN−1 +(ρ(aN
− bN)−ρ1(a

N+1
− bN+1))p(N,N)+ρρ1(a− b)p0 = 0,

ρy
N−1
∑

i=1

vi(a
i
− bi)yN−1−i

− ρ1(y + q(ρy − 1))
N−1
∑

i=0

vi(a
i+1

− bi+1)yN−1−i

+(ρ(aN
− bN ) − ρ1(a

N+1
− bN+1))p(N,N) + ρρ1(a − b)p0 = 0.(14)

By denoting cos ϕ = (ρ + 1 − ρ2y)/(2ρ1
1/2), the roots a and b can be written in

the form

a =
exp(iϕ)

ρ1
1/2

, b =
exp(−iϕ)

ρ1
1/2

.

Then equation (14) can be rewritten as

ρy
N−1
∑

i=1

viUi−1(t)
yN−1−i

ρ1
i/2

− ρ1(y + q(ρy − 1))
N−1
∑

i=0

viUi(t)
yN−1−i

ρ1
(i+1)/2

+

(

ρUN−1(t)
1

ρ1
(N)/2

− ρ1UN (t)
1

ρ1
(N+1)/2

)

p(N,N) + ρρ1
1/2p0 = 0,(15)

where t := cosϕ = (ρ+1−ρ2y)/(2ρ1
1/2) and Us(t) are the Chebyshev polynomials

of the second kind [3]

Us(cos ϕ) =
sin(s + 1)ϕ

sinϕ
.

The Taylor series for the function Us(t) with respect to y, being actually a poly-
nomial in this case, has the following form

Us(t(y)) =
s
∑

s=0

U
(i)
s (t0)

i!
(−1)i ρi

2y
i

2iρ1
i/2

with t0 = (ρ+1)(2ρ1
1/2). By changing the order of summation in the expressions

N−1
∑

i=1

viUi−1(t)
yN−1−i

ρ1
i/2

=
N−2
∑

l=0

yl
l
∑

k=0

vN−1−k

U
(l−k)
N−k−2(t0)(−ρ2)

l−k

(l − k)!2l−kρ1
(N−1−2k+l)/2

,

N−1
∑

i=0

viUi(t)
yN−1−i

ρ1
(i+1)/2

=
N−1
∑

l=0

yl
l
∑

k=0

vN−1−k

U
(l−k)
N−k−1(t0)(−ρ2)

l−k

(l − k)!2l−kρ1
(N−2k+l)/2

,
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we rewrite equation (15) as follows:

ρ
N−1
∑

s=1

ys
s−1
∑

k=0

vN−1−k

U
(s−k−1)
N−k−2 (t0)(−ρ2)

s−k−1

(s − k − 1)!2s−k−1ρ1
(N−2−2k+s)/2

−ρ1(1 + αρ)
N
∑

s=1

ys
s−1
∑

k=0

vN−1−k

U
(s−k−1)
N−k−1 (t0)(−ρ2)

s−k−1

(s − k − 1)!2s−k−1ρ1
(N−2k+s−1)/2

+ρ1α
N−1
∑

s=0

ys
s
∑

k=0

vN−1−k

U
(s−k)
N−k−1(t0)(−ρ2)

s−k

(s − k)!2s−kρ1
(N−2k+s)/2

+



ρ
N−1
∑

s=0

ys U
(s)
N−1(t0)(−ρ2)

s

(s)!2sρ1
(N+s)/2

− ρ1

N
∑

s=0

ys U
(s)
N (t0)(−ρ2)

s

(s)!2sρ1
(N+s+1)/2



 p(N,N)+ρρ1
1/2p0 = 0.

Next we use the relation between the derivatives of the Chebyshev polynomials
and Gegenbauer polynomials [3, v.2, p.186]

U (m)
n (x) = 2mm!Cm+1

n−m(x)

to get

ρ
N−1
∑

s=1

ys
s−1
∑

k=0

vN−1−k

Cs−k
N−s−1(t0)(−ρ2)

s−k−1

ρ1
(N−2−2k+s)/2

−ρ1(1 + αρ)
N
∑

s=1

ys
s−1
∑

k=0

vN−1−k

Cs−k
N−s(t0)(−ρ2)

s−k−1

ρ1
(N−2k+s−1)/2

+ρ1α
N−1
∑

s=0

ys
s
∑

k=0

vN−1−k

Cs−k+1
N−s−1(t0)(−ρ2)

s−k

ρ1
(N−2k+s)/2

+

(

ρ
N−1
∑

s=0

ys Cs+1
N−s−1(t0)(−ρ2)

s

ρ1
(N+s)/2

− ρ1

N
∑

s=0

ys Cs+1
N−s(t0)(−ρ2)

s

ρ1
(N+s+1)/2

)

p(N,N)+ρρ1
1/2p0 = 0.

Collecting the terms with the same power of y, we obtain the required system of
equations:

• s = 0

αρ1C
1
N−1(t0)vN−1+

[

ρC1
N−1(t0) − ρ1

1/2C1
N (t0)

]

p(N,N)+ρρ1
(N+1)/2p0 = 0,
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• 0 < s < N

ρ
s−1
∑

k=0

Cs−k
N−s−1(t0)ρ1

k+1

(−ρ2)k+1
vN−1−k − ρ1

3/2(1 + αρ)
s−1
∑

k=0

Cs−k
N−s(t0)ρ1

k

(−ρ2)k+1
vN−1−k

+αρ1

s
∑

k=0

Cs−k+1
N−s−1(t0)ρ1

k

(−ρ2)k
vN−1−k

+
[

ρCs+1
N−s−1(t0) − ρ1

1/2Cs+1
N−s(t0)

]

p(N,N) = 0,

• s = N

−ρ1
3/2(1 + αρ)

N−1
∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
vN−1−k − ρ1

1/2CN+1
0 (t0)p(N,N) = 0,

or, equivalently,

• s = 0

αρ1C
1
N−1(t0)vN−1+

[

ρC1
N−1(t0) − ρ1

1/2C1
N (t0)

]

p(N,N)+ρρ1
(N+1)/2p0 = 0,

• 0 < s < N

s−1
∑

k=0

[

ρ
Cs−k

N−s−1(t0)ρ1
k+1

(−ρ2)k+1
− ρ1

3/2(1 + αρ)
Cs−k

N−s(t0)ρ1
k

(−ρ2)k+1

+ρ1α
Cs−k+1

N−s−1(t0)ρ1
k

(−ρ2)k

]

vN−1−k + α
C1

N−s−1(t0)ρ1
s+1

(−ρ2)s
vN−1−s

+
[

ρCs+1
N−s−1(t0) − ρ1

1/2Cs+1
N−s(t0)

]

p(N,N) = 0,

• s = N

−ρ1
3/2(1 + αρ)

N−1
∑

k=0

CN−k
0 (t0)ρ1

k

(−ρ2)k+1
vN−1−k − ρ1

1/2CN+1
0 (t0)p(N,N) = 0.
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Finally, to obtain an expression for A(y) in terms of p(k,N), k = 0, ..., N and
Chebyshev polynomials, we again substitute subsequently the roots a and b into
(13) and subtract one equation from another

yN
N−1
∑

k=0

ak
− bk

yk
p(k,N) −

ρ1

ρ2
αρyN−1

N−1
∑

k=0

ak+1
− bk+1

yk
p(k,N)

+
ρ1

ρ2
αyN−1

N−1
∑

k=0

ak
− bk

yk
p(k,N) + (aN

− bN )p(N,N) −
ρ1

ρ2
A(y)(a − b) = 0.

As above, taking into account that

ak
− bk

a − b
=

Uk−1(t)

ρ
(k−1)/2
1

,

we can express A(y) in terms of p(k,N), k = 0, ..., N and the Chebyshev polyno-
mials of the second type.

5. On the numerical calculation of mean queue values

Now we consider the calculation of mean queues. The total mean queue of pre-
emptive and non-preepmptive priority packets is given by

n̄ =
N
∑

n=0

n
n
∑

i=0

p(i, n) = Φ′

y(1, 1) + NVN−1(1) + Np(N,N).

The mean queue of preemptive priority packets is equal to

ī =
N
∑

n=0

n
∑

i=0

ip(i, n) = Φ′

x(1, 1) + V ′

N−1(1) + Np(N,N).

The mean queue of non-preepmptive priority packets is n̄ − ī.

We have also V ′

N−1(1) =
∑N−1

i=0 ip(i,N).
To derive the unknown functions, we have to do the following steps:

• Substitute x = 1 into the expression for the generating function(12) and
reduce it by (y − 1), hence

(ρy − 1)Φ(1, y) = yNVN−1(1) + yNp(N,N) − ρp0
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Differentiating by y and substituting y = 1, we have:

(ρ − 1)Φ(1, 1) = VN−1(1) + p(N,N) − ρp0,

ρΦ(1, 1) + (ρ − 1)Φ′

y(1, 1) = NVN−1(1) + Np(N,N)

• Substitute y = 1 into the expression for the generating function(12) and
reduce it by (x − 1), hence

(ρ1x − 1)Φ(x, 1) = (1 − αρ1x)VN−1(x) + xNp(N,N) − A(1) − ρp0

Differentiating by x and substituting x = 1, we get:

(ρ1−1)Φ′

x(1, 1)+ρ1Φ(1, 1) = −αρ1VN−1(1)+(1−αρ1)V
′

N−1(1)+Np(N,N)

As n̄ = Φ′

y(1, 1) + NVN−1(1) + Np(N,N), ī = Φ′

x(1, 1) + V ′

N−1(1) + Np(N,N)
and the values p(i,N) are determined by the solution of the system of equations
from Theorem 1, the mean queue values are easily determined numerically.
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