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ON SELF-SIMILAR EXTREMAL PROCESSES"

Elisaveta 1. Pancheva

Given an extremal process X : [0,00) — [0,00)¢ with lower curve C' and associ-
ated point process N = {(tx, Xx) : k > 0}, ¢ distinct and X}, independent, given

a sequence (, = (Tn,&n),n > 1 of time-space changes (max-automorphisms of
[0,00)4Th), we study the limit behaviour of the sequence of extremal processes
Ya(t) = &' oXom(t)

= Cn(t)Vmax{g,?loXk Dt <)} =Y

under a regularity condition on the norming sequence (, and asymptotic negligi-
bility of the max-increments of Y,,. The limit class consists of self-similar (W.r.t.
a group Na = (0a,La), a > 0, of time-space changes) extremal processes. Under
self-similarity here we understand the property La oY (%) LY 00q (t) ,for all a > 0.
The univariate marginals of Y are max-selfdecomposable. If additionally the ini-
tial extremal process X is supposed to have homogeneous max-increments then the
limit process is max-stable with homogeneous max-increments.

Keywords: multivariate extremal processes ; self-similarity; homogeneous max-increments;
weak convergence.

1 Introduction

An extremal process Y : [0,00) — [0,00)? is a stochastic process with the following two
properties :
1) The sample paths are right continuous increasing functions from the half line
[0, 00) to the positive orthand [0, 00)¢, called time space and state space, respectively.
2) For any finite sequence of time points 0 =ty < ... < t,,, there exist independent
v's Up, ..., Uy, in [0, 00)? such that

(1) (Y (t0)s- .. Y (tm)) 2 (Uo, Uy VUL, ..., Ug V... Uny).

*This paper is partially supported by the Bulgarian Ministry of Education and Sciences under grand
MM 234/1996
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The probability distribution of an extremal process with independent max-increments
U is completely determined by its distribution function (df). The df of an extremal
process Y is the function f : (0,00)4*! — [0, 1],

ft,z) = P(Y(t) < x).

It is decreasing and right continuous in ¢ and increasing and left continuous in z, so lower
semicontinuous.

With an extremal process Y we associate a lower curve Cy : [0,00) — [0, 00)%,
increasing and right continuous, below which the sample functions of Y can not pass. It
is defined coordinatewise: C'))(t) is the lower endpoint of the df Ft(i) of the ith coordinate
of the rv Y (t), ¢ =1...d. Any extremal process determines uniquely its lower curve.

The following two fundamental results for multivariate extremal processes are stated
in [4].

Theorem 1 Structure theorem. LetY : [0,00) — [0,00)? be an extremal process
with lower curve C' . If the underlying probability space is sufficiently rich, there exists a
consistent family of maz-increments U(s,t), 0 < s < t, such that

1) U(s,t) > C(t) a.s. ,s<t;

2)Y(t)=Y(s)vU(s,t) as. ,s<t;

3) for any finite sequence of time points 0 = tg < ... < t,, the m + 1 vectors
Y(0),U(to,t1),...,U(tm—1,tm) are independent.

So, an extremal process is uniquely determined by a given family of max-increments.
The converse is not always true: Different families of max-increments may lead to the
same extremal process. This phenomenon, called blotting, is studied in [4].

Theorem 2 Decomposition theorem. Let Y : [0,00) — [0,00)? be an extremal
process with lower curve C' and a consistent family of max-increments. Then Y is the
mazximum of two independent extremal processes Y' and Y with common lower curve
C. The process Y' is generated by a Poisson point process N' which mean measure does
not charge any instant space Sy == {t} x [0,00)?. The associated with Y point process
N” is the sum of a sequence of independent 0 — 1 point processes Ny on Sy, and ty, are
distinct non-random time points. Both processes are independent.

Thus, if (Tk, Xk), k> 1 are points of the point process N = N’ + N7 then
Y(t) =Cy(t) Vmax{Xy : T <t}
and we say that the point process N generates the extremal process Y. All realizations
of the point process are supposed to be Radon measures on the open set [0,C]¢ =

([0, 00) x [0,00]%) \ [0,C]. Hence

(2) N([0,¢] x [0,2)¢) < oo a.s. for t>0, z>C(t).
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Let My be the set of all right continuous increasing functions ¥ : (0, 00) — [0, 00).
Denote convergence in law by =>. Then Y,, = Y| weakly if the probability distributions
m, of Y, converge :

(*) Ep(Y,) = /tpdﬂn — /tpdﬂo = Ep(Yo)

for each bounded function ¢ : My — R which is continuous for the weak topology on
M.

If (*) holds for each bounded ¢ : My — R which is continuous in the Skorohod
topology D([0,0)), we write Yy = Yy in  D([0,00)).

Let y,, : [0,00) — [0,00)? be right continuous and increasing for n > 0. Recall, the
sequence y,, converges to yo in D([0,00)) if:

i) yn — yo weakly on (0, 00);

i) 9,(0) — o (0);

iii) for each discontinuity point ¢t > 0 of the function yo there is a sequence t,, — t
so that

Consider arrays of the form {(t,x, Xng) : £ > 0}, n > 1, where X, are row-wise
independent rv’s in [0,00)% and for each n the sequence of deterministic time points
0 =tno < tn1 < ... is strictly increasing to oo . We transform an array into a sequence
of extremal processes Y,, with lower curves C,,(t) by setting

(3) Yo (t) = Cp(t) Vmax{ X,k : tnr <t}

By virtue of (2) the maximum of the RHS of (3) is well defined. This fact allows us
to preserve the notion ”triangular array” also for arrays generating sequences of extremal
processes as above. The limit behaviour of extremal processes generated by triangular
arrays is studied e.g. in [6], [14], [13], [5].

In this paper we treat a particular case of triangular array with X,x = £, 10 X}, and
tnk = Tn(tr) where the mappings ¢, = (7,,&,) are max-automorphisms of [0, c0)4*1.
The point process {(tr, Xi)} is associated with an initial extremal process X . Now the
partial extremal process Y;, in (3) has the form

(4) Y. (t) = f;l o X o7y(t).

Supposing Y, = Y we are interested in the intrinsic properties of the limit class of
extremal processes.

Recall,the max-automorphisms of the form ((¢t,z) = (7(t),&1(z1), ..., &q(zq)) are
continuous and strictly increasing in each component. They preserve the max-operation
between extremal processes, i.e. ((X VY) = ((X)V{(Y), and form a group w.r.t. the
composition (cf. [2], [9] ). Since 7 is interpreted as time change and £ as space change,
we call ( usually time-space change.

Let F and G be df’s on R? . We say that G belongs to type(F) if there is a max-
automorphism L of R such that G = Fo L .
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The basic result in Section 2 states that the limit extremal process for (4) is self-
similar in the sense that for all £ > 0 there exists a space change L) such that

(5) Y () L Loy o Y (1),

where o : (0,00) < (0, 00) is strictly increasing.

The study of the self-similar stochastic processes was initiated by Lamperti (1962).
Self-similar extremal processes in a different framework (without the assumption of inde-
pendence of the max-increments and under use of affine normalization) are investigated
in [8].

Equation (5) may be interpreted also as follows :

” All univariate marginals Gy, ¢t > 0 , of a self-similar extremal process Y (t) are of
the same type.”

Under the assumptions of Section 2 it is shown that this type is max-selfdecomposable.
The analogous result for self-similar processes with additive increments was proved by
Sato [12] already in 1991.

In Section 3 we assume additionally that the initial process X in (4) has homoge-
neous max-increments. Then the limit class SSHI of self-similar extremal processes with
homogeneous max-increments coincides with the intersection of the max-stable extremal
processes and the so called (cf. [11]) G-extremal processes. The max-stable extremal
processes are studied also in e.g. [3], [5], [6], [8], [11].

Above we have defined extremal processes on the time-state space [0, 00) x [0,00)? .
In the same way one defines extremal processes on (—00,00) X [—00,00)¢ ( by allowing
mass at —oo, cf.[9]) or on [0,1] x [0,1]¢ , or on any other space homeomorphic to them.

2 Self-similar extremal processes as limiting

We start with an extremal process X : [0,00) — [0, 00)? with lower curve Cx, df f, and
let N = {(tx, Xk) : k < 0} be the point process generating X by

X(t) = Cx(t) \/maX{Xk e < t}

Here Xj, k >0, are independent rv’s in [0,00)? and the sequence 0 = tg < t; < ...
of deterministic time points increases to oo . We assume that there exists a sequence

Cn = (Tn,&n) of max-automorphisms of [0,00)%*! such that the sequence of extremal
processes
(6) Yo(t) = 5771 o X o7y(t)

= Cp(t)Vmax{& 1o Xy : tr < 7.(1)}

is convergent weakly in law to a non-degenerate extremal process Y, Y,, = Y, with
lower curve Cy and df g, i.e.

Falt, @) = f(ma(t), €n (@) = g(t, )
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or briefly

(7) fo=Ffoln =g

(Under degenerate extremal process we understand here a deterministic one.) The lower
curve of Yy, is Cp(t) = £, 1 0 Cx(7n(t)), t > 0. The point process N, in (6) with points

(8) {(tnk, Xnk) + k > 0}, tnk =75, (tr), Xk =&, 0 X
form a triangular array of row-wise independent rv’s X, in [0,00)¢ . We assume that
the max-increments Uy, (s,t) of V,,, Uy(s,t) = max{Xpr : s < tpr <t}, 0<s<t,
are asymptotically negligible in the sense that they obey the following condition
(AN) max  P(X, €[0,2)°) — 0, n— oo,

{kis<tnr<t}
for (t,z) € Ay where the set Ay is determined by its instant sections A% = [Cy (t),30)\
{Cy(t)} . As known, in this case the limit extremal process Y is max-id. (The class of
the multivariate max-id extremal processes is discussed e.g. in [4] .) Consequently, the
df g of the limit extremal process Y is positive on the open set intAy above the lower
curve Cy , hence the family of the max-increments is uniquely determined (cf.[4] )

We are interested in characterizing the class max —L of the possible limit extremal
processes for sequences of type (6) or equivalently, the class of the limit df’s in (7) , under
the (AN)-condition.

By (7) for n large enough ¢, : {0 < g <1} —» {0 < f < 1} . As a coordinate-wise
mapping ¢, acts on rectangles in (0,00)%*! . The smallest rectangle S containing the
set {0 < g < 1} we call max-support of g . Denote ¢ := inf S, w := supS and the
interiour of S by intS . For a sake of simplicity we assume ¢ = 6, so Cy(0) = 0 ,and
w = 0. Hence Y : [0,00) — [0, 00)% Further, ad hock we assume (, increasing in n for
normalizing increasing maxima.

To characterize the class max-L. using general max-automorphisms as above is a
difficult problem for which the necessary theoretical background seems to be not prepared
yet (e.g. the convergence to type theorem does not hold in its classical form , cf.[15]). Here
we tackle the study of the class max-L(R) under the use of regular norming sequences

{Cn} -

Definition: A sequence {(,} of time-space changes is refered to as regular on an in-
creasing subset B C [0,00)%*! (in the sense that z; € B and 2z > z; imply 22 € B ) if
for each « € (0, 1] there is a time-space change 7, such that for m, ~ an and n — oo

(9) Gt oG, () = nalt,@), (t,z) € B.

In addition, the correspondence a < 7, is one-to-one.

So, we assume that the norming sequence ¢, in (7) is regular on the max-support .S
of the limit df g . By virtue of (9), the family {7, : @ € (0,1]} can be embedded in a
one-parameter group {7, : o € (0,00)} , with

(10) 77;1 =MNa-1, Na©ONg="MNag, M = id.
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(Here id is the identical mapping.)
Now, for m, <mn, my ~ na where o € (0,1), ¢t > 0and I,,(¢t) :=={k: 7, (t) <
tr < 7n(t)} let us decompose the extremal process Y, in (6) as

(11) Yo(t) = & 'oXom(t)
= &l oXomy, () Vmax{¢, o Xy i k€ I, (1)}

Substituting here
Znm, (t) = Cp(t) V max{f;l o Xy keln(t)}
we can express Y, (¢) in two equivalent forms

Yau(t) = Yn(T;l 0 T, (1)) V Zn,mn, (t)
= (f;l °&m,,) © Y, (t)V Znmn, ().

Transition to weak limit (along a subsequence if necessary) and the regularity condition

(9) with 14 = (0a,La), a € (0,1) supply two expressions of the limit extremal
process
(12) Y £ Yoo,V Z,

L L,oYVZ,

Here Z,, 1, = Z,. Equivalently, the df g of ¥ satisfies two functional equations

(27a) g(t,fﬂ) - g(ga(t)ax)'ga(tv x) = g(t»Lgl(fﬂ))ya(t@)

Here g, is df of the extremal process Z,.
So, both expressions of £, o X o7, lead to the following characterization of the
class max —L(R) :

(13) YooagLaoY,
(2.8a) g(oa(t),x) = g(t,L;l(x))

Below we gather the properties intrinsic for this class of extremal processes.
Definition: An extremal process Y is refered to as self-similar w.r.t. a one-parameter

group 7, = (04, Ls) of time-space changes if it satisfies equation (13) for all « € (0, 00).

From this point of view above we have proved

Proposition 1 The limit extremal process Y is self-similar.
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The family {n,} is defined by (9) for @ € (0,00) . For a — 0 and oo — oo we impose
the following natural boundary conditions on 7, (t,z) = (04(t), Lgl)(xl), cee Lgd)(xd)) :

(BC) oa(t) =0 for a—0, o04(t) =00 for a— oo,
LO(x;) =0 for a—0, LY(x;)—oco for a— oo,
where 0 and oo are fixed points of o, and of L((f), i=1...d,and (t,z) € S.

Lemma 1 The one-to-one correspondence a < 1y, € (0,00) is strictly increasing,
hence continuous.

Indeed, let us assume that 14, > 14, for @y < as . Then n,.(z) > z where r = z—; <1
and consequently n,»(z) > z Vn > 1 what violates (BC).

Hence, {1, : @ € (0,00)} is a continuous one-parameter group, briefly c.o.g. Now
put t =1 and 0,(1) = s in (13) and observe that

(14) Y(s) < Lo oY (1)

where «a(s) is a solution of 0,(1) = s . Moreover, this solution is unique , because of
lemma 1.
Denote by G4(.) = g(s,.) the df of the univariate process marginals. We have state

Proposition 2 For every s >0 G € type(G1) . Furthermore, for each pair s,t > 0

(2.9a) Y (5) L Logan 0 Y(t)

a(s)
a(t) *

where a(s,t) =
One of the consequences of (2.9) is the following property:

Proposition 3 The limit extremal process Y is stochastically continuous at all t > 0
andY(0) =0 a.s.

PRrOOF. Let s, 1¢, t>0. Then for x , continuity point of g(¢,x) we have

gt —0,2) =limg(sp,x) =limg(t, L o« () =g(t,x), n— o0
a(sn)

since , := L o (x) | z for n — co. Besides, for « — 0

aCen)
g(O,Z) = hmg(o—a(l)v:ﬂ) = hmg(L Lofl(x)) = 9(17 O_é)
(Here we have used the lower semicontinuity of g .) Hence
P(Y(0) <z)=P(Y(1) < %) for z>Cy(0)=0.

Obviously Y (0) = 0 a.s., since G; does not allow mass at the upper boundary, i.e.
P(Y(1) <) =1, and Y is stochastically continuous at allt >0. O

Stochastic continuity of the extremal process does not imply continuity of the lower
curve. However, there is another nice consequence of (2.9) :
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Proposition 4 The lower curve Cy is continuous.

Indeed, Ly : (Cy(1),30) < (Cy(t),30) . So, all lower vertex Cy (t) of Gy lie on
the same orbit of L) through Cy (1) .

The limit extremal process Y is max-id. By theorem 1 in [4], Y is Poisson, i.e.
it is generated by a Poisson point process N . Now proposition 2 and decomposition
theorem 2 determine N (but not uniquely, because of the phenomenon blotting : two
point processes N1 and N» on [6, Cy ¢ that coincide on the set Ay above the lower curve
Cy , but differ on [6, Cy|¢\ Ay, generate the same extremal process Y ) .

Proposition 5 The associated point process N to the limit extremal process Y is Pois-
son. It is sum of a Poisson point process N' which mean measure does not charge instant
spaces Sy := {t} x [0,00)%, ¢ >0, and a 0-1 point process No = {(0,Y(0))} where Y (0)
is mazx-id.

Let us come back to the decomposition (12). The extremal process Z, is max-id ,
too, since limiting for triangular array with (AN)-condition. It has the same lower curve
Cy . Now the functional equation

g(tv .’L‘) = g(tv L;1 (x)ga (t, J,‘)
can be interpreted as follows.

Proposition 6 For allt > 0 the univariate marginals G¢(.) = g(t,.) of the limit extremal
process Y are maz-selfdecomposable w.r.t. the semigroup {L_,' : a € (0,1]} of space
changes, i.e.

(15) Gi(z) = Go(Ly ' (2)).Gra(x)

The component Gt o(z) = go(t, ) is max-id. The max-selfdecomposability w.r.t. a
one-parameter semigroup of max-automorphisms of R? is discussed in [9]. Such df G is
continuous everywhere except may be on the boundary of the support. One consequence
of (15) is the inequality x < L '(z) , i.e. the mapping L, is contracting for o € (0,1) .
Analogously, from the first equation in (2.7a) we conclude that o, (t) for @ € (0,1) .

Let us denote the invariant (or symmetric) group of g by

d+1

Inv(g) := { time-space changes n of [0, o00) igon=g}

The force of characteristic equation (2.8a) written also as
g(t,x) = g(oa(t), La(z))
is stressed by the next statement.

Proposition 7 Inv(g) contains a c.0.g. {n : a € (0,00)} .
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As known, the compactness of Inv(g) is necessary and sufficient for the application
of the Convergence to Type Theorem in limit relation (7).

We have already observed that every extremal process Y € max —L(R) is self-similar
and all its increments U(s,t), 0<s <t , are max-id (since Y is max-id) . The converse
statement is also true : any self-similar extremal process (with max-id increments) is
limiting for a sequence Y;, = £, ! 0 X o7, where the norming sequence is regular and the
max-increments of Y,, are asymptotically negligible. To see this we need the following
two statements.

Lemma 2 Let Y,, n >0, be extremal processes with df’s f, . If Y, = Yy and Y)
is stochastically continuous, then the sequence Y, is asymptotically continuous, i.e. the
sequence of df’s f, satisfies the condition

(AC) max [fn(t - O) - fn(t)} - Oa n — oo,

0<t<c
forallec>0.
ProoF. Indeed, Y stochastically continuous and Y,, = Y, imply
fo(t =0) = fu(t) = fot =0) = fo(t) =0 V¢ >0, n— oo

O

Both conditions (AC) and (AN) are closely related as the following theorem states.

Theorem 3 Assume Y, = Yy . If the sequence Y,, is asymptotically continuous then
it has asymptotically negligible maz-increments Uy,((s,t]) for 0 < s <t . The converse
holds under the additional continuity assumption on the limit process: Yo(t — 0) > Co(t)
a.s. fort > 0 . This condition is automatically fulfield if the lower curve Cy of Yy is
continuous .

PROOF. Denote the df of U,, by H,, . The max-increments U, ((s,t]), 0 < s < t, are
asymptotically negligible iff

(AN)’ H,(x) = P(U,(t) € [0,2)) = 1, n — oo,

for t > 0 and Vz > Cy(t) . On the other hand, by the decomposition theorem
Yo (t) =Y, (t —0) Vv U,(¢).

Thus, condition (AN)’ means that

(16) Hp(z) = M — 1, n — 00

fu(t—=0,2)
for t > 0 and = > Cy(t) .
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The sequence Y, is asymptotically continuous iff the asymptotic relation (2.11) holds
for all t > 0 and z € [0,00)? . Obviously critical values are = € (Co(t — 0),Co(t)) for
which (2.11) may be not fulfiled. This case is avoided by the additional assumption
Yo(t — 0) Z Co(t) a.S. Il

Note, Y,, asymptotically continuous and Y;, = Y}, does not imply U,,(0) — Cy(0) .
Now we can prove the main statement of this section.

Theorem 4 The class max —L(R) coincides with the class of extremal processes which
are self-similar w.r.t. a c.o.g. {ns : @ € (0,00)} of time-space changes satisfying the
(BC)-condition.

PRrROOF. We have still to show that if Y is self-similar, then ¥ € max —L(R). The
self-similarity condition implies that the extremal process Y is stochastically continuous
at t > 0 , its lower curve Cy is continuous and its df g satisfies the functional equation
9(0a(t), La(z)) = g(t,z) . Let N = {(tx,Y%) : kK > 0} be the point process generating Y’
by

Y(t) = Cy(t) Vmax{Yy : 0 < ¢, < t}.

Here tgp = 0 and Yy = Y(0) = 0 a.s. Define t,, = o, (tx), Xnr = L0} for
a=mn, n>1,andobservethat t,0 =0, X,o 4 Y (0) , so the sequence

V() = Coo(t) Vmax{X,p : 0 <ty <t} =L oYV oo,(t) <

Y(t)
is trivially convergent. Here the norming sequence 7, is regular.

By lemma 2 and theorem 3 the max-increments of Y;, over intervals (s,t], 0<s <t
, are asymptotically negligible. Hence, ¥ belongs to the class max —L(R) . O

The class max —L(R) we have determined as the class of all weak limits for sequences
(2.1) where (, is a regular norming sequence and X is a non-degenerate extremal process,
such that triangular array (2.3) obey the (AN)-condition. Then the limit extremal process
Y is stochastically continuous and has continuous lower curve. In this special case both
kinds of convergence, ¥;, = Y weakly and ¥;, = Y in D([0,00)) , are equvalent
provided we assume convergence of the initial values Y,,(0) = Y(0) .

As a matter of fact, both conditions (2.5) and (BC) determine the analytical form
of the time-space changes 7, on S as the following lemma claims.

Lemma 3 The continuous one-parameter group {n, : « € (0,00)} of time-space changes
of [0,00)41 n, 1 S« S, satisfying the boundary conditions (BC) , can be expressed
on S in the form :

(17) Na(2) = K1 (h(2) + e.c.log )

where e = (1,...,1) € R ¢ >0, and h : S < (—o00,00)*! is continuous and
strictly increasing coordinatewise mapping.
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The proof of this lemma is a modification of theorem 20 in [1]. Expression (2.12)
means that there exists a time-space change h : S «» R%! so that, in the new coordinates
z' = h(z) ,the one-parameter group 7/, = ho, is a simple translation along the diagonal
in R4 ie.

Na(2) = 2"+ e.0(a),
with §(a) = cloga € (—o0,00). Denote the translation group along the diagonal by
D.(z):=z+er,z € R r e R Note, D,..Dy = Dgys, Do=1id, D '=D_,.

Definition: An extremal process Y : (—00,00) — [—00,00)? with df g is called diagonal
ifforallr € R* goD, =g.

In other words, diagonal means selfsimilar w.r.t. the translation group.
Since g o4 (2) = go h™1(2' + ef) , in fact theorem 4 claims

"The class max —L(R) consists of all extremal processes Y related by a time-space
change h : S < Rt to a diagonal process M ,i.e.

YeiptoMm »

3 Self-similar extremal processes with homogeneous
max-increments

Here we consider the same stochastic model as in Section 2 with one additional condition
: the initial extremal process X has homogeneous max-increments, i.e. the associated
increments process

Ux(s,t) = Cx(t) Vmax{ Xy : s <t <t}, 0<s<t,

satisfies
Ux (s,t) £ Ux(0,t — s).

Then the limit extremal process Y (besides that it is self-similar) has some additional
properties. Our next goal is to state them.

Consider the partial extremal process Y, (t) = £, o X o 7,,(t). For arbitrary s,0 <
s < t, let m, = my,(s) be a subsequence of integers such that 7, o7, (t) — s > 0.
Then the decomposition

Yo(t) = Yn(Tn_l 0 T, () V max{f;l o Xy : Trjl ° T, (t) < Tn_l(tk) <t}

supplies the following equation for the limiting extremal process Y

4

Y(#)=Y(s) VY (t—s).

On the other hand
Y(t) =Y (s) VUy(s,t) a.s.
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by the structure theorem. The family {Uy(s,t)}, Uy (s,t) > Cy(t) a.s., of the max-
increments of Y is uniquely determined as Y is max-id. Let H,; be the df of Uy (s,1).
Comparing the last two equations for Y (¢) we observe

Uy (s,t) £ Cy () VY (t — s)

or equivalently

(18) H () = Gi(2)/Gs(z) = Gi—s(2)
The df g of the limit process Y satisfies the following functional equation for = >
Cy(t) :

The solution of 19 is well-known, namely
g(t,z) = G'(x)
where G(z) = P(Y (1) < x) and G is a max-id df on [0, 00)?. Thus
(20) P(Uy(s,t) < z) = G"5(x)
Now the self-similarity of Y, namely Y () = Ly ) o Y'(1) implies
(21) G'(z) = G(Ly ' (2))

for all t > 0, where {L; := L4y, t > 0} is a c.o.g. Functional equation (3.4) is
characteristic for the class of max-stable df’s (cf. [9]). Thus we have:

Proposition 8 All univariate marginals of Y belong to the same type and this type is
maz-stable w.r.t. the one-parameter group {L¢,t > 0} of space changes.

Corollaries: 1) P(Y(0)=0)=1.
Indeed, Ly — Cy(0) for t — 0 and z € {0 < G < 1} , and we have assumed
Cy(0) =0 . The LHS of (3.4) equals 1 for t =0 .

2) Y(as) £ Lo oY (s),Va >0 .
3) Y is stochastically continuous for all ¢ > 0 .

In view of (3.1) and (3.3) we conclude

gt —s,x) = Hos(2).

Healo) = = 062) ’

Thus, we state
Proposition 9 The limit extremal process has homogeneous mazx-increments.

Hence,normalization with regular sequences and transition to weak limit preserve
the homogenity property of the initial process X .
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Proposition 10 The finite dimensional distributions (fdd) of Y are of the form
P(Y(t1) < L1y, Y(tk) < l‘k) =Gh (xl).GtQ_tl (3?2) LGt (:I,‘k)
forO<ty <...<tp, x1<...<zp and G(zx)=P(Y (1) <z).

In [11] extremal processes with these fdd are called G-extremal processes. We denote
their class by R. ( Here R stays for Resnick and Rubinovich.) The extremal processes of
the class R are stochastically continuous processes starting at the origin with independent
and homogeneous max-increments, hence we may consider them Levy processes in the
max-framework.

Note, the type of an extremal process is determined by the type of its max-increments.
In general the type of the univariate marginals of an extremal process does not determine
the type of the process itself. E.g. given Gi(z) = P(Y (t) < z) is max-id V¢ > 0, we can
not claim that the quotient

Hg(z) = P(Uy(s,t) <z) =

(hence the process Y) is max-id, too. (Recall, a max-id df may have indecomposable
components, cf [10].) But in our case, equations (3.3) and (3.4) mean that the increments
process is max-stable, too.

Proposition 11 The type of the limit extremal process Y is uniquely determined by the
type of the univariate marginals, namely Y is maz-stable (briefly, Y € MS).

The last means : for all integers n there exist iid extremal processes Y7, ..., Y, copies
of Y, and space change L,, such that

y 4

L'ViVv...VYy,)
(cf.[3] and [5] ).

Consider functional equation (3.4) ones more. Another consequence of it is the next
property.

Proposition 12 The lower curve Cy of the limit extremal process Y is constant, i.e.
Cy(t) = Cy (1) = inf{G > 0}.

Denote the class of the possible limit extremal processes for triangular arrays de-
scribed in this Section by SSHI. We have observed that every Y € SSHI is a selfsimilar
extremal process with homogeneous max-id increments. Propositions 9 and 3.4 stress
the inclusion SSHI C MSNR.

The converse observation is also true. Indeed, let Y be a max-stable extremal
process with homogeneous max-increments and df g. Hence Vt > 0 g(t,z) = Gt(x) =
G(L;(x)) where G is the df of the rv Y(1) and inf{G > 0} =: ¢ > 0. Define a rv
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x 4 Y (1) and let Xq,..., X, be iid copies of X. Put t,; := %7 Xpk = Lt o X,

Then the triangular array {(¢nx, Xni)} generates a sequence of extremal processes Yy,
Y, (t) = ¢V max{L, ' o X}, : k < nt},
which is convergent weakly in law to the initial extremal process Y, namely
(22) P(Y,(t) < z) = GMI(L,(2)) ~ Gl(z) = P(Y(t) < z)
The partial extremal process Y,, can be expressed also as
Y, (t) =L, o X o7,(t)

where 7, (t) = nt and X (¢) := ¢ V max{X} : k¥ < t}.The extremal process X has homo-
geneous max-increments Ux (s, t) (since Xy, are iidrv) and its df f is

flte) = P(X(t) < z) = GM().

Obviously, the norming sequence ¢, = (7, L) is regular. Further, the stochastic
continuity of the limit extremal process Y in (3.5) garantees the asymptotic continuity
of the sequence Y,, which implies the (AN)-condition for the max-increments of Y, .
Consequently, the process Y belongs to the class SSHI and so we have established the
following property, characteristic for the limit class.

Proposition 13 The class SSHI coincides with the class of all self-similar extremal
processes with homogeneous maz- increments. So, SSHI =R NMS.

Example. Let Y be an extremal process with df

(t,z) = 0 for <0
g\Ha) = exp{—%} for x>0,v>0.

Obviously, g(t,z) = g(at,a’z) where H = % . Thus, Y is self-similar w.r.t. the c.o.g.

Na With 0, (t) = at, La(z) = afz . Further, g;(z) = (e ), gi(z) = ®,(2), ie.
Y e SSHI.
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