
Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

STUDIA M A T H E M A T I C A
BULGARICA

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or

institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica

visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office

Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49

e-mail: pliska@math.bas.bg

E l A r A P C K H
M A T E M A T H H E C K H
C T y A H H

http://www.math.bas.bg/~pliska/
mailto:pliska@math.bas.bg

Pliska Stud. Math. Bulgar. 13 (2000), 117-132 PUSKA
STUDIA MATHEMATICA
BULGARICA

M O N T E C A R L O A L G O R I T H M FOR SOLVING I N T E G R A L
EQUATIONS WITH POLYNOMIAL NON-LINEARITY.

P A R A L L E L IMPLEMENTATION *

A n iterative Monte Carlo algorithm for evaluating linear functionals of the solution
of integral equations with polynomial non-linearity is proposed and studied. The
method uses a simulation of branching stochastic processes. It is proved that the
mathematical expectation of the introduced random variable is equal to a linear
functional of the solution. The algorithm uses the so-called almost optimal density
function.

Numerical examples are considered. Parallel implementation of the algorithm
is also realized using the package A T H A P A S C A N as an environment for parallel
realization. The computational results demonstrate high parallel efficiency of the
presented algorithm and give a good solution when almost optimal density function
is used as a transition density.

1 Introduction

T h e paper deals wi th realizations of Monte Car lo algorithms for evaluating of integral
equations. It is known that these algorithms usually can be applied for calculating
functionals of the solution. Consider the following functional:

where the domain is a point in the
Eucl idean space M d . The functions u(x) and g(x) belong to any Banach space X and
to the adjoint space X*, respectively, and u(x) is an unique solution of the following
Fredholm integral equation in an operator form:

"Supported by the Ministry of Education, Science and Technology of Bulgaria under Grants # M M
449/94 and # I 501/95 as well as by E C under INCO-Copernicus Project #960237 - STABLE.

Ivan T. Dimov, Todor V . Gurov

(1)

118 I T . Dimov, T.V. Gurov

(2) u = K(u) + f.

The problem under consideration can be formulated as estimation the funct ional
J(u). The case when g = 5{x — XQ) is a delta - function is of special interest, because we
are interested in calculating the value of u at x 0 , where xo 6 G is a fixed point.

It is known, that Monte Carlo methods give statistical estimates for the solution o f
the problem by performing random sampling of a certain chance variable whose m a t h e ­
matical expectation is the desired solution [8], [11].

Moreover, the same algorithmic complexity is needed for estimating any linear func ­
tional of the solution (for example, an inner product of a given function wi th the so lut ion
of the Fredholm integral equation of the second kind) [2], [3].

Consider a general description of the Monte Carlo method. Let a n d
ui = u{xi) G X be denned in Rd and K =]K(u) be a linear operator

We consider the first order stationary linear iterative process for the integral equat ion

(2)

(3)

where I is the number of iterations. In fact (3) defines a Neumann series

(4)

where IK1 means the l-th iteration of IK.
A special case is when the corresponding infinite series converges. Then the sum is

an element u from the space X which satisfies the equation (2).
From (2) and (4) one can get the value of the truncation error. If UQ — / , then

(5)

Consider the spaces

(6)

where " x " denotes Cartesian product of spaces and let be a linear functional tha t
is to be calculated.

Random variables are defined on the respective product spaces
Ti+i and have conditional mathematical expectation:

(7)

The computational problem then becomes one of calculating repeated realizations
of 0 ; and combining them into an appropriate statistical estimator for J (u() . A s an
approximate value of the linear functional J{u{) set up

Monte Carlo Algorithm for Solving Integral. 119

where {0 / } i is the i - t h realization of the random variable 0 ; .
The probable error is defined as a value rn (see [5], [11]) for which the following

condit ion holds:

For the usual Monte Carlo method (which does not use any a pr ior i information
about the smoothness of the functions)

(9)

where is the standard deviation of the random variable 0 ; ; n is the
number ot trials. U u r approach corresponds to a special case of the operator IK:

which leads to a non-stationary iterative process.

2 Formulation of the Problem
Let us take X = Li(G) then X* - L^G) ([5], p.148). Consider the following special
case of the operator:

(10)

where IK is an integral transform with polynomial nonlinearity.
T h u s , equation (2) becomes :

(11)

In this case the problem under consideration can be formulated as follows: for a given

where the function u{x) is a solution of an integral equation wi th polynomial non-linearity
(11).

So lv ing the integral equation (11) by the method of simple iterations one can obtain
the iterative process:

120 I T . Dimov, T.V. Gurov

It is clear that i f the following iterative process

I

converges then the iterative process (12) converges.
Suppose, the conditions providing existence of the unique solution of the prob lem

under consideration are fulfilled. Let us note (as an example) that for the existing of an
unique solution of the equation

D > F, ||u0||<£>.

The problem of constructing of a random variable which mathematical expectation
is equal to the functional (1) is considered in the next section. A branching stochastic
process [5] which corresponds to the above iterative process is used. The above mentioned
iterative process is non-stationary.

Monte Carlo Algorithm for Solving Integral. 121

3 The Monte Carlo Method
In this section we consider an approach for constructing iterative Monte Carlo algorithms
for evaluating of functional (1), where u(x) is the solution of the non-linear integral
equation of Fredholm type (11).

Suppose that any particle distributed with init ial density function

is born in the domain G € M d in a random point XQ.
In the next moment this particle either dies out with probability h(xo), where (0 <

h(xo) < 1) or generates posterity of m, (m > 2) analogical particles in the next random
points zoo, ^ o i , • • •, z o m - i with probability

a n d transit ion density function

where

The generated particles behave in the next moment as the init ia l one and etc. The
traces of such a process is a tree from the type sketched in Figure 1.

Figure 1

T h e used index numbers in Figure 1 are called multi-indices. The particle which
belongs to zero generation is enumerated with zero index, i.e. x 0 . Its direct inheritors
are enumerated wi th the indices 0 0 , 0 1 , . . . ,0m—1, i.e. the next points x o o i ^ o i , • • -,xom-i
are first generation. If a particle (or a point) from the g-th generation of the tree 7 has

122 IT. Dimov, T.V. Gurov

the mult i - index 7[g], then the multi- index of the s-th inheritor of this particle has the
following form j[q + 1] = 7[g]s, where in this case the corresponding mult i - index is a
number written in m - t h numerical system.

Consider the first two iterations of the iterative process (12), ([5], p. 254) i n the
simple case when m = 2. The branching stochastic process which corresponds to these
two iterations is presented on Figure 2.

Figure 2

Monte Carlo Algorithm for Solving Integral. 123

Obviously the structure of ui is linked with al l trees which appear unti l l the first
generation, (see Figure 2a and Figure 2b). The structure of ui is linked wi th al l trees
which appear unti l l the second generation.

D e f i n i t i o n 3.1 A full tree with I generations is called the tree Ti where the dying
out of particles is not visible from zero to the I — 1-st generation but all the generated
particles of the l-th generation die out.

Example: In fact T 2 is the tree 70 from Figure 2e and T i is the tree from Figure 2b.
T h e next density function corresponds to the tree 70 from Figure 2e:

T h i s random variable estimates the last of the terms in (16) i f the realization of
the random process is a tree of k ind 7 0 . Thus, random variables are constructed which
correspond to trees of another type.

Denote by A the set of points, generating new points and denote by B the set of
points, which die out [7].

Consider a branching stochastic process with I generations in the general case m > 2.
It corresponds to the truncated iterative process wi th I iterations (12).

There is a one-to-one correspondence between the number of the subtrees of the full
tree Ti and the number of the terms of the truncated iterative process wi th I iterations
(see, for example, [5]).

T h i s correspondence allows to construct a procedure for a random choice of the tree
and to calculate the values of a random variable which corresponds to this tree. Thus ,
when we construct the branching stochastic process we shall receive arbitrary trees 7.
In this case we can associate to every one of them the random variable 0 [9] (7 / r j) in the
following way:

(19)

if the tree consists of the in i t ia l point only.

T h e random variable which corresponds to 70 is:

124 I T . Dimov, T.V. Gurov

If the tree consists of other points, then is constructed simultaneously
with the construction of 7. When a transition from the random point to points

take place then it corresponds to multiplication by

When the point dies out it corresponds to multiplying by

In this case the random variable which corresponds to 7 is:

(20)

with the density function

(21)

where

and

Thus, we obtain random variable for arbitrary trees 7 which estimate l-th i terat ion,
m, of the iterative process (12).

T h e o r e m 3.1. The mathematical expectation of the random variable is
equal to the functional J (u j) , i.e.

•

P r o o f . Suppose that the subtree ji is fixed and it has Si + S2 + 1 points, such that
XQ,X\, ... ,xai E A and xai+i,xSl+2,. • • ,xSl+Si € B. It is clear that this can not be
considered as a restriction of the generality.

Consider the following density function

Monte Carlo Algorithm for Solving Integral. 125

(22)

where

One can choose n subtrees of the full tree r (. (Note that some of the subtrees may
be chosen many times, since n is a large number.) n~li is the number o f the trees which
correspond to 7;. The following expression holds:

126 I T . Dimov, T . V . Gurov

O n the other hand

(23)

Clearly

where TV is the number of al l subtrees of the T;.
Using (22) one can get

This completes the proof of the theorem.

Note, that if then the mathematical expectation of the random variable is :

(24)

where u(x) is the solution of (12).
From (23) we obtain the following Monte Carlo method:

(25)

Suppose the in i t ia l density function and the transition density function are tolerant to
g(x) and fe(x7[?],x^[,]oi • • • >xt[q]m-i)> respectively (the definition of the tolerant density
functions is given in [11]).

In this case the probable error is

where is the standard deviation of the random variable
The problem of optimization of Monte Carlo algorithms consists in the min imizat i on

of the standard deviation, i.e. minimizat ion of the second moment of the
random variable This is done by a suitable choice of the density function p 7 .

There are various techniques for variance reduction of the standard deviation. W e
consider one of them.

Let us chose the transit ion density f u n c t i o n a n d the in i t ia l density
function po{x) in the following way:

Monte Carlo Algorithm for Solving Integral. 127

where

Let us describe the Monte Carlo algorithm using the almost opt imal density function.
Calculate one value of the random variable 0 [s] (7 / r i) in the next steps:

A l g o r i t h m 3.1:

1. C o m p u t e the voint £ € G which is a realization of the random variable T with
the density Here

2. C o n s t r u c t an independent realization, a, of the uniformly distributed random
variable in the interval [0,1].

3. I f (a < pm(£)) T h e n execute steps 5, 6 and 7.
E l s e execute step 4-

4- M u l t i p l y the value of the random variable

In this case we say that the point £ dies out.
5. C o m p u t e the points £ i , £2 , • • • > £m which are components of the m-th dimensional

random variable Y(yi,y2,... ,ym) with a transition density function

6. M u l t i p l y the value of the random variable

7. R e p e a t steps 2 and 3 for the generated points
8. S t o p the algorithm when all points die out.

I n this case the density function p 7 is called almost optimal [7] and one can write:

128 I T . Dimov, T.V. Gurov

Thus , we calculate one realization of the random variable T h e above a l ­
gor i thm has to be executed n-times to obtain n realizations of the random var iab le

This algorithm is very convenient for a parallel realization since every value of the
random variable can be calculated independently and simultaneously.

R e m a r k : Note that the above described algorithm can also be used for e s t imat ing
the functional (1) when u is the solution of the equation:

In this case the step 5 have to be modified such that m is an realization of a discrete
random variable wi th s states.

4 Parallel Implementation and Numerical Results
It is well known that Monte Car lo algorithms are well suited for parallel architectures.
In fact, i f we consider the calculation of a trajectory as a single computational process,
it is straightforward to regard the Monte Carlo algorithm as a collection of asynchronous
processes evolving in parallel . Clearly, M I M D (multiple instruction, multiple data) -
machines are the " n a t u r a l " hardware platform for implementing such algorithms; it seems
to be interesting to investigate on the feasibility of a parallel implementation on such
type of machines. There are two main reasons:

1) since Monte Car lo methods are many times used from, wi th in or i n conjunct ion
wi th more complex and large existing codes (usually written in F O R T R A N , C), the
easiness in programming makes the use of these machines very attractive;

2) the peak performance of every processor of these machines is usually not very good ,
but when a large number of processors is efficiently used a high general computat ional
performance can be realized.

The M I M D computer used for our tests is a I B M S P 1 with 32 processors. T h e env i ­
ronment for parallel programming is A T H A P A S C A N which is developed by the research
group in L M C / I M A G , Grenoble. A T H A P A S C A N environment is developed using C -
language and a special l ibrary for message passing which is similar to the well - k n o w n
MPI-Message Passing Interface and P V M - P a r a l l e l V i r t u a l Machine. A T H A P A S C A N
allows to distribute the computational problem on different type of processors o r / a n d
computers. Th i s environment provides use of dynamic distr ibution of common resources
and realizes a high level of parallel efficiency if the numerical algorithm is well paral lel ized.
(For more details see ([9]).

Note that , in the case of an implementation on a sequential computer, a l l steps of the
algorithm and a l l trajectories are executed iteratively, whereas on a parallel computer
each trajectory can be carried concurrently.

Monte Carlo Algorithm for Solving Integral. 129

Consider the almost optimal Monte Carlo algorithm to estimate the functional (1).
T h e function u (x) is a solution of the following integral equation w i th polynomial non-
l inear i ty (m = 2):

(27)

where and
In our tests

where a 2 and c are constants. Thus ,

T h e equation (27) has an unique solution u(x) = c when the following condit ion

holds.

T h e trans i t ion density function which we use in our tests has the following form:

W e consider the results for calculating the linear functional (1) for

a n d
Some results are plotted on Figures 3 - 5 . Figure 3 shows the dependence of the

approx imated solution from the number of the random trees. Three different transit ion
density functions are considered (0.25, 0.45, x / 4) . One can see that there are oscillations
of the solution for a smal l numbers of random trees. T h e best solution is obtained for
the t h i r d case (p(x) = x/4).

O n F igure 4 the parallel efficiency of the algorithm is shown. T h e efficiency oscillate
around 0.2 — 0.3 when a small number (200 — 300) of trees is realized on every of
16-th and 32-nd processors used in the system. T h e parallel efficiency grows up when
the number of the random trees increase.

T h e F igure 5 shows how the parallel efficiency of the presented algor i thm depends
on the number of processors. In these numerical tests a l l random trees are distr ibuted on
a l l processors. T h a t means that the system of 4 processors performs the same number
of realizations as the system of 32 processors. A s a result the system of 4 processors is
more efficient (i n general) than the system of 32 processors.

1 3 0 I T . Dimov, T.V. Gurov

Figure 3: The exact solution and Monte Carlo solutions using the almost optimal density

function. Three cases for the probability P2{x) which generate new points.

Figure 4: The parallel Monte Carlo efficiency when p2(x) = 0.25. The number of processors
is 16 and 32.

number of random trees

Monte Carlo Algorithm for Solving Integral... 131

Figure 5- p a r a || |

8 ' 16 and 32. ' M ° n t e C a r l ° efficiency for p^*) = 0 . 4 5 . The number of processors is 4,

[1] J T R E F E R E N C E S

o f ^ a t h e m a t i c ^ 1 - 1 " ^ 2 ^ ' 0 1 1 o f t h e Probable error for Monte Carlo methods. In: Application
1 9 8 7 , 161-164C S m c h n o l ° g y - Differential equations and applications, Varna 1986, Sofia

1- D I M O V , O T O N
Computer A 1 Performance Analysis of Monte Carlo Algorithms for Some Models of
Parallel Ale " t e c t u r e s - I n : International Youth Workshop on Monte Carlo Methods and
1 9 90 , 91-95 " P r i m o r s k o (e d s - B l . Sendov, I. Dimov), World Scientific, Singapore,

I- D I M O V O T «
a rchitectu' i Monte Carlo algorithms: performance analysis for some computer

[4] g
 PeS' ''• °f Comp. and Appl. Math. 48 (1993), 253-277.
Lenir,nJ?^rAK°V' ° n summation of series connected with integral equation. Vestnik
^ngrad Univ. Math. 16 (1984), 57-63.

• E R M A K O V , G . A . M I K H A I L O V . Statistical simulation. Moscow, Nauka, 1982.

[2]

[3]

132 I T . Dimov, T.V. Gurov

[6] S. M . E R M A K O V , V . V . NEKRUTKIN , A . S. SIPIN. Random processes for solving classical
equations of the mathematical physics. Moscow, Nauka, 1984.

[7] T . G U R O V . Monte Carlo Methods for Nonlinear Equations. Advances in N u m . Methods and
Appl, World Scientific, 1994, 127-135.

[8] J . M . H A M M E R S L E Y , D . C . HANDSCOMB . Monte Carlo methods. John Wiley & Sons inc.,
New York, London, Sydney, Methuen, 1964.

[9] B . P L A T E A U . A P A C H E : Algorithmique Parallele et pArtagede CHargE, Raport A P A C H E ,
Institut I M A G , Grenoble, t i l , pp. 28, 1994 .

[10] Y u . A . SHREIDER . Method of Statistical Testing. Monte Carlo method. Elsevier Publishing
Co., 335 Jan Van Galenstraat, P.O. Box 211, Amsterdam (Netherlands), 1964.

[11] I. M . SOBOL . Monte Carlo numerical methods. Moscow, Nauka, 1973.

Central Laboratory for Parallel Processing

Department of High Performance Computing and Parallel Algorithms
Bulgarian Academy of Sciences
Acad. G. Bonchev St.,bl. 25 A, 1113 Sofia, Bulgaria
e-mail: d imovQamigo .acad .bg g u r o v Q i s c b g . a c a d . b g
Web site: http://www.acad.bg/BulRTD/math/dimov2.html

http://dimovQamigo.acad.bg
http://gurovQiscbg.acad.bg
http://www.acad.bg/BulRTD/math/dimov2.html

