

P l i s k a Stud. M a t h . Bulgar. 13 (2000), 133-149 PUSKA
STUD1A M A T H E M A T I C A
B U L G A R 1 C A

S T A T I S T I C A L N U M E R I C A L M E T H O D S F O R E I G E N V A L U E
P R O B L E M . P A R A L L E L I M P L E M E N T A T I O N

Ivan Dimov, Aneta Karaivanova

The problem of evaluating the smallest eigenvalue of real symmetric matrices using
statistical numerical methods is considered.

Two new almost optimal Monte Carlo algorithms are presented:

• Resolvent Monte Carlo algorithm (RMC) . The algorithm uses Monte Carlo
iterations by the resolvent matrix and includes parameter controlling the rate
of convergence;

• Monte Carlo algorithm with inverse iterations (MCII).

Numerical tests are performed for a number of large sparse symmetric test ma­
trices. The tests are performed on supercomputers In te l -PARAGON (which is a
distributed memory multicomputer) and C R A Y Y - M P C92A (a two-processor vec­
tor machine).

Some information about the parallel efficiency of the algorithms is obtained,
showing that the algorithms under consideration are well-parallized and well vec-
torizable.

K e y w o r d s : Monte Carlo algorithms, Eigenvalue, Efficiency estimator, Markov chain, Parallel
algorithm

M S C subject classif ication: 65C05, 65U05.

1 Introduction
In this work we present Monte Carlo algorithms for evaluating eigenvalues of a symmetric
matr ix A, i.e. the values of A for which

(1)

holds.

134 I. Dimov and A. Karaivanova

Here we consider algorithms for both problems: evaluating the dominant eigenvalue
and the smallest one. It is known that the problem of calculating the smallest eigenvalue
of a matr ix A is more difficult from numerical point of view than the problem of eva luat ing
the dominant eigenvalue. Nevertheless, for many important applications i n physics a n d
engineering it is necessary to estimate the value of the smallest eigenvalue, because i t
usually defines the most stable state of the system which is described by the considered
matr ix .

There are several basic advantage of the Monte Car lo algorithms. It is well k n o w n
that Monte Car lo algorithms are parallel algorithms. They have high paral le l efficiency
when parallel computers are used [5]. Monte Carlo algorithms are also very efficient when
the problem under consideration is too large or too intricate for other treatments.

There are, also, many problems in which it is important to have an efficient a lgor i thm
which is parallel a n d / o r vectorizable. A n d for matrices wi th a large size which often
appear in practice it is not easy to find efficient algorithms for evaluating eigenvalues when
modern high-speed parallel computers are used. For example, the problem of p l o t t i n g
the spectral portraits of matrices is one of the important problems where high-efficient
parallel algorithms are needed. The spectral portraits are used in stabi l i ty analysis .
T h e above mentioned problem leads to a large number of subproblems of evaluating the
smallest eigenvalue of symmetric matrices.

Monte C a r l o methods give statistical estimates for the functional of the solution by
performing random sampling of a certain chance variable whose mathematical expecta­
t ion is the desired functional .

Let / be any functional that we estimate by Monte Car lo method; 8n be the est imator ,
where n is the number of tr ials . The probable error for the usual Monte C a r l o method
(which does not use any addit ional a pr ior i information about the regularity of the
solution) [12] is defined as:

If the standard deviation o(0n) < oo, the normal convergence in the Centra l L i m i t
Theorem holds.

Obviously, from (2) and $(0.6745) « | we have

(3)
T h e algorithms under consideration are almost opt imal Monte Car lo algorithms (i.e.

M A O algorithms) . T h e value of the variance is reduced by means of a special k i n d of
transit ion-density matrices.

2 Description of the Monte Carlo Algorithms
Here we present a stationary linear iterative Monte Carlo algorithm for evaluating eigen­
values of matrices.

Statistical Numerical Methods for Eigenvalue... 135

2.1 Almost Optimal Markov Chains
T h e presented algorithms contain iterations with the original matr ix , as well as Monte
C a r l o iterations with a resolvent matrix (used as iterative operator) of a given matr ix .

Consider a matr ix A :

(4)
a n d a vector
(5)

T h e matr ix A can be considered as a linear operator A[Rn -> E n] , so that the linear
transformation

(6)
defines a new vector in R " .

Since iterative Monte Carlo algorithms using the transformation (6) w i l l be consid­
ered, the linear transformation (6) wi l l be called iteration. The algebraic transformation
(6) plays a fundamental role in iterative Monte Carlo algorithms.

Now consider the following problem P for the matr ix A:
P r o b l e m P . Evaluat ing of eigenvalues \{A):

(7)

It is assumed that

(0
For the p r o b l e m P under conditions (i) an iterative process of the type (6) can be

used for calculating the dominant eigenvalue:

(8)

since for symmetric matrices XmSiX(A) is a real number.
We wi l l be interested in evaluating both: the smallest eigenvalue \m\n(A) and the

dominant one A m a x (^4) using an iterative process of the type (6). It w i l l be done by
introducing a new matr ix for realizing Monte Car lo iterations.

136 I. Dimov and A. Karaivanova

The transition density matrix P = { p y } " , = 1 is called permissible to the m a t r i x
if

(10) pij > 0, when atj / 0 and pij = 0, when = 0 for i,j = 1 , . . . , n .

Consider the following Markov chain:

(11)

where kj = 1 ,2 , . . . ,n for j = 1 , . . . ,i are natural random numbers.
T h e rules for constructing the chain (11) are:

(12)

Assume that

(13)

Now define the random variables Wj using the following recursion formula:

.(14)

T h e random variables Wj, j — can also be considered as weights on the
Markov chain (12).

From al l possible permissible densities we choose the following

(15)

(16)

Such a choice of the in i t ia l density vector and the transition density matr ix leads to
M A O algorithm. The in i t ia l density vector p — {p a }S=i ' s called almost optimal initial
density vector and the transit ion density matr ix P = {Pap}2,0=i l s called almost optimal
density matrix.

It is easy to show [12], that under the conditions (i), the following equalities are
fulfilled:

(17)

(18)

Statistical Numerical Methods for Eigenvalue... 1 3 7

2.2 The Resolvent Monte Carlo (R M C) algorithm
N o w consider an algorithm based on Monte Carlo iterations by the resolvent operator

T h e following presentation

(1 9)

is va l id because of behaviors of binomial expansion and the spectral theory of linear
operators (the matr ix A is a linear operator) [8]. The eigenvalues of the matrices Rq

a n d A are connected with the equality n = ^2qx)' a n c ^ t n e eigenfunctions coincide.
A c c o r d i n g to (8), the following expression

(2 0)

is va l id . For a negative value of q, the dominant eigenvalue / x m a x of Rq corresponds to
the smallest eigenvalue A m j n of the matr ix A. For a positive value of q, the dominant
eigenvalue / i m a x of Rq corresponds to the dominant eigenvalue A m a x of the matr ix A.
N o w , for constructing the method it is sufficient to prove the following theorem.

T h e o r e m 1. Let A L V be the largest eigenvalue of the m a t r i x I f q
is chosen such that then

(2 1)

P R O O F . Since the expansion (1 9) converges in uniform operator topology [8] it
converges for any vector / € M n :

(2 2)

For obtaining (2 2) from (2 1) one needs to apply (1 7) and to average every term of
the presentation (2 2) . Such averaging wi l l be correct if A, f, h and q in (2 1) are replaced
by their absolute values. If it is done the sum (2 1) w i l l be finite since the condition
| A ' m a x g | < 1 is fulfilled. Thus , for a finite sum (2 1) there is a finite majorant summed
over a l l terms and the expansion can be average over a l l terms. T h e theorem is proved.
•

After some calculations one can obtain

138 I. Ditnov and A. Karaivanova

T h e coefficients C " + m are calculated using the presentation

Prom the representation

(24)

we obtain the following Resolvent Monte Car lo (R M C) algorithm for evaluating t h e
smallest (largest) eigenvalue:

(25)

where Wo = and Wi are defined by (14).
W h e n we are interested in evaluating the smallest eigenvalue the parameter q < o

has to be chosen so that to minimize the following expression

but sometimes a sl ightly different value of q might give better results when a number o f
realizations of the a lgor i thm is considered.

2.3 Monte Carlo Algorithm with Inverse Iterations (MCII) for
the smallest eigenvalue

Here an M o n t e C a r l o a l g o r i t h m w i t h i n v e r s e i t e r a t i o n s (M C I I) is also considered.
T h i s a lgor i thm can be applied when A is a non-singular matr ix . T h e a lgor i thm has a

high efficiency when the smallest by modules eigenvalue of A is much smaller then o ther
eigenvalues. T h i s a lgor i thm can be realized as follow:

1. Calculate the inversion of the matr ix A.
2. Star t ing from the in i t ia l vector fo S Rn calculate the sequence of M o n t e C a r l o

iterations:

Statistical Numerical Methods for Eigenvalue... 139

For the Monte Carlo methods it is more efficient first to evaluate the inverse matr ix
us ing the algorithm proposed in and after that to apply the Monte Carlo iterations.

T h e vectors ft € Rn converge to the eigenvector which corresponds to the smallest
by modules eigenvalue of A. In fact, we calculate the functionals

It is not necessary to calculate A~l because the vectors fk can be evaluated solving
the following system of equations:

3 Parallel Implementation
In this section we consider some estimators of the quality of the parallel algorithm - Speed­
up and Parallel efficiency. Here we also give a brief description of the supercomputers
I n t e l - P A R A G O N and C R A Y Y - M P C 9 2 A used for implementation of the algorithm. In
the end of the section we present some numerical results of parallel implementation of
the algorithm for some test matrices.

3.1 Estimators of the quality of the algorithm
In this section the estimations for the mathematical expectation of the time, speed-up
and parallel efficiency wi l l be presented. A l l three parameters define the quality of the
parallel algorithms.

To get theoretical estimates of the time, speed-up and parallel efficiency a model of
multiprocessor configuration consisting of p processors is considered. Every processor of
the multiprocessor system performs its own instructions on the data in its own memory.

The inherent parallelism of the Monte Carlo methods lies in the possibility of calcu­
lat ing each realization of the random variable 6 on a different processor (or computer).
There is no need for communication between the processors during the time of calculating
the realizations - the only need for communication occurs at the end when the averaged
value is to be calculated.

To estimate the performance of the Monte Car lo algorithm, we use the criterion
grounded in [5].

We consider the following estimator for the speed-up of the Monte Car lo algorithm

[5]

(29)

140 I. Dimov and A. Karaivanova

where ETP(X) is the mathematical expectation of the computational complexity (or the
time of the algorithm) needed for realizing the algorithm X on p processors.

We shall cal l the algorithm B p-the-best i f

(30)

(Obviously, i f an algorithm D is a deterministic algorithm, then for
any p - 1,2,.. . .)

T h e parallel efficiency is defined as

(31)

For many existing deterministic algorithms the parallel efficiency goes down rap id ly
when p > 6. In the general case the parallel efficiency of the deterministic algorithms
strongly depends on the number of processors p. For Monte Car lo algorithms the s i tuat ion
is different. T h e parallel efficiency does not depend on p and may be very close to 1 for
a large number of processors p.

Here we shall consider the Monte Car lo algorithms for calculating the smallest eigen­
value of symmetric matrices and wi l l get estimations for speed-up and parallel efficiency.

Every move i n a M a r k o v chain is done according to the following a lgor i thm:
(i) generation of a random number (it is usually done in k ar ithmetic operations

where k = 2 or 3);
(ii) determination of the next element of the matr ix : this step includes a random

number of logical operations ;
(iii) calculating the corresponding random variable.
Since Monte C a r l o A lmost O p t i m a l (M A O) algorithm is used, the random process

never visits the zero-elements of the matr ix A. (This is one of the reasons why M A O
algorithm has high algorithmic efficiency for sparse matrices.)

Let di be the number of non-zero elements of i - t h row of the matr ix A. Obviously , •
the number of logical operations 71, i n every move of the Markov chain can be estimated
using the following expression

(32)

Since 7x, is a random variable we need an estimation of the probable error of (32).
It depends on the balance of the matr ix . For matrices which are not very Dis balanced
and of not vary small-size (n = 2,3), the probable error of (32) is negligible smal l i n
comparison w i th 7/,.

T h e number of arithmetic operations, excluding the number of ar i thmetic operations
k for generating the random number is 7.4.

T h e mathematica l expectation of the operations needed for each move of any M a r k o v
chain is

' H e r e the logical operation deals with testing the inequality "a < 6".

Statistical Numerical Methods for Eigenvalue... 141

(33)

where I A and li are the numbers of suboperations of the arithmetic and logical operations,
respectively.

In order to obtain the init ial density vector and the transit ion density matr ix , the
a lgor i thm needs d; multiplications for obtaining the i - t h row of the transit ion density
m a t r i x and 2dn arithmetic operations for constructing {pap}2 /3=i> where d is determined
b y (32).

Thus, the mathematical expectation of the total number of operations becomes

(34)

where I is the numbers of moves in every realization of the Markov chain, and N is the
number of realizations.

It is worth noting that the main term of (34) does not depend on the size n of the
m a t r i x and the next term (which corresponds to creating the transit ion density matr ix
a n d can considered as a preprocessing) has 0(n) operations for sparse matrices and 0(n2

operations for dense matrices. This result means that the time required for calculating
the eigenvalue by R M C practically does not depend n. The parameters I and N depend
on the spectrum of the matr ix , but not depend on the size n. The above mentioned result
was confirmed for a wide range of matrices during the realized numerical experiments.

Let as also note that the main term of the estimate (34) can be written in the
fol lowing form

(35)

where k\ and ki are constants which do not depend on the matr ix , and parameters / and
N.

T h e numerical results performed on I n t e l - P A R A G O N machine show that the follow­
ing values can be used as an approximation to the constants k\ and k<z

3.2 Numerical Tests

Here we present some numerical results of implementation of the algorithm under con­
sideration. The code is written in F O R T R A N 77 and is performed on supercomputers
Intel P A R A G O N and C R A Y Y - M P C 9 2 A .

Intel P A R A G O N is a particular form of a parallel machine which consists of a set
of independent processors, each w i th its own memory, capable of operating on its own

I- Dimov and A. Karaivanova

data. The P A R A G O N machine on which our experiments are performed consists of a
mesh-gnd of 16 x 4 = 64 nodes.
th E a c h p r o c e s s o r executes the same program for N/p number of random trajectories,
mat is IV/p independent realizations of the random variable (25). A t the end of this part
or computations - the host processor collects the results of al l realizations and computes
tne average value which corresponds to the considered eigenvalue.

s r , a r ! i U m e I i C a l t 6 S t S a r G P e r f o r m e d f or a number of test matrices - general symmetric
parse matrices and band sparse symmetric matrices. The test matrices are produced

at™ S p e C , l a l l y c r e a t e d generator of symmetric matrices called MATGEN. This gener-
' O W S t 0 g f n erate matrices with a given size, given sparsity and fixed largest and

domlv V^Tf T (T ? X 6 d c o n d i t i o n number). A l l other eigenvalues are chosen to be ran-
efeLn 5 : n g M A T G E N - p r o g r a m it is also possible to put a gap of a given
roTJfnn S p e ' t r u m o f t h e matr ix . For producing such matrices in M A T G E N Jacobi
ro ations are used such that the angle of rotation and the place of appearing the non-zero
of 2 . l 9 s a r ^ r o n ? Z y C h ° S e n - T h e t e s t m a t r i c e s u s e d ^ our numerical experiments are
S n m T til' ' 1 0 2 4 , a n d 2 0 0 0 a n d h a v e different number of non-zero elements,
of m ° S t . l m p o r t a n t Parameters of the matrices are shown in Table 1. The name ™2T? C ° n t a m S * h e s i z e o f t h e matrix and also a parameter which indicates the
L v T k I f T a f t 0 C ° n t r o 1 t h e P a r a l l e l behaviors of the algorithm for different
size of^he PmTtrices n t 0 ^ d e p e n d e n c e b e t w e e n the computational time and the

c iencvof e t j , n / 0 r a t ir a b ° U t t h e c o m P u t a t i o n s complexity, speed-up and parallel effi­
ciency of the algorithm is presented in Tables 2 - 6
a s r n a n l e n ^ r h S e n t

f
S IT^ a m a t r i x o f s i z e 5 1 2 x 512 with a given sparsity when

s u b u b e »T£Zt H ° n t e ? a r ' ° i t 6 r a t i 0 n S i s n e e d e d to ^ceive a good accuracy. The
tr^ector ie . ThI s u b t t b l ^ b ^ 5 ^ ^ ^ t h e *
computational i , , ° n t a i n a n information about the dependence of the

p r o c e l t p o f I n t T p S G O N ^ P a r & l l e l f r 0 m t h e ™ * ^ *
Table 3 presents results for a matrix of size 2000 x 2000 with a given sparsity when

143
Statistical Numerical Methods for Eigenvalue...

Table 2: R e s o l v e n t M o n t e C a r l o M e t h o d (R M C) f or t r . m i n (A m i „ = 1^)-

a) T h e s o l u t i o n w h e n n u m b e r o f t r a j e c t o r i e s i n c r e a s e s .

H p r e an information about the
a l a r g e number of iterations are needed (m - • " i v e n . Our results show
computational error, t ime, speed-up and parallel " J ^ a d o B i trajectories increases,
that the parallel efficiency increases when the numoe

Table 4 shows that :
o f t h e s i z e of the matr ix ;

• the computat ional t ime is almost independen ^ n u m b e r of the random
• a linear dependence between the computational time and t 6 nu

trajectories is observed; ^ m e a n v a l u e of the
• a linear dependence between ^ ^ ^ n w ^ is realized.

number of non-zero entries of each row ^ P A R A G O N

Some results for the speed-up when d i ^ ^ SSSS**^ ̂ "g
machine are used are also received. W h e n the number ° . f ^ speed-up,
the speed-up is almost linear and it is closed to^he be t o ^ c o m p u ^
value of p. W h e n the number of P«j~j£-£3'processors p is l a r g e - ftjej^
complexity) the speed-up is l inear. If the num. h a p p e n f o r t a s K S
tat ional t ime is smal l the speed-up is not S O S ° < f J ^ / t f processors is not need
small computat ional complexity when such lart,

144 I. Dimov and A. Karaivanova

Table 3: R e s o l v e n t M o n t e C a r l o M e t h o d (R M C) for t r 2 0 0 0 . 2 m i n (A m i n = 1 .0) .
P a r a m e t e r s o f t h e p r o b l e m : M = 9 1 , L = 5 , f () - u n i t v e c t o r

a) T h e s o l u t i o n w h e n n u m b e r o f t r a j e c t o r i e s increases .

We also consider some numerical results obtained on C R A Y Y - M P C92A. C R A Y
Y - M P C 9 2 A is a typical pipeline machine, which contain two vector processors.

Some numerical results are presented on Tables 5 and 6. One can see that M C I I
algorithm gives good results even in case of small values of parameters m and N. It
is also shown that the size of the H W M - m e m o r y is relatively small , which is important
for such kind of machine like C R A Y Y - M P C92A. The obtained information about the
efficiency of vectorization show that M C I I algorithm is well vectorizable.

R e m a r k s :
1. The values of C P - t i m e and H W M - m e m o r y are for C R A Y Y - M P C 9 2 A .
2. " * " - no estimated C P - t i m e ; the values of C P - t i m e are between 5.296 s and 5.514

s.
3. In comparison with case b), C P - t i m e decreases very slowly for more then 10-times

decreasing of the number of moves m.
4. The corresponding N A G - r o u t i n e for solving the same problem needs C P - t i m e =

Statistical Numerical Methods for Eigenvalue... 145

Table 4: C o m p u t i n g t i m e a n d m a t r i x s i z e

a) R e s u l t s f o r m a t r i x 128 X 128 . N u m b e r o f n o n z e r o e l e m e n t s = 6 7 1 4 .
E x a c t A m a x = 6 4 . 0 . p a r a m e t e r s d : M = 4 7 , L = 7 .

b) R e s u l t s f o r m a t r i x 1000 X 1 0 0 0 . N u m b e r o f n o n z e r o e l e m e n t s = 3 8 7 4 8 .
E x a c t A m a x = 1.0. p a r a m e t e r s d : M = 4 7 , L = 7 .

c) R e s u l t s f o r m a t r i x 1024 X 1 0 2 4 . N u m b e r o f n o n z e r o e l e m e n t s = 5 7 5 3 8 .
E x a c t A m a x = 6 4 . 0 . p a r a m e t e r s d : M = 4 7 , L = 7 .

d) R e s u l t s f o r m a t r i x 2 0 0 0 X 2 0 0 0 . N u m b e r o f n o n z e r o e l e m e n t s = 1 1 2 5 9 4 .
E x a c t A m a x = 6 4 . 0 . p a r a m e t e r s d : M = 4 7 , L = 7 .

146 I. Dimov and A. Karaivanova

Table 5: M o n t e C a r l o a l g o r i t h m w i t h i n v e r s e i t e r a t i o n s (I M C M) f o r M S 5 1 2 . 2
(A m i n = 0 . 2 7 3 6) . (A g e n e r a l s y m m e t r i c m a t r i x o f s i ze 512.)

a) T h e n u m b e r o f M a r k o v c h a i n s is fixed N = 8 0 .

b) T h e n u m b e r o f i t e r a t i o n s (n u m b e r o f m o v e s i n e v e r y M a r k o v c h a i n) m i s
f i x e d - m = 5 0 .

R e m a r k : T h e values for C P - t i m e and H W M - m e m o r y are for C R A Y Y - M P C 9 2 A .

Table 6: T h e n u m b e r o f i t e r a t i o n s (n u m b e r o f m o v e s i n e v e r y M a r k o v c h a i n)
f o r M S 5 1 2 . 2 (A m i n = 0 .2736) m is s m a l l a n d fixed - m = 4.

T~N Calculated Error, CP - time, HWM-
A m i n s memory

20 0.2737 ~ 0.0004 5.296 "1137378
40 0.2749 0.0058 * 1137378
60 0.2754 0.0066 • 1137378
80 0.2739 0.0011 * 1137378
100 0.2736 0.0000 * 1137378
500 0.2737 0.0004 * 1137378

1 1000 I 0.2738 J 0.0007 | 5.514 | 1137378

Statistical Numerical Methods for Eigenvalue... 147

5.452 s and H W M - m e m = 1 220 676.

4 Concluding Remarks

In this paper:

• A parallel Resolvent Monte Carlo Algor i thm and a Monte Car lo algorithm with
inverse iterations for evaluating eigenvalues of real symmetric matrices have been
presented and implemented.

• Estimations for the computational complexity, speed-up and parallel efficiency are
obtained.

• T h e studied algorithms are almost optimal from statistical point of view, i.e. the
variance of the random variable which is equal to A m i n or A m a x is almost minimal
in the meaning of definition given in [2].

• T h e studied algorithms are implemented on supercomputers Intel P A R A G O N and
C R A Y Y - M P C 9 2 A .

• T h e convergence of the algorithm depends on spectrum of the matr ix . The system­
atic error is

(36)

where m is the power (the number of iterations). W h e n A m a x w ~ 2 A m i n the
convergence is very good. It is clear from (36) that the positive or negative defined
matrices the convergence decreases, so that the best convergence which can be
reached is 0 [(2 / 3) m] .

• The presented algorithms have strong requirements about matrices for which it
can be applied: the error from the Power method applied on the resolvent matr ix
determines the value of the parameter m ; the error which comes from the represen­
tat ion the resolvent matr ix as a series determines the value of the parameter I, and
also the values of m and I are not independent since they determine the b inomial
coefficients Cl

m+l_l which grow exponentially with I.

• T h e numerical results obtained by Resolvent Monte Car lo algorithm for sparse
matrices show that:

— T h e computational time is almost independent of the size of the matr ix .

— There is a linear dependence between the computational time and the number
of the random trajectories.

148 I. Dimov and A. Karaivanova

— There is a linear dependence between the computational time and the m e a n
value of the number of non-zero entries of each row of the considered m a t r i x .

- The speed-up of the algorithm is almost linear when the computational effort
for every processor is not too small.

• The presented Monte Carlo algorithms can be efficiently used for solving other
important linear algebra problems, where one is interested in computing powers of
matrices. Such a problem is evaluating polynomials of large sparse matrices p{A),
which are used for obtaining some information about the spectrum of the matrices
and also for studying the stability of large systems.

Acknowledgments.

This work was partial ly supported by the Minis try of Science, Educat ion and Tech­
nology of Bu lgar ia under grant I 501/95.

The authors thank Professor Bernard Phil ippe - coordinator of the I N C O - C O P E R N I -
C U S project: 960237 for the helpful discussions and for possibility to use the Intel
P A R A G O N machine for our computations.

R E F E R E N C E S
[1] S. K . G O D U N O V . Spectral portraits of matrices and criteria of spectrum dichotomy.

In: International symposium on computer arithmetic and scientific computation (eds. J .
Herzberger, L. Atanasova). Oldenburg, Germany, North-Holland (1991).

[2] I. D l M O V . Minimization of the Probable Error for Some Monte Carlo methods. Proc. Int.
Conf. on Mathematical Modeling and Scientific Computation, Varna, 1991.

[3] I. D l M O V , O. T O N E V . Monte Carlo methods with overconvergent probable error. In: N u ­
merical Methods and Applications, Proc. of Intern. Conf on Numerical Methods and
Appl.,Sofia, House of Bulg. Acad. Sci., Sofia, 1989, 116-120.

[4] I. D I M O V , O. T O N E V . Random walk on distant mesh points Monte Carlo methods. Journal
of Statistical Physics, 70(5/6), 1993, 1333-1342.

[5] I. D I M O V , O. T O N E V . Monte Carlo algorithms: performance analysis for some computer
architectures. Journal of Computational and Applied Mathematics 4 8 (1993), 253-277.

[6] V . D U P A C H . Stochasticke pocetni metody. Cas. pro pest. mat. 81(1) (1956), 55-68.
[7] H . K A H N . Random sampling (Monte Carlo) techniques in neutron attenuation problems.

Nucleonics 6 (5) (1950), 27-33; 6(6) (1950) 60-65.
[8] L . V . K A N T O R O V I C H , G . P . A K I L O V . Functional analysis. Nauka, Moscow, 1977.
[9] G . M E G S O N , V . A L E K S A N D R O V , I. D I M O V . Systolic Matrix Inversion Using a Monte Carlo

Method, Journal of Parallel Algorithms and Applications, 3(3/4) (1994), 311-330.
[10] G . A . M I K H A I L O V . A new Monte Carlo algorithm for estimating the maximum eigenvalue

of an integral operator. Docl. Acad. Nauk SSSR, 191(5) (1970), 993-996.
[11] G . A . M I K H A I L O V . Optimization of the "weight" Monte Carlo methods. Nauka, Moscow,

1987.

Statistical Numerical Methods for Eigenvalue... 149

•

[12] I. M . S O B O L . Monte Carlo numerical methods. Nauka, Moscow, 1973.
[13] L . N . T R E F E T H E N . Pseudospectra of matrices. In: 14th Dundee Biennal Conference on

Numerical Analysis (eds. D. F. Griffiths, G. A. Watson), 1991.

Central Laboratory for Parallel Computing
Bulgarian Academy of Sciences
Acad. G. Bonchev St.,bL 25 A, Sofia, 1113, Bulgaria
e-mail: anetSamigo.acad.bg, dimovQamigo.acad.bg
Web site: http://www.acad.bg/BulRTD/math/dimov2.html

http://anetSamigo.acad.bg
http://dimovQamigo.acad.bg
http://www.acad.bg/BulRTD/math/dimov2.html

