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STUDIA MATHEMATICA

BULGARICA

ON SOME SUFFICIENT CONDITIONS FOR HIGH

BREAKDOWN POINT OF ML ESTIMATORS
* *

Maya Marintcheva

High breakdown point estimators LME(k) and LTE(k) for location and scale are
obtained for symmetrical exponentially decreasing density family.

1 Introduction

Let us consider a defined on p-dimensional Euclidean space Ep multivariate density
family: f(x, µ, S) = Cp√

det(S)
ϕ((x − µ)′S−1(x − µ)), with fixed shape function ϕ, where

µ and S denote location and scale correspondingly. Vandev [1] developed a breakdown
point technique for the robustified LME and LTE estimators. Their breakdown point
is not less than n−k

n , i.e. they are n−k
n -robust, for k, chosen by the user within some

reasonable range of values. Vandev and Neykov [2] studied the connection of the finite
sample breakdown point, dimension of the Gaussian distribution and the notion of d-
fullness, introduced in [1]. Now following the technique [3], a high breakdown point for

LME and LTE is obtained for ϕ(z) = O(e−αzβ

); α is a positive constant and β lies
between 0 and 1. A contra example in case of ϕ(z) = 1/zp demonstrates the need of
exponential decrease for the theory.

2 Basic Definitions

Definition 1 Estimators LME(k) and LTE(k) of the unknown parameter θ, for k > n
2

are defined as:
LME(k)(x1, x2, . . . , xn) = arg min

θ
(− ln f(xl(k), θ)),

*The author owes a dept of gratitude to Prof. D. Vandev for his remarks and directions
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LTE(k)(x1, x2, . . . , xn) = arg min
θ

k
∑

i=1

[− ln f(xl(i), θ)],

where f(xl(1), θ) ≥ f(xl(2), θ) ≥ . . . ≥ f(xl(n), θ) are the ordered density values.

Definition 2 The real valued function g(z) defined on a topological space Z is called
subcompact, if its Lebesque sets L(M) = {z : g(z) ≤ M} are compact or empty for every
positive constant M .

Definition 3 A finite set F of n functions is called d-full, if for any subset of cardinality
d > 0 from F , the supremum of all functions in this subset is a subcompact function. [1]

Theorem 1 If 1
2 (n+ d) ≤ k ≤ n− d, then LME(k) and LTE(k) are (n− k)-robust. [1]

Lemma 1 (a standard Linear Algebra fact) Let αi are the eigenvalues of S, and there
exist real constants α and β, such that α ≤ αi ≤ β. Then α ≤ ‖S‖ ≤ β.

Lemma 2 If λ1, λ2, . . . , λp are positive real numbers and H =

p
∑

i=1

(λi − lnλi),

then e−H ≤ λi ≤ eH/(e − 1). [3]

3 Results

Lemma:∗ Let x1, x2, . . . , xn be a set of independent observations in Ep over a random
variable ξ with density function: f(x, µ, S) = Cp√

det(S)
ϕ((x − µ)′S−1(x − µ)), and let F

be the finite set: F = {− ln f(x1, µ, S),− ln f(x2, µ, S), . . . ,− ln f(xn, µ, S)}. Then:

LME(k)(x1, x2, . . . , xn) = arg min
S

(− ln f(xl(k), µ, S)), and

LTE(k)(x1, x2, . . . , xn) = arg min
S

k
∑

i=1

(− ln f(xl(i), µ, S));

both have a breakdown point not less than
n − k

n
, for:

1

2
(n + p + 1) ≤ k ≤ n − p − 1 and ϕ(z) = O(e−αzβ

) : α > 0, 0 < β < 1.

Contra – example:

Let choose a function ϕ(z) = 1/zp that does not satisfy the assumption to be O(e−αzβ

). In

this case we show that A =

{

S : max
i∈{1,2...,p+1}

{− ln f(xi, µ, S)} ≤ K

}

contains matrices

S with eigenvalues that can not be separated from the zero point. Therefore A is not a
compact set [5], we have not (p + 1)-fullness and Theorem1 is not applicable.

∗These robust estimators are useful tools for variety of theories including Teletrffic theory.
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A =











S :
1

2
ln(detS) − ln

1

( max
i∈{1,2,...,p+1}

(xi − µ)′S−1(xi − µ))
p ≤ K











=

=

{

S :
1

2
ln(detS) + p ln max

i∈{1,2,...,p+1}
((xi − µ)′S−1(xi − µ)) ≤ K

}

max
i∈{1,2,...,p+1}

((xi − µ)′S−1(xi − µ)) ≤

p+1
∑

i=1

((xi − µ)′S−1(xi − µ)) ⇒

A ⊂ A1 =

{

S :
1

2
ln(detS) + p ln

p+1
∑

i=1

((xi − µ)′S−1(xi − µ)) ≤ K

}

=

{

S : −
1

2
ln(detS−1) + p lnTr(BS−1) ≤ K

}

=

{

S : −
1

2
ln(detBS−1) + p lnTr(BS−1) ≤ K1, where: K1 = K −

1

2
ln(detB)

}

=
{

S : − ln
√

det(BS−1) + ln (Tr(BS−1))
p
≤ K1

}

=

=







S :

(

p
∑

i=1

λi

)p

/

√

√

√

√

p
∏

i=1

λi ≤ K2







.

K2 = eK1 and λi, i ∈ {1, 2, . . . , p} are the eigenvalues of BS−1, so we have that:

det(BS−1) =

p
∏

i=1

λi and Tr(BS−1) =

p
∑

i=1

λi. For λ1 = . . . = λp = λ :

(

p
∑

i=1

λi

)p

/

√

√

√

√

p
∏

i=1

λi =
ppλp

λ
p

2

= ppλ
p

2 , which ever can be made smaller than K2 for

λ → 0.

4 Proof

Conclusions follow from [1] and [3] if only (p + 1)-fullness of F is obtained. Considering
definitions 1-3 and Theorem 1, it only remains to show that for any constant K:

A =

{

S : max
i∈{1,2...,p+1}

{− ln f(xi, µ, S)} ≤ K

}

is compact or empty. As closeness is easy to obtain [3] we concentrate on proving that
A is bounded. It is shown by means of expanding A until a bounded set A4 is achieved.
As A ⊂ A4, A is bounded too.
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A =

{

S :
1

2
ln(detS) − lnϕ

(

max
i∈{1,2,...,p+1}

((xi − µ)′S−1(xi − µ))

)

≤ K + lnCp = K1

}

;

We need the following inequalities (1),(2) and denotations (3),(4).

max
i∈{1,2,...,p+1}

((xi − µ)′S−1(xi − µ)) ≥
1

p + 1

p+1
∑

i=1

((xi − µ)′S−1(xi − µ))(1)

p+1
∑

i=1

((xi − µ)′S−1(xi − µ)) ≥

p+1
∑

i=1

((xi − x)′S−1(xi − x))(2)

B =
1

p + 1

p+1
∑

i=1

(xi − x)(xi − x)′(3)

Tr(BZ) =
1

p + 1

p+1
∑

i=1

((xi − x)′Z(xi − x)), Z = S−1.(4)

A ⊂ A1 =

{

S : − 1
2 ln(detBZ) − lnϕ

(

1
p+1

p+1
∑

i=1

(xi − x)′S−1(xi − x)

)

≤ K2

}

,

where: K2 = K1 −
1
2 ln detB .

We choose a constant k = [(1− β) ln p− lnα− lnβ]/β. Let γi for i ∈ {1, 2, . . . , p} be

the eigenvalues of BZ and let consider: λi = (e−kγi)
1

β which is equivalent to γi = λi
βek.

In terms of λi we have that:

det(BZ ) =

p
∏

i=1

γi = epk

p
∏

i=1

λi
β , Tr(BZ ) =

p
∑

i=1

γi = ek

p
∑

i=1

λi
β ,

and A1 =
{

S :
√

det(BZ ).ϕ(Tr(BZ )) ≥ L
}

, L = −K2.

A1 =







λ1, λ2, . . . , λp :

√

√

√

√epk

p
∏

i=1

λi
β .ϕ

(

ek

p
∑

i=1

λi
β

)

≥ L







=







λ1, λ2, . . . , λp :

√

√

√

√

p
∏

i=1

λi
β .ϕ

(

ek

p
∑

i=1

λi
β

)

≥ L1, where: L1 = Le
−pk

2







=







λ1, λ2, . . . , λp : − ln

√

√

√

√

p
∏

i=1

λi
β − lnϕ

(

ek

p
∑

i=1

λi
β

)

≤ L2, where: L2 = − lnL1
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=

{

λ1, λ2, . . . , λp : −
1

2
ln

p
∏

i=1

λi
β2

≤ β lnϕ

(

ek

p
∑

i=1

λi
β

)

+ L3, where: L3 = β.L2

}

=

{

λ1, λ2, . . . , λp :
1

2

p
∑

i=1

λi
β2

−
1

2
ln

p
∏

i=1

λi
β2

≤
1

2

p
∑

i=1

λi
β2

+ β lnϕ

(

ek

p
∑

i=1

λi
β

)

+L3

}

.

Because
1

2

p
∑

i=1

λi
β2

≤

p
∑

i=1

λi
β2

, we enlarge A1 to A2 :

A2 =

{

λ1, λ2, . . . , λp :
1

2

p
∑

i=1

λi
β2

−
1

2
ln

p
∏

i=1

λi
β2

≤

p
∑

i=1

λi
β2

+ β lnϕ

(

ek

p
∑

i=1

λi
β

)

+L3

}

=

{

λ1, λ2, . . . , λp : H ≤ 2

(

p
∑

i=1

λi
β2

+ β lnϕ

(

ek

p
∑

i=1

λi
β

))

+ 2L3

}

;

H =

p
∑

i=1

λi
β2

− ln

p
∏

i=1

λi
β2

=

p
∑

i=1

(

λi
β2

− lnλi
β2
)

Once again A2 enlarges to A3 according to: 0 ≤ r ≤ 1 :

p
∑

i=1

yi
r ≤

(

p
∑

i=1

yi

)r
1

pr−1

[4], substituted for yi = λi
β , i ∈ {1, 2, . . . , p} and r = β :

p
∑

i=1

λi
β2

≤

(

p
∑

i=1

λi
β

)β
1

pβ−1
(5)

A3 =







λ1, λ2, . . . , λp : H ≤ 2





(

p
∑

i=1

λi
β

)β
1

pβ−1
+ β lnϕ

(

ek.

p
∑

i=1

λi
β

)



+ L3







Now we remember that: ϕ(z) = O(e−αzβ

), ϕ(z) ≤ Ae−αzβ

⇐⇒ lnϕ(z) ≤ lnA−αzβ ,

for any constant A > 0. For z = ek

p
∑

i=1

λi
β : lnϕ(ek

p
∑

i=1

λi
β) ≤ lnA − α.ekβ

(

p
∑

i=1

λi
β

)β

and A3 goes into A4, where:

A4 =







λ1, λ2, . . . , λp : H ≤ 2





(

p
∑

i=1

λi
β

)β
1

pβ−1
+ β lnA − αβekβ

(

p
∑

i=1

λi
β

)β


+2L3







=







λ1, λ2, . . . , λp : H≤ 2

(

p
∑

i=1

λi
β

)β
(

p1−β−αβekβ
)

+L4, where: L4 = 2β lnA+2L3







= {λ1, λ2, . . . , λp : H ≤ L4} .



160 M. Marintcheva

Because of the special choice of k : k = [(1 − β) ln p − lnα − lnβ]/β, we have that:

p1−β − αβekβ = p1−β − αβeβ[(1−β) ln p−ln α−ln β]/β = p1−β − αβ(p1−β)/(αβ) = 0.

Finally A ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 is obtained. As from Lemma 2 and H ≤
L4 we have that: e−L4 ≤ λi ≤

eL4

e−1 , when apply Lemma 1, we obtain that A is bounded.
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