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1 Introduction

Let (Ω,A,P) be a probability space. Assume that on this space are given the following
random variables:

i) A set X = {Xi(n), i = 1, 2, ..., n = 1, 2, ....} of independent, identically distributed
(i.i.d.), non-negative, integer valued random variables (r.v.) with probability generating
function (p.g.f.) f(s) = EsXi(n) =

∑∞
k=0 pksk, 0 ≤ s ≤ 1.

ii) A set Y = {Yn, n = 0, 1, 2, ...} of i.i.d., positive , integer valued r.v. with p.g.f.
g(s) = EsYn =

∑∞
k=1 qksk, 0 ≤ s ≤ 1, independent of X .

A Bienaymé-Galton-Watson (BGW) branching process with immigration only in the
state zero, can be defined as follows:

Z0 = Y0 > 0 a.s., Zn+1 =

Zn
∑

i=1

Xi(n + 1) + I{Zn=0}Yn+1, n = 0, 1, 2, ...,(1)

where, as usual, IA is the indicator of A and
∑0

n=1 . = 0.
The process Zn starts with a positive random number of ancestors Y0 at time n = 0

and evolves as a BGW process without any migration up to the moment when it visits
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the state zero. At the next moment a positive number Y1 of particles immigrate, the
process starts again, and so on.

We shall assume that 0 < p0 < 1. This condition together with q0 = 0 ensure that
{0} is accessible from the positive part of the state space and that the minimal state
space is aperiodic; see Foster (1971).

This model was first considered independently by Foster(1971) and Pakes(1971) and
was studied in several papers later.

In the present note we shall be concerned with the behavior of the record value of
the process Zn in the first n generations

Wn = max{Z0, Z1, ..., Zn}, n = 0, 1, 2, ... .(2)

The investigation of Wn might be motivated in different ways. There have been sev-
eral recent works developing results for certain kinds of extremes in branching processes,
and the investigation of the process Wn is perhaps plausible as a contribution to this pro-
gram.(See e.g. Borovkov and Vatutin (1996), Rahimov and Yanev (1996) and references
therein.)

Here we want to pointout that Borovkov and Vatutin (1996) have been investigated
the analogical sequence for a critical BGW process without immigration. The main
result obtained there is for the tail behavior of limiting distribution function (d.f.). On
the other hand, the results obtained here (Theorems 1 and 2) give an explicit form of
the limiting d.f.

The other motivation is the ability to use the results for randomly indexed random
sequences to obtain the limiting behavior of some global characteristic of a regenerative
process.

It is easily seen that the process Zn is regenerative with regeneration epochs the
moments when it visits the state zero, i.e. Zn consists of a sequence of independent
and identically distributed copies of a simple BGW processes with offspring and initial
distributions {pI} and {qi} respectively.

Let us denote

S0 = 0, S1 = min{n > 0 : Zn = 0}, Sk = min{n > Sk−1 : Zn = 0}, k = 2, 3, ... ,

the embedded renewal process.
Obviously, the cycle lengths Tk = Sk − Sk−1, k = 1, 2, ... have the same distribution

as the life-period of a simple BGW process with offspring and initial distributions {pi}
and {qi} respectively:

P(Tk > n) = 1 − g(fn(0)), n = 0, 1, 2, ... .

(See e.g. Sevastyanov (1971)).

2 Basic conditions and results

In what follows we will suppose the following conditions are fulfilled:
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g′(1−) = µ < ∞,(3)

f(s) = s + (1 − s)1+αL(
1

1 − s
), s ∈ [0, 1],(4)

where α ∈ (0, 1] and L(.) is a function slowly varying at infinity.

The second condition characterizes the process Zn as a critical one with possibly
infinite variance of the offspring of a particle.

Under conditions (3) and (4) (see Slack (1968))

P(Ti > n) ∼ µn−1/αL1(n), n → ∞,(5)

where L1(.) is a function slowly varying at infinity.

Let us denote

R(x) =

∫ x

0

P(Tk > y)dy =
∑

j≤x

(1 − g(fj(0)).

It is clear that if α < 1 then

R = lim
x→∞

R(x) = ETi < ∞,

but if α = 1 then either R < ∞ or R = ∞ can occur.

So, we will consider, separately, the following two cases:

α = 1, ETi = ∞,(6)

or

α ≤ 1, R = ETi < ∞.(7)

The main results of the paper are the following theorems.

Theorem 1 Under conditions (3), (4) and (6)

lim
n→∞

P
( Wn

µn/R(n)
≤ x

)

= Q(x) =

{

exp(−1/x) x > 0,
0 x ≤ 0.

Theorem 2 Under conditions (3), (4) and (7)

lim
n→∞

P
( Wn

µαn/R
≤ x

)

= Q(x) .
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3 Proofs of the theorems

We need some preliminary results for the proofs of the theorems.
Let us denote ν(n) = max{k : Sk ≤ n < Sk+1} and define the sequence of i.i.d. r.v.

Mi = max
Si<k<Si+1

Zk, i = 0, 1, 2, ... .

So, the r.v. Mi is the global maxima of the simple BGW process which survives
between i−th and (i + 1)−st successive visits to the state {0}.

Denote
Mn = max

1≤i≤n
Mi.

the record value in the first n cycles.
Obviously, one has

Mν(n) ≤ Wn ≤ Mν(n)+1 a.s. ,

and
P(Mν(n)+1 ≤ x) ≤ P(Wn ≤ x) ≤ P(Mν(n) ≤ x).(8)

Denote by P (x) = P(Mi ≤ x), x ≥ 0. From Borovkov and Vatutin (1996) we get
that if conditions (3), (4) hold then the d.f. P (x) is a proper one and

1 − P (x) ∼
µα

x
, x → ∞.(9)

The inequalities (8) and combination of the following two lemmas allow us to prove
the theorems.

Lemma 1 If conditions (3), (4) hold, then

lim
n→∞

P
( Mn

µαn
≤ x

)

= Q(x) .

The proof follows from (9) (see Feller(1971), Sect VIII.8, Example b).
The next lemma is a version of a result of Dobrushin (1955), for the limit of randomly

indexed, random sequences.

Lemma 2 (Dobrushin(1955)) Assume for the sequence of r.v.’s ξn that

ξn

nγ

d
→ ξ, n → ∞,

where γ > 0, and ξ is a r.v. with proper d.f..
Assume for the sequence of positive integer valued r.v.’s ηn, independent of ξn, that

ηn/a(n)
d
→ η, n → ∞,

where a(n) ↑ ∞, n → ∞ and η has proper d.f.
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Then
ξηn

a(n)γ

d
→ ξ

γ
η, n → ∞ ,

where ξ and η are independent and have the same d.f.’s as ξ and η respectively.

It is clear that Lemma 3 establishes the limit for the sequence

P(ξηn
≤ x) =

∞
∑

k=0

P(ξk ≤ x)P(ηn = k),

under suitable normalization, when n tends to infinity.
Proof of Theorem 1. Let (3), (4) and (6) holds. Denote by N(y) =

∫ y

0
xdP(Ti ≤

x). The relation
N(y) = R(y) − yP(Ti > y), y ≥ 0,

(5),(6) and Seneta(1976), Problem 1.17, yield

N(y) ∼ R(y), y → ∞,(10)

and in this case R(.) is a monotone increasing slowly varying function and R(y) ↑ ∞, y →
∞. (See also Feller (1971), Sect. VIII.9, Theorem 1).

Define the sequence bn by the equation n = bn/N(bn), n ≥ 1. By the LLN (Feller
(1971), Sect. VII.8, Theorem 2) we have

Sn/bn
p
→1, n → ∞,

which, together with the relation P(Sk ≥ n) = P(ν(n) ≤ k) and (10), implies that

ν(n)

n/R(n)

p
→1, n → ∞.(11)

(See also Kulkarni and Pakes (1986)).
For the d.f. of Mν(n) we have by the total probability formula

P(Mν(n) ≤ x) =
∞
∑

k=1

P(Mk ≤ x)P(ν(n) = k).(12)

Applying Lemma 3 to (12) and taking into account (11) and Lemma 2 we get

lim
n→∞

P
( Mν(n)

µn/R(n)
≤ x

)

= Q(x),

and

lim
n→∞

P
( Mν(n)+1

µn/R(n)
≤ x

)

= Q(x) .
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Finally, the last two relations and (8) complete the proof.
Proof of Theorem 2. Let (3), (4) and (7) hold. By the SLLN we have that

Sn/n
a.s.
→R−1, n → ∞.

Hence
ν(n)

n/R

a.s.
→1, n → ∞.(13)

Now applying Lemma 3 to (12) and taking into account (13) and Lemma 2 we get

lim
n→∞

P
( Mν(n)

µαn/R
≤ x

)

= Q(x),

which together with

lim
n→∞

P
(Mν(n)+1

µαn/R
≤ x

)

= Q(x),

and (8) complete the proof of the theorem.
An example. The critical BGW process with finite variance of the offspring of one

particle satisfies the condition (6) with α = 1 and L(1/(1 − s)) → σ2/2, s ↑ 1, where
σ2 = f ′′(1−) < ∞. In this case

P(Ti > n) ∼
2µ

σ2n
, n → ∞.

Hence

R(n) ∼
2µ

σ2
log n, n → ∞.

Now Theorem 1 yields

lim
n→∞

P
( Wn

σ2n/2 logn
≤ x

)

= Q(x).
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