Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

PLISKA

STUDIA MATHEMATICA
BULGARICA

FIANCKA

BbATAPCKU
MATEMATUYECKU
CTYAUU

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Pliska Studia Mathematica Bulgarica

visit the website of the journal http://www.math.bas.bg/~pliska/

or contact: Editorial Office

Pliska Studia Mathematica Bulgarica

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49

e-mail: pliska@math.bas.bg

STUDIA MATHEMATICA
BULGARICA

Pliska Stud. Math. Bulgar. 18 (2000), 133-149 ' o " PLISKA

STATISTICAL NUMERICAL METHODS FOR EIGENVALUE
PROBLEM. PARALLEL IMPLEMENTATION

Ivan Dimov, Aneta Karaivanova

The problem of evaluating the smallest eigenvalue of real symmetric matrices using
statistical numerical methods is considered.
Two new almost optimal Monte Carlo algorithms are presented:

¢ Resolvent Monte Carlo algorithm (RMC). The algorithm uses Monte Carlo
iterations by the resolvent matrix and includes parameter controlling the rate
of convergence;

e Monte Carlo algorithm with inverse iterations (MCII).

Numerical tests are performed for a number of large sparse symmetric test ma-
trices. The tests are performed on supercomputers Intel-PARAGON (which is a
distributed memory multicomputer) and CRAY Y-MP C92A (a two-processor vec-
tor machine).

‘Some information about the parallel efficiency of the algorithms is obtained,
showing that the algorithms under consideration are well-parallized and well vec-

&R

torizable. A _ : R L

Keywords: Monte Carlo algorithms, Eigenvalue, Efficiency estimator, Markov chain, Parallel
algorithm)
MSC subject classification: 65C05, 65U05. o T .

1 Introduction

In this work we present Monte Carlo algorithms for evaluating eigenvalues of a symmetric
‘matrix A, i.e. the values of A for which

) L | . . : Au = : ﬁ ‘ J::_ :
holds. o _ . o '

134 I. Dimov and A. Karaivanova

Here we consider algorithms for both problems: evaluating the dominant eigenvalue
and the smallest one. It is known that the problem of calculating the smallest eigenvalue
of a matrix A is more difficult from numerical point of view than the problem of evaluating
the dominant eigenvalue. Nevertheless, for many important applications in physics and
engineering it is necessary to estimate the value of the smallest eigenvalue, because it
usually defines the most stable state of the system which is described by the considered
matrix.

There are several basic advantage of the Monte Carlo algorithms. It is well known
that Monte Carlo algorithms are parallel algorithms. They have high parallel efficiency
when parallel computers are used [5]. Monte Carlo algorithms are also very efficient when
the problem under consideration is too large or too intricate for other treatments. *

There are, also, many problems in which it is important to have an efficient algorithm
which is parallel and/or vectorizable. And for matrices with a large size which often
appear in practice it is not easy to find efficient algorithms for evaluating eigenvalues when
modern high-speed parallel computers are used. For example, the problem of plotting
the spectral portraits of matrices is one of the important problems where high-efficient
parallel algorithms are needed. The spectral portraits are used in stability analysis.
The above mentioned problem leads to a large number of subproblems of evaluating the
smallest eigenvalue of symmetric matrices.

Monte Carlo methods give statistical estimates for the functional of the solution by
performing random sampling of a certain chance variable whose mathematical expecta-
tion is the desired functional.

Let I be any functional that we estimate by Monte Carlo method; 8,, be the estimator,
where n is the number of trials. The probable error for the usual Monte Carlo method
(which does not use any additional a priori information about the regularity of the
solution) [12] is defined as:

2) P{I =0, > ra} =1/2 = P{{I — 6| <).

If the standard deviation o(,) < oo, the normal convergence in the Central Limit
Theorem holds.
P{|I - 0,| < z0(6,)n"/?*} =~ &(z).

Obviously, from (2) and $(0.6745) ~ 1 we have

(3) rn 2 0.67450(8,)n~1/2.

The algorithms under consideration are almost optimal Monte Carlo algorithms (i.e.
MAO algorithms). The value of the variance is reduced by means of a special kind of
transition-density matrices.) : p

2 Description of the Monte Carlo Algorithms

Here we present a stationary linear iterative Monte Carlo algorithm for evaluating eigen-
values of matrices.

Statistical Numerical Methods for Eigenvalue. .. 135

2.1 Almost Optimal Markov Chains = * = -7

The presented algorithms contain iterations with the original matrix, as well as Monte
Carlo iterations with a resolvent matrix (used as iterative operator) of a glven matnx
Consider a matrix A: -

@ T A={wMm, AR

and a vector :
(5) f:(fl"_.’fn)te]}&"

The matrix A can be considered as a linear operator A[R™ — R"], so that the linear
transformation

(6) . AfeR* : o e
defines a new vector in R". ' o

Since iterative Monte Carlo algorithms using the transformation (6) will be conmd-
ered, the linear transformation (6) will be called iteration. The algebraic transformation
(6) plays a fundamental role in iterative Monte Carlo algorithms.

Now consider the following problem P for the matrix A:

Problem P. Evaluating of eigenvalues A(A):

(7) Au = MA)u.

It is assumed that

%) 1. A is a symmetric matrix, i.e. a;;j = a3 forall i,j=1,...,n;
2. dmin =A< A1 SA2 < L A2 <A = Amaxe T

For the problem P under conditions (i) an iterative proéess of the type (6) can be
used for calculating the dominant eigenvalue:

. o
. ‘ RS

®) Moas(4) = fim L

since for symmetric matrices Apax(A4) is a real number. : ‘

We will be interested in evaluating both: the smallest elgenvalue /\mm(A) and the
dominant one Ay..(A) using an iterative process of the type (6). It will be done by
introducing a new matrix for realizing Monte Carlo iterations.

Let A = {a;;}};-, be a given matrix and f = {f;}1, and h = {h;}], are vectors.
For the problems P we create a stochastic process using the matrix A and vectors f and
h. Consider an initial density vector p = {p;}’; € R™®, such that p; > 0,i = 1,.
and Y7 pi = 1. Consider also a transition density matrix P = {pu}?,j___] €]R"x" , such
that p;; >0, i,j =1,. ..,nand'z - pij=1,foranyi=1,.

Define sets of permissible densmes Py, and P4. The initial densxty vector p = {p;},
is called permissible to the vector h = {h;}L, € R | ie. p € Py, if

9) pi >0, when h; #0 and p; =0, when h; =0 for i=1,...,n.

136 I. Dimov and A. Karaivanova

The transition density matrix P = {p,-]-},’-fj=1 is called permissible to the matrix
A= {ai,-}zfj:l, i.e. P € Py, if

(10) Dij > 0, when aij #0 and pij = 0, when aij = 0 fori,j=1,...,n.
Consider the following Markov chain:

(11) ko—)kl—)...—)k,’.

where k; = 1,2,...,n for j = 1,...,7 are natural random numbers.
The rules for constructing the chain (11) are:

(12) Pr(ko = a) =pa, Pr(k; = Blkj—1 = @) = pag.
Assume that

(13) P ={Pa}to=1 € Pn, P ={paglsp=1 € Pa.

Now define the random variables W; using the following recursion formula:

h ' Q;_ik; .
(14) Wo =2 W;=W,_—=t8 =1
pko pkj—-lkj
The random variables W;, j = 1,...,7 can also be considered as weights on the

Markov chain (12).
From all possible permissible densities we choose the following

|hal
15 = {Pa}o=1 € Ps, =m0
() i p {p }a 1 Do Zazl |ha|
(16) P = {pag}[';ﬁ:l EPA,pag=-—ﬁl-a—aL,a=1,...,n.
’ Za=1 laasl

Such a choice of the initial density vector and the transition density matrix leads to
MAO algorithm. The initial density vector p = {pa}2_, is called almost optimal initial
density vector and the transition density matrix P = {pag}; p=1 is called almost optimal
density matrizx.

It is easy to show [12], that under the conditions (i), the following equalities are
fulfilled:

(17) E{Wifki}:(h’Aif)’ i=1,2,...;

E{W;fr,}

(18) EWios fo]

~ Amax(A), for sufficiently large ”i” (P).

Statistical Numerical Methods for Eigenvalue. .. 137

2.2 The Resolvent Monte Carlo (RMC) algorithm

Now consider an algorithm based on Monte Carlo iterations by the resolvent operator
Rq —_ [I - qA]—l € RXxn
The following presentation

oo
(19) [I—qA]™ =3 " ¢'Chpin1 A% lalr <1

i=0
is valid because of behaviors of binomial expansion and the spectral theory of linear
operators (the matrix A is a linear operator) [8]. The eigenvalues of the matrices IR,
and A are connected with the equality u = m, and the eigenfunctions coincide.

According to (8), the following expression

I —gAl™™f,h) 1

20 (m) _ ([3 - __ =
is valid. For a negative value of g, the dominant eigenvalue pmax of R, corresponds to
the smallest eigenvalue Agin of the matrix 4. For a positive value of ¢, the dominant
cigenvalue fimax of R, corresponds to the dominant eigenvalue Ayax of the matrix A.
Now, for constructing the method it is sufficient to prove the following theorem.

feR"heR"

Theorem 1. Let A,,,, be the largest cigenvalue of the matriz A’ = {|ai;|}};=1 I q
is chosen such that | M, ,.q| < 1, then

(21) (I = qAI"™f,h) = B{)_ ¢'Chrys Wif(z:)}.

=0

PROOF. Since the expansion (19) converges in uniform operator topology (8] it
converges for any vector f € R™:

oo .
(22) (I —qA]™™f,h) = > ¢'Chrypici (A1 f, h).
i=0

For obtaining (22) from (21) one needs to apply (17) and to average every term of
the presentation (22). Such averaging will be correct if A, f, h and q in (21) are replaced
by their absolute values. If it is done the sum (21) will be finite since the condition
M ax@l < 1 is fulfilled. Thus, for a finite sum (21) there is a finite majorant summed
over all terms and the expansion can be average over all terms. The theorem is proved.
O

After some calculations one can obtain

11 (AT—gA™ AR
A) = ARy

g pm
Ey 2 ¢ Clin_oWif(z:)

23) 19 :
(E 50 0 Chm Wil @)

138 - I Dimov and A. Karaivanova

The coefficients C?

nm are calculated using the presentation

1
Cl+m

—_ i-1
=Cim-1+C;

i+m—1
From the representation

1 ~ [T —gAI"™f)
1—[gIAt™ ™ (h, [T — gA]=(n=D) f)?

we obtain the following Resolvent Monte Carlo (RMC) algorithm for evaluating the
smallest (largest) eigenvalue: i

A~ 1 (1 1) E}:,—o 0'Clym—1Wit1 f ()
plm EZn:O q Ci+m—1Wif($i) ’

q
where Wy = ———’l and W; are defined by (14).

When we are interested in evaluating the smallest eigenvalue the parameter ¢ < @
has to be chosen so that to minimize the following expression ‘

(24) pm =

(25)

26 . J ,A = — . < s L. oo
() (q) 1+ |q|)\2 -
orif \; =ads, (0<a<l),
el —a)
27 J(gA)=1-—"—"—7—",
&0 @4) 1+ |qiA2
We choose ‘ , : o o
T | '
2|1 Al

but sometimes a slightly different value of ¢ might give better results when a number of

realizations of the algorithm is considered.

2.3 Monte Carlo Algorithm with Inverse Iterations (MCII) for
the smallest eigenvalue

Here an Monte Carlo algorithm with inverse iterations (MCII) is also considereq
This algorithm can be applied when A is a non-singular matrix. The algorithm has z
high efficiency when the smallest by modules eigenvalue of A is much smaller then other .
eigenvalues. This algorithm can be realized as follow: '
1. Calculate the inversion of the matrix A. £
2. Starting from the initial vector fo € R™ calculate the sequence of Monte Carlo
iterations:

fi=ATfo, fo=A"H o, fi= AT i, ._ A .

Statistical Numerical Methods for Eigenvalue... ‘ ' 139

For the Monte Carlo methods it is more efficient first to evaluate the inverse matrix
using the algorithm proposed in and after that to apply the Monte Carlo iterations.

The vectors f; € R™ converge to the eigenvector which corresponds to the smallest
by modules eigenvalue of A. In fact, we calculate the functionals

(Afi, i) _ (fi—1, i)
(fi, hi) (fir hi)
Tt is not necessary to calculate A~! because the vectors fi can be evaluated solving
the following system of equations:

Afi=fo
Afs=hH
Af; = fi1.

3 Parallel Implementation

In this section we consider some estimators of the quality of the parallel algorithmn — Speed-
up and Parallel efficiency. Here we also give a brief description of the supercomputers
Intel-PARAGON and CRAY Y-MP C92A used for implementation of the algorithm. In
the end of the section we present some numerical results of parallel implementation of
the algorithm for some test matrices.

3.1 Estimators of the quality of the algorithm

In this section the estimations for the mathematical expectation of the time, speed-up
and parallel efficiency will be presented. All three parameters define the quality of the
parallel algorithms.

To get theoretical estimates of the time, speed-up and parallel efficiency a model of
multiprocessor configuration consisting of p processors is considered. Every processor of
the multiprocessor system performs its own instructions on the data in its own memory.

The inherent parallelism of the Monte Carlo methods lies in the possibility of calcu-
lating each realization of the random variable 8 on a different processor (or computer).
There is no need for communication between the processors during the time of calculating
the realizations - the only need for communication occurs at the end when the averaged
value is to be calculated.

To estimate the performance of the Monte Carlo algorithm, we use the criterion
grounded in [5].

We consider the following estimator for the speed-up of the Monte Carlo algorithm

[5] . Cer

_ ETy(X)

(29) SP(X) - m: ; _- . o

140 1. Dimov and A. Karaivanova

where ET,(X) is the mathematical expectation of the computational complexity (or the
time of the algorithm) needed for realizing the algorithm X on p processors.
We shall call the algorithm B p-the-best if

(30) ETy(X) > ETy(B).

(Obviously, if an algorithm D is a deterministic algorithm, then ET,(D) = T,(D), for
any p=1,2,...)
The parallel efficiency is defined as

(31) | Ey(X) = S,(X)/p.

For many existing deterministic algorithms the parallel efficiency goes down rapidly
when p > 6. In the general case the parallel efficiency of the deterministic algorithms
strongly depends on the number of processors p. For Monte Carlo algorithms the situation
is different. The parallel efficiency does not depend on p and may be very close to 1 for
a large number of processors p.

Here we shall consider the Monte Carlo algorithms for calculating the smallest eigen-
value of symmetric matrices and will get estimations for speed-up and parallel efficiency.

Every move in a Markov chain is done according to the following algorithm:

(i) generation of a random number (it is usually done in k arithmetic operations
where k = 2 or 3);

(ii) determination of the next element of the matrix : this step includes a random
number of logical operations *; : N

(iii) calculating the corresponding random variable. N

Since Monte Carlo Almost Optimal (MAQ) algorithm is used, the random process
never visits the zero-elements of the matrix A. (This is one of the reasons why MAO
algorithm has high algorithmic efficiency for sparse matrices.)

Let d; be the number of non-zero elements of i-th row of the matrix A. Obviously, -
the number of logical operations 7, in every move of the Markov chain can be estimated
using the following expression

3=

32) | IR id-—ld
() T =~ D) < i =5

Since 7, is a random variable we need an estimation of the probable error of (32).
It depends on the balance of the matrix. For matrices which are not very Dis balanced
and of not vary small-size (n = 2, 3), the probable error of (32) is negligible small in
comparison with yy,.

The number of arithmetic operations, excluding the number of arithmetic operations
k for generating the random number is y4.

The mathematical expectation of the operations needed for each move of any Markov
chain is

“Here the logical operation deals with testing the inequality a < b”.

Statistical Numerical Methods for Eigenvalue. .. 141

(33) Eé=r [(k +ya)la+ %dzL] ,

where l 4 and I, are the numbers of suboperations of the arithmetic and logical operations,
respectively.

In order to obtain the initial density vector and the transition density matrix, the
algorithm needs d; multiplications for obtaining the i-th row of the transition density
matrix and 2dn arithmetic operations for constructing {pag}y 5—,, where d is determined
by (32).

Thus, the mathematical expectation of the total number of operations becomes

(34) ET\(RMC) =~ 21 [(k +ya)la + %dl;,} IN +2rn(1+d),

where [is the numbers of moves in every realization of the Markov chain, and N is the
number of realizations.

It is worth noting that the main term of (34) does not depend on the size n of the
matrix and the next term (which corresponds to creating the transition density matrix
and can considered as a preprocessing) has O(n) operations for sparse matrices and O(n?
operations for dense matrices. This result means that the time required for calculating
the eigenvalue by RMC practically does not depend n. The parameters | and N depend
on the spectrum of the matrix, but not depend on the size n. The above mentioned result
was confirmed for a wide range of matrices during the realized numerical experiments.

Let as also note that the main term of the estimate (34) can be written in the
following form

(35) ET|(RMC) = 27 |(k + va)la + -;-dlL] IN = (ki + k2d)IN,

where k; and ky are constants which do not depend on the matrix, and parameters [and
N.

The numerical results performed on Intel-PARAGON machine show that the follow-
ing values can be used as an approximation to the constants k; and kg

k=~ 1073
ky =~ 4.5-1074,

3.2 Numerical Tests

Here we present some numerical results of implementation of the algorithm under con-
sideration. The code is written in FORTRAN 77 and is performed on supercomputers
Intel PARAGON and CRAY Y-MP C92A.

Intel PARAGON is a particular form of a parallel machine which consists of a set
of independent processors, each with its own memory, capable of operating on its own

| 142 I. Dimov and A. Karaivanova

. ists of &
data. The PARAGON machine on which our experiments are performed consis
mesh-grid of 16 x 4 = g4 nodes. . : :
ctories

Each processor executes the same program for N/p number of randomdt:')?-];lis parfj
that is N/p independent realizations of the random variable (25). At the en d computes:
of computations - the host processor collects the results of all realizations an ,
the average value which corresponds to the considered eigenvalue.

Table 1: Test matrices : ' A 'tml
[Name Size | Non — zero el. Amin Amax . _ -
per row D
ml128.52 128 52 1.0000 { 64.0000 o oo {
m512.178 512 178 1.0000 | 64.0000 R ,"’i
m1000.39 || 1000 39 —1.0000 | 1.0000 o
m1024.56 1024 56 1.0000 | 64.0000 o .
m1024.322 | 1024 322 1.0000 | 64.0000 :
m2000.56 2000 56 1.0000 | 64.0000

Numerical tests are performed for a number of test matrices — general sy mrgﬁ?;s ‘
Sparse matrices and band sparse symmetric matrices. The test matrices are pro ener-
using a specially created generator of symmetric matrices called MATGEN. This gt and
ator allows to generate matrices with g given size, given sparsity and fixed largi)se ran-
smallest eigenvalue (fixed condition number). All other eigenvalues are chosen t‘f) iven
domly distributed. Using MATGEN-program it is also possible to put a gap O ancobi
size into the spectrum of the matrix. For producing such matrices in MATGEN o o
rotations are used such that the angle of rotation and the place of appearing the non

. : iments are
entrances are randomly chosen. The test matrices used in our numerical exPer‘mlzr:n onts.
of size 128, 512, 1000, 1024, and 2000 and have different number of non-zero e
Some of the

most important parameters of the matrices are shown in Table '1. ’.I‘he natnﬁi
contains the size of the matrix and also a parameter which mdlcaf:ft;srent
sparsity. So, we a able to control the parallel behaviors of the algorithm for di (f; the
levels of sparsity and to study the dependence between the computational time an

size of the matrices.

Some information about the computations complexity, speed-up and parallel off
ciency of the algorithm is presented in Tables 2- 6. -+ when

Table 2 presents results for a matrix of size 512 x 512 with a given sparsity The
a small number of Monte Carlo iterations is needed to receive a good accuracy. dom
subtable ”a” show the dependence between calculated values and the number of ral} '?he
trajectories. The subtable "1, contain an information about the dependence O of
computational complexity, speed-up and parallel efficiency from the used number
processors p of Intel PARAGON.

. : n
Table 3 presents results for a matrix of size 2000 x 2000 with a given sparsity whe

of matrices

S . . -
tatistical Numerical Methods for Eigenvalue. .. 143

Table 2:
: Resol
olvent Monte Carlo Method (RMC) for tr.min (Amin = 1.0).

a) The .
solu .
tion when number of trajectories increases.

Number of]
traject. 103 4

10 3
Calculated .
Ao
min 1.0278 | 0.9958 0.999984 1.000010

b) Im
ple s
mentation on PARAGON (Num. of tr. /= 108). Calculated

Amin = 1.000010.

}Numb.
nodes el "’"\"T""T"’T
'(I‘ime = 2 3 4 5 6 7 8 9 10}
) o o
70.
75 | 3507 | 240 18.3]14.78|12.06| 1149 9.63| 8.67| 768

Speed-u
g p
734 | 8.16 9.21

|

1| 1.97| 2.84| 3.86 4.78 | 5.46 6.16

i Fe
1 | 0.983 | 0.947 | 0.966 | 0.957 | 0-909 0.879 | 0.918 | 0.906 0.921 |

a lal‘ge
numb : 5
COmputationaleé . 1tgrat10ns are needed (m = 91). Here an information about the
that the para11e1rr?§’-tlme’ speed-up and parallel efficiency is given. Our results show
Table 4 efficiency increases when the number of random trajectories increases.
e 4 shows that:
¢ the com : : y
putational time 18 almost independent of the size of the matrix;

® alinear
r dependence between the computational time and the number of the random

trajectories is observed;
® a line
ar dependence between the Computational time and the mean value of the

number : ix i i
of non-zero entries of each row of the matrix 18 realized.

fferent numbers of processors of Intel PARAGON
the number of the random trajectories is large

the :

Valusepsz?i,-u{)vi almost linear and it i8 closed to the best value of the speed-up, i€ the
COmplexit,‘ Yih en the nun}bgr of processors is small (with respect to the computational
tational ti};n 16 speed-up is linear. If the number of processors p is large and tt}e compu-
small co ¥ IS.Smau the speed-up is not so good. It may happen for tasks with a very
mputational complexity when such large number of processors is not needed.

S
mach?rine results for the speed-up when di
e are used are also received. When

144 I. Dimov and A. Karaivanova

Uk

Table 3: Resolvent Monte Carlo Method (RMC) for tr2000.2min (A, = 1.0).
Parameters of the problem: M=91, L=5, f()- unit vector

a) The solution when number of trajectories increases. ey
Number of . .
traject. 103 10* 10° 108 : <ot
Calculated : s
Amin 0.88238 | 0.9074 | 0.9248 | 0.9262 . -

b) Implementation on PARAGON (Num. of tr. N = 108). Calculated
Amin = 1.000010.

Nnodes Amin | Time (s) | Speed - up | Ef ficiency ‘ .
1 0.0262 | 107.488 1 1 S
2 0.9266 54.752 1.963 0.981 : :
3 0.9265 | 37.088 2.822 0.940
4 0.9256 | 27.494 2.822 0.705 :
5 0.0268 | 22.433 3.919 0.783

6 0.9253] 19.456 4.791 0.783

7 0.9256 | 17,312 5.524 0.798

8 0.9279 | 14.496 6.208 0.789

9 0.9260 | 12.992 7.415 0.776

10 0.9282 | 12.288 8.273 0.823

We also consider some numerical results obtained on CRAY Y-MP C92A. CRAY
Y-MP C92A is a typical pipeline machine, which contain two vector processors.

Some numerical results are presented on Tables 5 and 6. One can see that MCII
algorithm gives good results even in case of small values of parameters m and N. It
is also shown that the size of the HWM-memory is relatively small, which is important
for such kind of machine like CRAY Y-MP C92A. The obtained information about the
efficiency of vectorization show that MCII algorithm is well vectorizable.

Remarks:

1. The values of CP-time and HWM-memory are for CRAY Y-MP C92A.

2. ”%” - no estimated CP-time; the values of CP-time are between 5.296 s and 5.514
S.

3. In comparison with case b), CP-time decreases very slowly for more then 10-times
decreasing of the number of moves m.

4. The corresponding NAG-routine for solving the same problem needs CP-time =

Statistical Numerical Methods for Eigenvalue. .. 145

Table 4: Computing time and matrix size

a) Results for matrix 128 x 128. Number of nonzero elements = 6714.
Exact Apmax = 64.0. parametersd: M=47, L=7.

Number of | Calculated | Time
traject. Az
1000 64.1350 0.256
10000 63.3300 2.112
100000 63.1843 21.600
1000000 63.189 208.256

b) Results for matrix 1000 X 1000. Number of nonzero elements = 38748.
Exact Amax = 1.0. parametersd: M=47, L=T7.

Number of | Calculated | Time
traject. A
1000 0.9981 0.128
10000 0.9997 1.344
100000 1.000051 13.184
1000000 1.000033 | 132.288

¢) Results for matrix 1024 X 1024. Number of nonzero elements = 57538.
Exact Apmax = 64.0. parametersd: M=47, L="7.

Number of | Calculated | Time
traject. D p—_—
1000 64.3462 0.256
10000 64.1883 1.856
100000 64.1724 18.176
1000000 64.1699 181.504

d) Results for matrix 2000 x 2000.

Number of nonzero elements = 112594.
Exact Apax = 64.0. parametersd: M=47, L="7.

Number of | Calculated | Time
traject. Amax
1000 63.9943 0.192
10000 64.0050 1.408
100000 64.0204 13.312
1000000 64.0265 133.248

146 I. Dimov and A. Karaivanova

Table 5: Monte Carlo algorithm with inverse iterations (IMCM) for MS512.2
(Amin = 0.2736). (A general symmetric matrix of size 512.)
a) The number of Markov chains is fixed NV = 80.

m | Calculated | Error,
/\min
2 0.2736 0.0000
3 0.2733 0.0011
4 0.2739 0.0011
5 0.2740 0.0015
10 | 0.2732 0.0015
50 | 0.2738 0.0007
100 | 0.2757 0.0076

b) The number of iterations (number of moves in every Markov chain) m is
fixed - m = 50.

N Calculated | Error, | CP — time, | HW M —

Xisin s memory
20 0.2729 0.0026 | 5.356 1137378
40 0.2742 0.0022 | 5.396 1137378
60 0.2748 0.0044 | 5.468 1137378
80 0.2739 0.0011 | 5.524 1137378
100 | 0.2736 0.0000 | 5.573 1137378
500 | 0.2737 0.0004 | 6.666 1137378
1000 | 0.2739 0.0011 | 8.032 1137378

Remark: The values for CP-time and HWM-memory are for CRAY Y-MP C92A.

Table 6: The number of iterations (number of moves in every Markov chain)
for MS512.2 (Amin = 0.2736) m is small and fixed - m = 4.

N Calculated | Error, | CP — time, | HW M —

Ariia s memory
20 0.2737 0.0004 | 5.296 1137378
40 0.2749 0.0058 | % 1137378
60 0.2754 0.0066 | % 1137378
80 0.2739 0.0011 | % 1137378
100 | 0.2736 0.0000 | % 1137378
500 | 0.2737 0.0004 | % 1137378
1000 | 0.2738 0.0007 | 5.514 1137378

Statistical Numerical Methods for Figenvalue... 147

5.452 s and HWM-mem = 1 220 676.

4

Concluding Remarks

In this paper:

A parallel Resolvent Monte Carlo Algorithm and a Monte Carlo algorithm with
inverse iterations for evaluating eigenvalues of real symmetric matrices have been
presented and implemented. : 3

Estimations for the computational complexity, speed-up and parallel efficiency are
obtained.

The studied algorithms are almost optimal from statistical point of view, i.e. the
variance of the random variable which is equal t0 Apin OF Amax is almost minimal
in the meaning of definition given in [2].

The studied algorithms are implemented on supercomputers Intel PARAGON and
CRAY Y-MP C92A.

The convergence of the algorithm depends on spectrum of the matrix. The system-
atic error is

i oM+ \
36 Ol o7)
(39) [(2/\1+/\n—1)]
where m is the power (the number of iterations). When Ayax & —2Amin the

convergence is very good. It is clear from (36) that the positive or negative defined

matrices the convergence decreases, so that the best convergence whlch can be
reached is O[(2/3)™].

The presented algorithms have strong requirements about matrices for which it
can be applied: the error from the Power method applied on the resolvent matrix
determines the value of the parameter m; the error which comes from the represen-
tation the resolvent matrix as a series determines the value of the parameter [, and
also the values of m and ! are not independent since they determine the binomial
coefficients C%, ;_; which grow exponentially with I.

The numerical results obtained by Resolvent Monte Carlo algorithm for sparse
matrices show that: .
— The computational time is almost independent of the size of the matrix.

— There is a linear dependence between the computational time and the number
of the random trajectories.

148 I. Dimov and A. Karaivanova

— There is a linear dependence between the computational time and the mean
value of the number of non-zero entries of each row of the considered matrix.

— The speed-up of the algorithm is almost linear when the computational effort
for every processor is not too small.

e The presented Monte Carlo algorithms can be efficiently used for solving other
important linear algebra problems, where one is interested in computing powers of
matrices. Such a problem is evaluating polynomials of large sparse matrices p(A4),
which are used for obtaining some information about the spectrum of the matrices
and also for studying the stability of large systems.

Acknowledgments.

This work was partially supported by the Ministry of Science, Education and Tech-
nology of Bulgaria under grant I 501/95.

The authors thank Professor Bernard Philippe — coordinator of the INCO-COPERNI-
CUS project: 960237 for the helpful discussions and for possibility to use the Intel
PARAGON machine for our computations.

REFERENCES

[1] S. K. GopuNov. Spectral portraits of matrices and criteria of spectrum dichotomy.
In: International symposium on computer arithmetic and scientific computation (eds. J.
Herzberger, L. Atanasova). Oldenburg, Germany, North-Holland (1991).

[2] I. DiMov. Minimization of the Probable Error for Some Monte Carlo methods. Proc. Int.
Conf. on Mathematical Modeling and Scientific Computation, Varna, 1991.

[3] 1. DiMov, O. ToNEV. Monte Carlo methods with overconvergent probable error. In: Nu-
merical Methods and Applications, Proc. of Intern. Conf on Numerical Methods and
Appl.,Sofia, House of Bulg. Acad. Sci., Sofia, 1989, 116-120.

[4] I. Dimov, O. ToNEV. Random walk on distant mesh points Monte Carlo methods. Journal
of Statistical Physics, 70(5/6), 1993, 1333-1342.

[5] I. DiMov, O. ToNEV. Monte Carlo algorithms: performance analysis for some computer
architectures. Journal of Computational and Applied Mathematics 48 (1993), 253-277.

[6] V. DupAcH. Stochasticke pocetni metody. Cas. pro pest. mat. 81(1) (1956), 55-68.

[7] H. KAHN. Random sampling (Monte Carlo) techniques in neutron attenuation problems.
Nucleonics 6 (5) (1950), 27-33; 6(6) (1950) 60-65.

[8] L. V. KaNTOROVICH, G. P. AKILOV. Functional analysis. Nauka, Moscow, 1977.

[9] G. MEGSON, V. ALEKSANDROV, I. DIMOV. Systolic Matrix Inversion Using a Monte Carlo
Method, Journal of Parallel Algorithms and Applications, 3(3/4) (1994), 311-330.

[10] G. A. MikHAILOV. A new Monte Carlo algorithm for estimating the maximum eigenvalue
of an integral operator. Docl. Acad. Nauk SSSR, 191(5) (1970), 993-996.

[11] G. A. MikHAILOV. Optimization of the "weight” Monte Carlo methods. Nauka, Moscow,
1987.

Statistical Numerical Methods for Eigenvalue. .. 149

[12] 1. M. SoBoL. Monte Carlo numerical methods. Nauka, Moscow, 1973.

[13] L. N. TREFETHEN. Pseudospectra of matrices. In: 14th Dundee Biennal Conference on
Numerical Analysis (eds. D. F. Griffiths, G. A. Watson), 1991.

Central Laboratory for Parallel Computing

Bulgarian Academy of Sciences

Acad. G. Bonchev St.,bl. 25 A, Sofia, 1113, Bulgaria
e-mail: anet@amigo.acad.bg, dimov@amigo.acad.bg
Web site: http://www.acad.bg/BulRTD/math/dimov2.html

http://anetSamigo.acad.bg
http://dimovQamigo.acad.bg
http://www.acad.bg/BulRTD/math/dimov2.html

