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MAKING MULTIPLE DECISIONS ADAPTIVELY

Andrew L. Rukhin

The asymptotic behavior of multiple decision procedures is studied when the un-

derlying distributions depend on an unknown nuisance parameter. An adaptive

procedure must be asymptotically optimal for each value of this nuisance parame-

ter, and it should not depend on its value. A necessary and sufficient condition for

the existence of such a procedure is derived. Several examples are investigated in

detail, and possible lack of adaptation of the traditional overall maximum likelihood

rule is discussed.

1 Multiple Decision Problem and Adaptation

Let x = (x1, x2, · · · , xn) be a random sample drawn from one of different probability dis-
tributions F1, . . . , Fg with densities f1, . . . , fg. We will assume that these distributions
are mutually absolutely continuous with respect to some σ-finite measure µ, so that all
densities fi can be chosen to be positive on the same set. In some situations one can find
prior probabilities λ1, . . . , λg of the sample distributions Pi = Fi ⊗ · · · ⊗Fi, i = 1, . . . , g.
The performance of a multiple decision rule δ(x) taking values in the set {1, . . . , g} is tra-
ditionally measured by the error probabilities Pi(δ 6= i) with the Bayes risk

∑

i λiPi(δ 6= i)
or by the minimax risk maxi Pi(δ 6= i).

For two probability distributions P and Q let

Hs (P, Q) = log EQ
[d P

d Q
(X)

]s

(1)

be the logarithm of the Hellinger type integral.
Obviously Hs is a convex analytic function of s defined on an interval containing the

closed interval [0, 1] with the derivative at s = 0 being −K(Q, P ) and at s = 1 equal to
K(P, Q). Here

K(P, Q) = EP log
[d P

d Q
(X)

]

(2)
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is the (Kullback–Leibler) information number. Hence the minimum of Hs is attained in
the interval (0, 1).

These quantities specify the exponential rate of the risk decay in the multiple decision
problem (see Chernoff, 1956, Renyi, 1970, Krafft and Puri, 1974).

Theorem 1 Assume that λi > 0 for all i. Then for any multiple decision rule δ = δ(x)
based on the random sample x = (x1, x2, · · · , xn) from the family P = {Pi = Fi ⊗ · · · ⊗
Fi, i = 1, . . . , g} one has

lim inf
1

n
log max

i
Pi(δ 6= i) = lim inf

1

n
log
∑

i

λiPi(δ 6= i)

≥ max
i6=k

inf
s>0

Hs (Fi, Fk) = max
i6=k

inf
0<s<1

Hs (Fi, Fk) = ρ(P).(3)

For the Bayes rule

{δB(x) = i} =







n
∏

j=1

λifi(xj) = max
k

n
∏

j=1

λkfk(xj)







or the maximum likelihood rule

{δ̂(x) = i} =







n
∏

j=1

fi(xj) = max
k

n
∏

j=1

fk(xj)







(3) is the equality.

In this paper we examine a version of the classical multiple decision problem in
which probability distributions Pi of a random sample are not known exactly, but only
up to a (nuisance) parameter α taking values in a set A. In other words, a collection of
probability distribution families

Pα = (Pα
1 , . . . , Pα

g ) α ∈ A

with Pα
i = Fα

i ⊗ · · · ⊗ Fα
i is supposed to be given.

For example, a repeated message may be sent through the one of noisy channels
indexed by α. The goal of the statistician is to recover the message, no matter which
channel has been used. One can also think about A as of the set of individuals with
different handwritings or as of the set of possible handwritings. A text formed by a
sequence of written letters is to be recognized independently of the individual who wrote
them.

Thus, independently of the true value of the nuisance parameter α, one would like
to use an efficient rule for the sample x = (x1, . . . , xn). This objective is formalized with
help of Theorem 1 by the following definition.
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A rule δa is called adaptive if for all α

lim inf
1

n
log max

i
Pα

i (δa 6= i) = max
i6=k

inf
s>0

Hs(F
α
i , Fα

k ) = ρ(Pα) = ρα

and δa does not depend on α. In the Bayes setting with fixed prior probabilities λi this
definition should be modified by replacing the minimax risk by the Bayes risk.

Thus, in the presence of unknown nuisance parameters an adaptive rule must exhibit
the same asymptotic optimal behavior as when these parameters were given. Of course,
it should not depend on these unknown parameters.

The concept of adaptation for a continuous parameter was introduced by Stein
(1956). A survey of the work in this area of semiparametric inference can be found
in the monograph by Bickel et al (1993).

Notice that sometimes adaptive rules exist, and sometimes they do not exist. For
example, let g = 2, A = {1, 2}, F 1

1 = N(−1, 1) and F 1
2 = N(1, 1). If for the second

value of the nuisance parameter α = 2, F 2
1 = N(−2, 1) and F 2

2 = N(2, 1), then the rule
δ̃ such that {δ̃ = 1} = {x : x < 0} is the Bayes procedure against the uniform prior and,
as such, is fully asymptotically efficient for any α. However, if for α = 2, F 2

1 = N(2, 1)
and F 2

2 = N(−2, 1), then any multiple decision rule must be very confused about the
true distribution. Indeed, when α = 1, the negative values of x are indicative of the first
distribution in our family, and when α = 2 the situation is quite opposite. Thus it is
intuitively clear and will be proven later that an adaptive procedure for such families
cannot exist.

We derive the existence condition and the form of adaptive procedures assuming for
simplicity that A is a finite set, say, A = {1, . . . , A}.

Let for finite measures F and G

ρ(F, G) = inf
s>0

Hs(F, G),

where Hs is defined by (1). We rescale the original distributions Fα
i as follows

F̃α
i = e−ραFα

i .

If ρα is interpreted as the degree of difficulty of the α-th classification problem, “easier”
families Pα (with large in absolute value quantity ρα) are getting larger weights.

Notice that for any α maxi6=k ρ(F̃α
i , F̃α

k ) = 0. Indeed

Hs(F̃
α
i , F̃α

k ) = log e−ρα + Hs(F
α
i , Fα

k ),

so that
max
i6=k

ρ(F̃α
i , F̃α

k ) = −ρα + max
i6=k

inf
s>0

Hs(F
α
i , Fα

k ) = −ρα + ρα = 0.

It turns out that an adaptive classification procedure exists if and only if

max
α6=β

max
i6=k

ρ(F̃α
i , F̃ β

k ) ≤ 0
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or
max
α,β

max
i6=k

inf
s>0

[

Hs(F
α
i , F β

k ) − sρα − (1 − s)ρβ

]

= max
α

max
i6=k

inf
s>0

[Hs(F
α
i , Fα

k ) − ρα] = 0.(4)

This fact has been proved in Rukhin (1984); a more detailed proof is given in Section 2.
The heuristic interpretation of (4) is that an adaptive procedure exists if and only if

any Pα is at least as difficult as problems formed by Pα
i , P β

k , i 6= k, α 6= β.
Also, as will be proven in Theorem 2, the following rule

{δa(x) = i} = {max
α

n
∏

j=1

e−ραfα
i (xj) = max

k
max

α

n
∏

j=1

e−ραfα
k (xj)}(5)

is adaptive if there are adaptive rules. Observe that δa is a Bayes procedure, but the
corresponding prior probabilities for the nuisance parameter α, which are proportional
to exp{−nρα}, heavily depend on the sample size n.

One of the traditional ways to eliminate a nuisance parameter is by using the uniform
(noninformative) prior for this parameter. As we shall see, in our problem this method
may lead to non-adaptive procedures. Indeed, the resulting “naive” overall maximum
likelihood classification rule

{δ0(x) = i} = {max
α

n
∏

j=1

fα
i (xj) = max

k
max

α

n
∏

j=1

fα
k (xj)}

may not be adaptive when (4) holds. As a matter of fact, a similar conclusion holds for
any prior probabilities for α which do not depend on the sample size.

2 Adaptation condition: proof and corrolaries

We prove in this section the main result from Rukhin (1984) in a more direct and illu-
minating fashion.

Theorem 2 An adaptive classification procedure exists if and only if the inequality (4)
holds. If (4) holds, then the procedure (5) is adaptive.

The proof of this Theorem is based on the following Lemmas.

Lemma 1 Let a and b be arbitrary real numbers. Then for any i 6= k, α, β and for any
procedure δ the following inequality holds

[

lim inf
1

n
log Pα

i (δ 6= i) + a

]

∨

[

lim inf
1

n
log P β

k (δ 6= k) + b

]

≥ inf
s>0

[Hs

(

F β
k , Fα

i

)

+ sb + (1 − s)a] ∨ inf
s>0

[Hs

(

Fα
i , F β

k

)

+ sa + (1 − s)b].
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Proof. Clearly the procedure δ1

δ1(x) =

{

i, exp(na)
∏n

j=1 fα
i (xj) > exp(nb)

∏n
j=1 fβ

k (xj)
k, otherwise

minimizes the sum exp(na)Pα
i (δ(x) 6= i) + exp(nb)P β

k (δ(x) 6= k). Also

Pα
i (δ1(x) 6= i) = Pα

i (δ1(x) = k)

≥ Pα
i



exp(nb)

n
∏

j=1

fβ
k (xj) ≥ exp(na)

n
∏

j=1

fα
i (xj)



 ,

and the Chernoff theorem (see Bahadur, 1971) shows that

lim inf
n→∞

1

n
log enaPα

i





1

n

n
∑

j=1

log
fβ

k

fβ
i

(xj) ≥ a − b





= inf
s>0

[

Hs

(

F β
k , Fα

i

)

+ (1 − s)a + sb
]

.

A similar inequality for P β
k (δ1 6= k) concludes the proof of Lemma 1. �

The next result deals with the Bayes procedure, δb, based on the profile likelihood
function, maxα exp(nbα)

∏n
j=1 fα

i (xj) for some fixed constants bα. More precisely, let for
fixed positive prior probabilities λk, k = 1, . . . , A

{δb(x1, . . . , xn) = i}

= {λi max
α

exp(nbα)

n
∏

j=1

fα
i (xj) = max

k
λk max

α
exp(nbα)

n
∏

j=1

fα
k (xj)}.

Lemma 2 Assume that Fα
i 6= F β

k for (i, α) 6= (k, β) and

max
α,β

max
i6=k

[

bα − bβ − K
(

Fα
i , F β

k

)]

< 0.(6)

Then for any α and i

lim
n→∞

n−1 log Pα
i (δb(x1, . . . , xn) 6= i) = ri

α(b1, . . . , bA)

= max
k:k 6=i

max
β

inf
s1,...,sA≥0

{

A
∑

γ=1

sγ(bβ − bγ) + log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ
}

.(7)

and for any α

lim
n→∞

n−1 max
i

log Pα
i (δb(x1, . . . , xn) 6= i) = Rα(b1, . . . , bA),(8)
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where
Rα(b1, . . . , bA) = max

i
ri
α(b1, . . . , bA)

= max
k 6=i

max
β

inf
s1,...,sA≥0

{

A
∑

γ=1

sγ(bβ − bγ) + log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ
}

.

For any procedure δ

max
α

[

bα + n−1 lim inf
n→∞

max
i

log Pα
i (δ(x1, . . . , xn) 6= i)

]

≥ max
α

[

bα + Rα(b1, . . . , bA)
]

.(9)

Proof. One has
Pα

i (δb(x1, . . . , xn) 6= i)

= Pα
i



λkenbβ

n
∏

j=1

fβ
k (xj) ≥ λie

nbγ

n
∏

j=1

fγ
i (xj) for some β, k 6= i and all γ





≤
∑

β

∑

k:k 6=i

Pα
i



λk exp(nbβ)

n
∏

j=1

fβ
k (xj) ≥ λi exp(nbγ)

n
∏

j=1

fγ
i (xj) for all γ





≤ A(g − 1)

×max
β

max
k:k 6=i

Pα
i



λk exp(nbβ)

n
∏

j=1

fβ
k (xj) ≥ λi exp(nbγ)

n
∏

j=1

fγ
i (xj) for all γ



 .

Also
Pα

i (δb(x1, . . . , xn) 6= i)

≥ max
β

max
k:k 6=i

Pα
i



λk exp(nbβ)

n
∏

j=1

fβ
k (xj) ≥ λi exp(nbγ)

n
∏

j=1

fγ
i (xj)for all γ



 .

Therefore, for a fixed α,

lim
n→∞

n−1 max
β

max
k:k 6=i

log Pα
i (δb(x1, . . . , xn) 6= i)

= lim
n→∞

n−1 max
β

max
k:k 6=i

log Pα
i





1

n

n
∑

j=1

log
fβ

k

fγ
i

(xj) ≥ bγ − bβ for all γ





= max
k:k 6=i

max
β

inf
s1,...,sA≥0

{

A
∑

γ=1

sγ(bβ − bγ) + log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ
}

.



Making Multiple Decisions Adaptively 97

The last formula follows from the condition (6) and the multivariate Chernoff theorem
(see Groeneboom, Oosterhoff and Ruymgaart, 1979). Thus, (7) is established, and the
formula (8) easily follows.

Since δb is the Bayes rule with respect to the density proportional to
maxα exp(nbα)

∏n
j=1 fα

i (xj), for any rule δ

A
∑

i

λi max
α

[

enbαPα
i (δ(x1, . . . , xn) 6= i)

]

≥
∑

i

λi

∫

· · ·

∫

{δ 6=i}

max
α



exp(nbα)

n
∏

j=1

fα
i (xj)



 dµ(x1) · · · dµ(xn)

≥
∑

i

λi

∫

· · ·

∫

{δ̃b 6=i}

max
α



exp(nbα)
n
∏

j=1

fα
i (xj)



 dµ(x1) · · · dµ(xn)

≥
∑

i

λi max
α

[

enbαPα
i

(

δ̃b(x1, . . . , xn) 6= i
)]

.

Therefore for any δ, (9) holds. �

Lemma 3 If an adaptive procedure exists, then for all b1, . . . , bA

max
α

[bα + ρα] ≥ max
α

[bα + Rα(b1, . . . , bA)].

If with some b1, . . . , bA

ρα ≥ Rα(b1, . . . , bA)

for α = 1, . . . , A, then an adaptive procedure exists. This inequality holds if

max
k 6=i

max
β

min
γ

inf
s≥0

{

log Eα
i

[fβ
k

fγ
i

(X)
]s

− s(bγ − bβ)

}

≤ ρα.

Proof. If δ is an adaptive procedure, then applying Lemma 2 one deduces for any
b1, . . . , bA

max
α

[bα + ρα] ≥ max
α

[bα + Rα(b1, . . . , bA)].

Also Lemma 2 implies that

Rα(b1, . . . , bA) ≥ ρα

for α = 1, . . . , A. According to the second condition of Lemma 3

Rα(b1, . . . , bA) = ρα,
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so that because of (8) δb must be adaptive. Since

Rα(b1, . . . , bA) ≤ max
k 6=i

max
β

min
γ

inf
s≥0

{

log Eα
i

[fβ
k

fγ
i

(X)
]s

− s(bγ − bβ)

}

,

the last conclusion of Lemma 3 follows. �

Proof.[ of Theorem] Assume first that an adaptive procedure δ exists. Lemma 1
with a = −ρα and b = −ρβ implies

0 ≥

[

lim inf
1

n
log Pα

i (δ 6= i) − ρα

]

∨

[

lim inf
1

n
log P β

k (δ 6= k) − ρβ

]

≥ inf
s>0

[

Hs

(

F β
k , Fα

i

)

− sρα − (1 − s)ρβ

]

∨ inf
s>0

[

Hs

(

Fα
i , F β

k

)

− sρβ − (1 − s)ρα

]

,

so that (4) is satisfied.

Now suppose that (4) holds. We prove that the procedure (5), which coincides with
δb when bα = −ρα, is adaptive.

Indeed the formula (8) of Lemma 2 shows that

lim
n→∞

n−1 max
α

[

−nρα + max
i

log Pα
i (δb 6= i)

]

= max
α

[−ρα + Rα(−ρ1, . . . ,−ρA)]

= max
α

{

−ρα + max
k 6=i

max
β

min
γ

inf
s≥0

(

s(ργ − ρβ) + log Eα
i

[fβ
k

fγ
i

(X)
]s
)}

≤ max
α,β

max
k 6=i

inf
s≥0

{

s(ρα − ρβ) − ρα + log Eα
i

[

fβ
k

fα
i

(X)

]s}

= 0

with the last equality following from (4).

Thus for all α

Rα(−ρ1, . . . ,−ρA) ≤ ρα.

Because of Lemma 3, Theorem 2 is proven. �

The condition (4) can be reformulated in the following way.

Corollary 1 An adaptive procedure exists if and only if for all α 6= β and all i 6= k

inf
0<s<1

[

Hs(F
α
i , F β

k ) − s(ρα − ρβ)
]

≤ ρβ .(10)

In other words an adaptive procedure exists if and only if

max
α:ρα≥ρβ

max
k 6=i

inf
0<s<1

[

Hs(F
α
i , F β

k ) − s(ρα − ρβ)
]

≤ ρβ .
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Proof. Clearly, if an adaptive rule exists, then according to (4) the condition (10)
also holds.

If (10) is valid, then the unique infimum of the convex function of s,

Hs(F
α
i , F β

k ) − s(ρα − ρβ), must be attained in the open interval (0, 1). Indeed the value
of this function at s = 1 is ρβ − ρα > ρβ .

Then

inf
s>0

[

Hs(F
α
i , F β

k ) − s(ρα − ρβ)
]

= inf
0<s<1

[

Hs(F
α
i , F β

k ) − s(ρα − ρβ)
]

,

so that (4) follows.
The second condition of Corollary 1 implies (10), so that it is necessary and sufficient

for adaptation. �

Theorem 3 Let prior probabilities for the nuisance parameter α be proportional to
exp(nbα) for fixed constants b1, . . . , bA satisfying (6). Then the Bayes estimator δ̃b

against the prior for (α, i) corresponding to the product of such probabilities and pos-
itive (independent of n) prior probabilities λi for i = 1, . . . , g

{δ̃b(x1, . . . , xn) = i}

= {λi

∑

α

exp(nbα)

n
∏

j=1

fα
i (xj) = max

k
λk

∑

α

exp(nbα)

n
∏

j=1

fα
k (xj)},

as well as the estimator δb, is adaptive if and only if for all α

max
k 6=i

max
β:β 6=α

inf
s1,...,sA≥0

{

log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ

+

A
∑

γ=1

sγ(bβ − bγ)

}

≤ ρα.(11)

Proof. According to Lemma 2 adaptation for δb takes place if and only if

max
k 6=i

max
β

inf
s1,...,sA≥0

{

log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ

+

A
∑

γ=1

sγ(bβ − bγ)

}

≤ ρα.

For β = α this condition holds automatically since

max
k 6=i

inf
s1,...,sA≥0

{

log Eα
i

∏

γ

[

fα
k

fγ
i

(X)

]sγ

+

A
∑

γ=1

sγ(bα − bγ)

}

≤ max
k 6=i

inf
s≥0

log Eα
i

[fα
k

fα
i

(X)
]s

= ρα.

Thus condition (11) is necessary and sufficient for adaptation of δb.
An analysis of the proof of Lemma 2 shows that it goes through for δ̃b with maxα

replaced by
∑

α. �
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Corollary 2 If an adaptive procedure exists, then for all b1, . . . , bA

max
α

[bα + Rα(b1, . . . , bA)] = max
α

[bα + ρα].

This follows directly from the first part of Lemma 3.

Corollary 3 If for some α 6= β and i 6= k, Fα
i = F β

k , then an adaptive procedure cannot
exist.

Indeed in this situation

Rα(0, . . . , 0) ≥ max
γ

inf
s1,...,sA≥0

log Eα
i

∏

γ

[

fα
i

fγ
i

(X)

]sγ

= 0.

According to Corollary 2 the existence of an adaptive rule would imply

max
α

ρα ≥ max
α

Rα(0, . . . , 0) = 0,

which is impossible.
The Corollary 3 supports the heuristic interpretation of (4) according to which an

adaptive procedure exists if and only if the distributions from any Pα are “at least as
close” as the distributions Pα

i and P β
k , i 6= k, α 6= β.

Corollary 4 If for all α 6= β

max
k 6=i

inf
s>0

[

Hs(F
β
k , Fα

i ) − sρβ − (1 − s)ρα)
]

≤ 0 ∧ (ρα − ρβ + bα − bβ) ,

then δb is adaptive.

Proof. Under the condition of this Corollary an adaptive procedure exists. If
bα − bβ ≥ ρβ − ρα, then by (4)

max
k 6=i

inf
s≥0

[

Hs

(

F β
k , Fα

i

)

− s(bα − bβ)
]

≤ max
k 6=i

inf
s≥0

[

Hs

(

F β
k , Fα

i

)

+ s(ρα − ρβ)
]

≤ ρα.

If bα − bβ < ρβ − ρα, then the condition of Corollary 4 shows that

ρα − ρβ + bα − bβ ≥ max
k 6=i

inf
s>0

[

Hs(F
β
k , Fα

i ) − sρβ − (1 − s)ρα

]

= max
i6=k

inf
0<s<1

[

Hs(F
α
i , F β

k ) − s(ρα − ρβ) − ρβ

]

.

The last identity follows from Corollary 1. Therefore

ρβ ≥ ρα + bα − bβ ≥ max
k 6=i

inf
0<s<1

[

Hs(F
α
k , F β

i ) + sbα − sbβ

]

.

In other terms (11) holds with γ = α and δb is adaptive. �
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3 Consistency Property and Example

Here we look at the consistency property of δb, i.e. at the conditions under which for
any α and i

lim
n→∞

Pα
i (δb(x1, . . . , xn) = i) = 1.

Theorem 4 Under condition (6) the procedure δb is consistent. The estimator δ0 is

consistent whenever Fα
i 6= F β

k for α 6= β, i 6= k.

Proof. According to Theorem 3 the procedure δb is consistent if for any α the left-hand
side of (11) is negative. This means that for all β 6= α and i 6= k there exists γ such that
the derivative of the function of s in (11), which vanishes at s = 0, is negative at this
point. This condition is implied by (6) which is always satisfied if bα ≡ 0. �

If the adaptation condition (4) is valid, the rule (5) is adaptive and automatically
consistent. Moreover, under this condition the procedure (5) exhibits a good behavior
even for small sample sizes. In particular, it often outperforms δ0 in terms of error
probabilities. The drawback of δa is that when (4) is violated, it may not even be
consistent. In contrast, because of Thereom 4, the rule δ0 is always consistent, although
it may not be adaptive.

Therefore, in practice one may want to use intermediate weights bα, ρα ≤ bα ≤ 0, to
combine consistency and adaptation. Indeed, if with some constants bα

max
k 6=i

inf
s>0

[

Hs(F
β
k , Fα

i ) − sρβ − (1 − s)ρα)
]

≤ 0 ∧ (ρα − ρβ + bα − bβ),

for all α 6= β, then according to Corollary 4 the corresponding rule δb will be adaptive
(and automatically consistent).

The following example shows that there may be no adaptive classification rule when
the families are formed by shifts of different, symmetric about zero distributions.

Let g = 2, A = {1, 2}, F 1
1 = N(−1, 1) and F 1

2 = N(1, 1). For the second value of the
nuisance parameter α = 2, let F 2

1 and F 2
2 be double exponential distributions with the

means −µ and µ and the same scale parameter σ, i.e. the densities have the form

f2
1 (x) =

1

2σ
exp

{

−
|x + µ|

σ

}

and

f2
2 (x) =

1

2σ
exp

{

−
|x − µ|

σ

}

.

In this situation ρ1 = −1/2 and ρ2 = −µ/σ + log (1 + µ/σ). Also

Hs(F
1
1 , F 2

2 ) = Hs(F
1
2 , F 2

1 ) = H1−s(F
2
2 , F 1

1 ) = H1−s(F
2
1 , F 1

2 )

= log

(

1

(2π)s/2(2σ)1−s

∫ {

−
sx2

2
−

(1 − s)|x − µ − 1|

σ

}

dx

)

.
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- µ

6

σ

(Ra)c

R0

R0

Figure 1: The region (µ, σ), for which an adaptive estimator exists.

The numerical evaluation of these integrals leads to Figure 1 showing the set Ra of
pairs (µ, σ), where an adaptive estimator exists.

It also depicts the region R0 obtained from Theorem 3 where the estimator δ0 is
adaptive. In this situation the set

{

(µ, σ) : inf
s>0

log E1
1

[

f2
2

f2
1

]s

≤ ρ1

}

is empty, and
{

(µ, σ) : inf
s>0

log E2
2

[

f1
1

f1
2

]s

≤ ρ2

}

=
{

(µ, σ) :
µ

σ
≤ co

}

.

This example shows that the adaptation condition in the classification problem is different
from that in the point estimation problem where there exists an adaptive estimator of
the center of symmetry for any density with finite Fisher information (see Bickel et al,
1993).

4 Adaptation for Exponential Families

Let now the distributions Fα
i be members of a p-parameter exponential family, that is,

let the densities fα
i with respect to measure µ have the form

fα
i (u) = exp{θα

i · u − χ(θα
i )}, i = 1, . . . , g.
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Since the distributions Pα
i are supposed to be different, the common support of these

distributions contains at least two points, and the function χ is strictly convex over the
natural parameter space Θ = {θ : χ(θ) < ∞} (which is a convex subset of Rp).

One has

Hs

(

eaFα
i , ebF β

k

)

= log

∫

exp{s[a + θα
i · u − χ(θα

i )] + (1 − s)[b + θβ
k · u − χ(θβ

k )]} dµ(u)

= χ
(

sθα
i + (1 − s)θβ

k

)

+ s[a − χ(θα
i )] + (1 − s)[b − χ(θβ

k )].

In particular,

ρα = max
i6=k

inf
s>0

[

χ (sθα
i + (1 − s)θα

k ) − sχ (θα
i ) − (1 − s)χ

(

θβ
k

)]

.(12)

By differentiating the left-hand side of (12) one notices that for a fixed α and i 6= k, the
unique minimum is attained at s = sα

ik such that

(θα
i − θα

k ) · χ
′

(sθα
i + (1 − s)θα

k ) = χ (θα
i ) − χ (θα

k ) .

Let
σα

ik = sα
ikθα

i + (1 − sα
ik)θα

k ,

so that
(θα

i − θα
k ) · χ

′

(σα
ik) = χ (θα

i ) − χ (θα
k ) .

Then
ρα = max

i6=k
[χ (σα

ik) − sα
ikχ (θα

i ) − (1 − sα
ik)χ (θα

k )]

= max
i6=k

[χ (σα
ik) − χ (θα

k )−(σα
ik − θα

k

)

χ
′

(σα
ik)
]

.(13)

According to Corollary 1, an adaptive rule exists if and only if for any β

max
α:ρα≥ρβ

max
i6=k

inf
s>0

[

χ(sθα
i + (1 − s)θβ

k ) − sχ(θα
i ) − (1 − s)χ(θβ

k )

−sρα − (1 − s)ρβ

]

≤ 0.(14)

Throughout this section we assume that θα
i 6= θβ

k when (i, α) 6= (k, β). Then the

minimum in (14) is attained at s = sαβ
ik such that

(

θα
i − θβ

k

)

· χ
′

(

sθα
i + (1 − s)θβ

k

)

= χ (θα
i ) + ρα − χ

(

θβ
k

)

− ρβ

provided that such a value exists. This value belongs to the interval (0, 1) if and only if

σαβ
ik = sαβ

ik θα
i +

(

1 − sαβ
ik

)

θβ
k belongs to the segment connecting θα

i and θβ
k , and under

this condition δa is a consistent procedure.
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Since

(θα
i − θβ

k ) · χ
′

(

σαβ
ik

)

= χ (θα
i ) + ρα − χ

(

θβ
k

)

− ρβ ,

one has χ
′

(

σαβ
ik

)

= χ
′

(

σβα
ki

)

, so that σαβ
ik = σβα

ki .

Using these formulas one derives the following version of (14): for any β

max
α:ρα≥ρβ

max
i6=k

[

χ
(

σαβ
ik

)

− χ
(

θβ
k

)

−
(

σαβ
ik − θβ

k

)

· χ
′

(

σαβ
ik

)]

≤ ρβ

and σαβ
ik is a convex combination of θα

i and θβ
k .

To make the adaptation condition more explicit we define for a fixed θ the function
Wθ(t), t ∈ Θ,

Wθ(t) = χ(t) − χ(θ) − (t − θ) · χ
′

(t).

Then Wθ(t) is a unimodal (quasi-concave) non-positive function of t, Wθ(θ) = 0. To
see this let y = χ

′

(t), so that y is the expected value of the distribution with natural
parameter t. For a fixed θ with h(y) = (χ

′

)−1(y), the function H(y) = Wθ (h(y)) is
a concave function of y. Indeed, H

′

(y) = θ − h(y), and H
′′

(y) = −h
′

(y) is a non-
positive definite matrix. Function H has the unique maximum when h(y) = θ, i.e. when
χ

′

(θ) = y, or when t = θ.
Observe that Wθ(t) = −K(Ft, Fθ) with K defined by (2), so that the function W

and the following conditions formulated in its terms have distinct information-theoretic

interpretation. Also Wθβ

k

(

σβ
ik

)

= Wθβ

i

(

σβ
ik

)

.

Notice that the inequality Wθ(t) ≤ Wθ(u) means that

Wt(u) = χ(u) − χ(t) − (u − t) · χ
′

(u) ≥ (t − θ) · [χ
′

(u) − χ
′

(t)].

Since Wt(u) ≤ 0, one obtains

(t − θ) · [χ
′

(u) − χ
′

(t)] ≤ 0.(15)

Moreover, if (t − θ) · [χ
′

(u) − χ
′

(t)] = 0, then Wt(u) = 0 and t = u.
According to (13)

ρα = max
i6=k

Wθα
i

(σα
ik) .

Also the consistency condition means that for any α 6= β

max
i6=k

Wθβ

k

(θα
i ) < ρβ − ρα.(16)

The adaptation condition can be rewritten in terms of the functions Wθ as the
combination of (16) and the following inequalities

max
α:ρα≥ρβ

max
i6=k

Wθβ

k

(

σαβ
ik

)

≤ ρβ = max
i6=k

Wθβ

k

(

σβ
ik

)

.(17)
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Under the consistency condition σαβ
ik = sαβ

ik θα
i +

(

1 − sαβ
ik

)

θβ
k with 0 < sαβ

ik < 1. There-

fore, by unimodality Wθβ

k

(

σαβ
ik

)

> Wθβ

k

(θα
i ) . Because of (17)

Wθβ

k

(θα
i ) < ρβ ,(18)

which implies (16).
Thus, the following result was established.

Proposition 1 The adaptation condition holds if and only if the inequalities (18) and
(17) are valid.

Observe that
Wθβ

k

(

σαβ
ik

)

− Wθα
i

(

σαβ
ik

)

= ρβ − ρα,

which directly shows that Wθβ

k

(

σαβ
ik

)

≤ Wθα
i

(

σαβ
ik

)

if and only if ρα ≥ ρβ .

Assume that g = A = 2. Then the inequalities (17) and (18) can be written in a
more specific form: if ρ1 ≤ ρ2

Wθ1

1

(

σ12
12

)

∨ Wθ1

2

(

σ12
21

)

∨ Wθ1

1

(

θ2
2

)

∨ Wθ1

2

(

θ2
1

)

≤ ρ1,

and if ρ2 ≤ ρ1,

Wθ2

1

(

σ12
21

)

∨ Wθ2

2

(

σ12
12

)

∨ Wθ2

1

(

θ1
2

)

∨ Wθ2

2

(

θ1
1

)

≤ ρ2.

Proposition 2 1. Let

R0 = {ρ1 < ρ2, Wθ1

1

(

θ2
2

)

∨ Wθ1

2

(

θ2
1

)

< ρ1}
⋃

{ρ2 ≤ ρ1, Wθ2

1

(

θ1
2

)

∨ Wθ2

2

(

θ1
1

)

< ρ2}.

Then (θ2
1 , θ

2
2) ∈ R0 is a necessary adaptation condition, in which case

(

θ1
1 − θ2

2

)

· χ
′ (

θ2
2

)

≤
(

θ1
1 − θ2

2

)

· χ
′ (

σ1
12

)

,

(

θ1
2 − θ2

1

)

χ
′ (

θ2
1

)

≤
(

θ1
2 − θ2

1

)

· χ
′ (

σ1
12

)

,
(

θ1
1 − θ2

2

)

· χ
′ (

σ2
12

)

≤
(

θ1
1 − θ2

2

)

· χ
′ (

θ1
1

)

and
(

θ1
2 − θ2

1

)

· χ
′ (

σ2
12

)

≤
(

θ1
2 − θ2

1

)

· χ
′ (

θ2
1

)

.

2. Assume that θ1
1 − θ2

2 = ζ
(

θ2
1 − θ1

2

)

with ζ > 0. Provided that χ
(

θ1
1

)

6= χ
(

θ1
2

)

, an
adaptive procedure exists if and only if

θ1
1 − θ1

2

χ (θ1
1) − χ (θ1

2)
=

θ2
1 − θ2

2

χ (θ2
1) − χ (θ2

2)
,(19)

in which case
[

χ
(

θ1
1

)

− χ
(

θ1
2

)] [

χ
(

θ2
1

)

− χ
(

θ2
2

)]

> 0,
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ζ =
χ
(

θ1
1

)

− χ
(

θ2
2

)

+ ρ1 − ρ2

χ (θ2
1) − χ (θ1

2) + ρ2 − ρ1
,

(

θ1
1 − θ2

2

)

·
[

χ
′ (

θ1
1

)

− χ
′ (

θ1
2

)

]

≥ 0

and
(

θ1
1 − θ2

2

)

·
[

χ
′ (

θ2
1

)

− χ
′ (

θ2
2

)

]

≥ 0.

Proof.

1. According to (18) in the region Rc
0 adaptation cannot happen.

Because of (15) the inequality Wθ1

1

(

θ2
2

)

≤ Wθ1

1

(

σ1
12

)

implies

(

θ2
2 − θ1

1

)

·
[

χ
′ (

σ1
12

)

− χ
′ (

θ2
2

)

]

≤ 0.

Similarly, the inequality Wθ2

2

(

θ1
1

)

≤ Wθ2

2

(

σ2
12

)

shows that

(

θ1
1 − θ2

2

)

·
[

χ
′ (

σ2
12

)

− χ
′ (

θ1
1

)

]

≤ 0

and the other inequalities in 1. follows in the same way.
2. As in 1. the inequality Wθ1

1

(

σ12
12

)

≤ Wθ1

1

(

σ1
12

)

leads to

(

σ12
12 − θ1

1

)

·
[

χ
′ (

σ1
12

)

− χ
′ (

σ12
12

)

]

≤ 0.

According to the adaptation condition σ12
12 is a convex combination of θ1

1 and θ2
2 . Thus,

(

θ2
2 − θ1

1

)

· χ
′ (

σ1
12

)

≤
(

θ2
2 − θ1

1

)

· χ
′ (

σ12
12

)

= χ
(

θ2
2

)

− χ
(

θ1
1

)

+ ρ2 − ρ1.

Similarly the inequalities Wθ1

2

(

σ12
21

)

≤ Wθ1

2

(

σ1
12

)

, Wθ2

1

(

σ12
21

)

≤ Wθ2

1

(

σ2
12

)

and Wθ2

2

(

σ12
12

)

≤ Wθ2

2

(

σ2
12

)

imply that

(

θ2
1 − θ1

2

)

· χ
′ (

σ1
12

)

≤
(

θ2
1 − θ1

2

)

· χ
′ (

σ12
21

)

,

(

θ1
2 − θ2

1

)

· χ
′ (

σ2
12

)

≤
(

θ1
2 − θ2

1

)

· χ
′ (

σ12
21

)

,

and
(

θ1
1 − θ2

2

)

· χ
′ (

σ2
12

)

≤
(

θ1
1 − θ2

2

)

· χ
′ (

σ12
12

)

.

By combining these inequalities one obtains

(

θ1
1 − θ2

2

)

· χ
′ (

σ2
12

)

≤
(

θ1
1 − θ2

2

)

· χ
′ (

σ12
12

)

≤
(

θ1
1 − θ2

2

)

· χ
′ (

σ1
12

)

and
(

θ2
1 − θ1

2

)

· χ
′ (

σ1
12

)

≤
(

θ2
1 − θ1

2

)

· χ
′ (

σ12
21

)

≤
(

θ2
1 − θ1

2

)

· χ
′ (

σ2
12

)

.
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Under the condition of linear dependence in Proposition 2 all these inequalities reduce
to equalities, so that

χ
(

θ1
1

)

− χ
(

θ2
2

)

+ ρ1 − ρ2 =
(

θ1
1 − θ2

2

)

· χ
′ (

σ12
12

)

=
(

θ1
1 − θ2

2

)

· χ
′ (

σ1
12

)

=
(

θ1
1 − θ2

2

)

· χ
′ (

σ2
12

)

=
(

θ1
1 − θ2

2

)

· χ
′ (

σ12
21

)

.

and
χ
(

θ1
2

)

− χ
(

θ2
1

)

+ ρ1 − ρ2 =
(

θ1
2 − θ2

1

)

· χ
′ (

σ12
21

)

=
(

θ1
2 − θ2

1

)

· χ
′ (

σ2
12

)

=
(

θ1
2 − θ2

1

)

· χ
′ (

σ2
12

)

=
(

θ1
2 − θ2

1

)

· χ
′ (

σ12
12

)

.

According to derivation of (15), one must have

Wσ12

12

(

σ1
12

)

= Wσ12

21

(

σ1
12

)

= Wσ12

12

(

σ2
12

)

= Wσ12

21

(

σ2
12

)

= 0,

i.e.
σ1

12 = σ2
12 = σ12

21 = σ12
12 = σ.

Therefore these convex combinations of the vectors θ1
1 , θ

2
1, θ

2
1, θ

2
2 coincide, while the vec-

tors θ1
1 − θ2

2 and θ2
1 − θ1

2 are linearly dependent. Therefore θ1
1 − θ1

2 , θ
1
1 − θ2

1 and θ1
1 − θ2

2

are linearly dependent. It follows that θ1
1 − θ1

2 = κ(θ2
1 − θ2

2). Since a convex combination
of θ2

1 and θ2
2 coincides with a convex combination of θ1

1 and θ2
2 , κ is positive. This fact

and the identity
χ
(

θ1
1

)

− χ
(

θ1
2

)

=
(

θ1
1 − θ1

2

)

· χ
′

(σ)

= κ
(

θ2
1 − θ2

2

)

· χ
′

(σ) = κ
[

χ
(

θ2
1

)

− χ
(

θ2
2

)]

show that (19) is true. If χ
(

θ1
1

)

= χ
(

θ1
2

)

, then necessarily χ
(

θ2
1

)

= χ
(

θ2
2

)

.
Under any of these conditions the rule

{δa(x1, . . . , xn) = 1} =
{

θ1
1 · x − χ

(

θ1
1

)

> θ1
2 · x − χ

(

θ1
2

)}

=
{

θ2
1 · x − χ

(

θ2
1

)

> θ2
2 · x − χ

(

θ2
2

)}

is the maximum likelihood procedure for both α = 1 and α = 2, so that it must be
adaptive.

Since
χ
(

θ2
2

)

− χ
(

θ1
1

)

+ ρ2 − ρ1 =
(

θ2
2 − θ1

1

)

· χ
′

(σ)

= ζ
(

θ1
2 − θ2

1

)

· χ
′

(σ) = ζ
[

χ
(

θ1
2

)

− χ
(

θ2
1

)

+ ρ1 − ρ2

]

,

the formula for ζ follows.
As in the proof of 1. one obtains from the fact that σ1

12 = σ12
12 = σ = σ2

12 = σ12
12

(

θ2
2 − θ1

1

)

· χ
′ (

θ1
1

)

≤ χ
(

θ2
2

)

− χ
(

θ1
1

)

+ ρ2 − ρ1

≤
(

θ2
2 − θ1

1

)

· χ
′ (

θ2
2

)

.
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Similarly,
(

θ1
2 − θ2

1

)

χ
′ (

θ2
1

)

≤ χ
(

θ1
2

)

− χ
(

θ2
1

)

+ ρ1 − ρ2

≤
(

θ1
2 − θ2

1

)

· χ
′ (

θ1
2

)

.

The above formula for ζ establishes now two last inequalities of Proposition 2. �

The most illuminating form of the adaptation region from 2. of Proposition 2 is
when p = 1 (see Rukhin, 1997). In this case assuming that θ1

1 < θ2
2 if θ1

1 < θ2
2, θ

2
1 < θ1

2 ,
adaptation occurs if and only if (19) is valid with a non-negative right-hand side. If
θ1
1 > θ2

2 , θ
2
1 > θ1

2, no adaptive rule exists.
To find the adaptation region R0 for the rule δ0 one can use Theorem 3 with b = 0.

A simpler form of this region holds when p = 1. Then (cf Rukhin, 1982) provided that

θα
i 6= θβ

i for α 6= β,

max
i6=k

max
β,β 6=α

inf
sγ≥0,γ=1,...,A

{

log Eα
i

∏

γ

[

fβ
k

fγ
i

(X)

]sγ
}

= max
i6=k

max
β,β 6=α

min
γ

inf
s≥0

{

χ
(

θα
i + s(θβ

k − θγ
i )
)

− χ (θα
i ) − s

[

χ
(

θβ
k

)

− χ (θγ
i )
]}

.

Thus when p = 1, (11) is also necessary for adaptation.

Let ταβ
ik belonging to the interval with the end-points θα

i and θβ
k , be defined by the

formula
(θα

i − θβ
k ) · χ

′

(

ταβ
ik

)

= χ (θα
i ) − χ

(

θβ
k

)

,(20)

According to (20), ταβ
ik = τβα

ki , ταα
ik = σα

ik and Wθβ

k

(

ταβ
ik

)

= Wθα
i

(

ταβ
ik

)

.

Also
(

θα
i − θβ

k

)

·
(

χ
′

(ταβ
ik ) − χ

′

(σαβ
ik )
)

= ρα − ρβ .

Thus, in this case the adaptation condition for δ0 can be written in the following
form. For any β

max
i6=k

max
α:ρα≥ρβ

min
γ

inf
s>0

[

χ(θβ
k + s(θα

i − θγ
k )) − χ(θβ

k ) − sχ(θα
i ) + sχ(θγ

k )
]

≤ ρβ .

The infimum above is attained when θβ
k +s(θα

i −θγ
k) = ταγ

ik , which corresponds to positive
s if and only if

(

ταγ
ik − θβ

k

)

(θα
i − θγ

k ) > 0.(21)

Denote by Γαβ
ik the set of all γ for which (21) holds. Then always β ∈ Γαβ

ik .
Thus δ0 is adaptive if and only if

max
α:ρα≥ρβ

max
i6=k

min
γ∈Γαβ

ik

Wθβ

k

(ταγ
ik ) ≤ ρβ = max

i6=k
Wθβ

k

(

σβ
ik

)

.(22)

When A = 2, for γ = α, (21) takes the form
(

σα
ik − θβ

k

)

(θα
i − θα

k ) > 0,

and for γ = β it holds automatically.
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5 Further Examples

5.1 Poisson Family

The distribution Fα
i is a Poisson distribution with the parameter λα

i , λα
i > 0. Thus

fα
i (u) = e−λα

i
(λα

i )u

u!
, u = 0, 1 . . .

and
θα

i = log λα
i ,

χ(θα
i ) = exp(θα

i ) = λα
i .

We use the mean value parameterization and employ the function

Pλ(η) = η − λ − η log
η

λ
,

which replaces Wθ(t) in the adaptation conditions.
One has

ρα = max
i6=k

Pλα
i

(ηα
ik)

with

ηα
ik = exp(σα

ik) =
λα

i − λα
k

log
λα

i

λα
k

.

Let

ηαβ
ik = exp(σαβ

ik ) =
λα

i − λβ
k + ρα − ρβ

log
λα

i

λβ

k

.

According to (16) and (17) an adaptive procedure exists if and only if

max
α,β:ρβ≥ρα

max
i6=k

[

Pλα
i

(

λβ
k

)

− ρα + ρβ

]

< 0

and
max

β:ρβ≥ρα

max
i6=k

Pλα
i

(

ηαβ
ik

)

≤ ρα.

According to (22) the adaptation region R0 has the form

max
β:ρβ≥ρα

max
i6=k

min
γ:(vβγ

ik
−λα

k
)(λβ

i
−λγ

k
)>0

Ppα
k

(

vβγ
ik

)

≤ ρα

with

vαβ
ik = exp(ταβ

ik ) =
λα

i − λβ
k

log
λα

i

λβ

k

.

The Figure 2 shows the adaptation regions for δa and δ0 when λ1
1 = 1, λ1

2 = 2. The
procedure δ0 is not adaptive when δa is, for the values of λ2

1, λ
2
2 from the shells in the

lower left corner and in the upper right corner.
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Figure 2: The adaptation regions for δ0 and δa with Poisson distributions for λ1
1 = 1, λ1

2 =
2 .

5.2 Binomial Family

The distribution Fα
i is a binomial distribution with the probability of success pα

i , 0 <
pα

i < 1. Thus

fα
i (u) =

(

N
u

)

(pα
i )u (1 − pα

i )
N−u

, u = 0, 1 . . . , N

and

θα
i = log

pα
i

1 − pα
i

,

χ(θα
i ) = N log(1 + exp(θα

i )) = −N log(1 − pα
i ).

All adaptation conditions are the same for all values of N , which therefore can be taken
to be equal to 1.

As in the previous example, it is more convenient to use the mean value parameter-
ization and to work instead of

Wθ(t) = log

(

1 + exp(θ)

1 + exp(t)

)

− (θ − t)
exp(θ)

1 + exp(θ)
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with the classical entropy function

Hp(q) = −

[

q log
q

p
+ (1 − q) log

1 − q

1 − p

]

for t = log q − log(1 − q) and θ = log p − log(1 − p).
One has

ρα = max
i6=k

Hpα
i

(rα
ik)

with

rα
ik =

log
1−pα

i

1−pα
k

log
pα

k
(1−pα

i
)

pα
i
(1−pα

k
)

.

Let

rαβ
ik =

log
1−pα

i

1−pβ

k

+ ρα − ρβ

log
pβ

k
(1−pα

i
)

pα
i
(1−pβ

k
)

.

According to (16) and (17) an adaptive procedure exists if and only if

max
α,β:ρβ≥ρα

max
i6=k

[

Hpα
i

(

pβ
k

)

− ρα + ρβ

]

< 0

and

max
β:ρβ≥ρα

max
i6=k

Hpα
i

(

rαβ
ik

)

≤ ρα.

If

qαβ
ik =

exp(ταβ
ik )

1 + exp(ταβ
ik )

=
log

1−pβ

k

1−pα
i

log
pα

i
(1−pβ

k
)

pβ

k
(1−pα

i
)

,

the adaptation region R0 because of (22) has the form

max
β:ρβ≥ρα

max
i6=k

min
γ:(qβγ

ik
−pα

k
)(pβ

i
−pγ

k
)>0

Hpα
k

(

qβγ
ik

)

≤ ρα.

The Figure 3 shows the adaptation region in the lower left corner and in the right
upper corner when p1

1 = 1/3, p1
2 = 2/3 .

5.3 Multivariate Normal Family

The distribution Fα
i is the multivariate normal with the mean ηα

i and the nonsingular
covariance matrix R, the same for all i and α. Then

θα
i = R−1ηα

i
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Figure 3: The adaptation regions for binomial distributions for p1
1 = 1/3, p1

2 = 2/3 .

and

χ(θα
i ) =

1

2
ηα

i · R−1ηα
i =

1

2
θα

i · Rθα
i =

1

2
||θα

i ||
2
R.

One has Wθ(t) = −||θ − t||2R/2, and according to (12),

ρα =
1

2
max
i6=k

inf
s>0

[

||sθα
i + (1 − s)θα

k ||
2
R − 2s||θα

i ||
2
R − 2(1 − s)||θα

k ||
2
R

]

= −
1

8
min
i6=k

||θα
i − θα

k ||
2
R = −

1

8
min
i6=k

(ηα
i − ηα

k ) · R−1 (ηα
i − ηα

k ) .(23)

Now we determine the explicit form of (17). For fixed α 6= β, i 6= k and θα
i 6= θβ

k

sαβ
ik =

ρα − ρβ + ||θα
i ||

2
R/2 − ||θβ

k ||
2
R/2 − θβ

k · R
(

θα
i − θβ

k

)

||θα
i − θβ

k ||
2
R

=
1

2
+

ρα − ρβ

||θα
i − θβ

k ||
2
R

,
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so that

1 − sαβ
ik =

1

2
−

ρα − ρβ

||θα
i − θβ

k ||
2
R

.

The condition 0 < sαβ
ik < 1, which is necessary for adaptation because of (10), means

that δa is consistent and corresponds to the region R0 discussed in Proposition 2. It can

be rewritten in the form sαβ
ik

(

1 − sαβ
ik

)

> 0, which means that

2|ρα − ρβ | < ||θα
i − θβ

k ||
2
R.

One has

Wθβ

k

(

σαβ
ik

)

= −
||θα

i − θβ
k ||

2
R

2

[

1

2
−

ρα − ρβ

||θα
i − θβ

k ||
2
R

]

,

so that if ρα ≥ ρβ , condition (17) means that for i 6= k

||θα
i − θβ

k ||R
2

−
ρα − ρβ

||θα
i − θβ

k ||R
≥
√

2|ρβ|.

This inequality signifies that for all i 6= k

||θα
i − θβ

k ||R ≥
√

2|ρα| +
√

2|ρβ| =
1

2

[

min
ℓ 6=m

||θα
ℓ − θα

m||R + min
ℓ 6=m

||θβ
ℓ − θβ

m||R

]

.(24)

Thus (24) provides the necessary and sufficient condition for the existence of an adaptive
rule in this example.

Under this condition, the adaptive rule δa has the form

{δa(x1, . . . , xn) = i} = {min
α

[

(x − ηα
i ) · R−1(x − ηα

i ) + 2ρα

]

= min
α,k

[

(x − ηα
k ) · R−1(x − ηα

k ) + 2ρα

]

}

with ρα given in (23).
The overall maximum likelihood rule δ0 has the form

{δ0(x1, . . . , xn) = i} = {min
α

[

(x − ηα
i ) · R−1(x − ηα

i )
]

= min
α,k

[

(x − ηα
k ) · R−1(x − ηα

k )
]

}.

The adaptation region R0 for the rule δ0 is described by condition (11) according to
which for any α 6= β and i 6= k

min
s1,...,sA>0

[

||θα
i +

∑

m

sm(θβ
k − θγ

m)||2R +
∑

m

sm

(

||θγ
m||2R − ||θβ

k ||
2
R

)

− ||θα
i ||

2
R

]
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≤ 2ρα.(25)

Let V β
km denote the Gram matrix corresponding to vectors θβ

k − θγ
m,γ = 1, . . . , A with

respect to the inner product determined by || · ||2R. Also denote by vαβ
ik the vector whose

γ-th coordinate has the form θα
i · R

(

θγ
i − θβ

k

)

+ ||θβ
k ||

2
R/2 − ||θα

i ||
2
R/2. Assuming that

V β
ki is an invertible matrix and the vector

[

V β
ki

]−1

vαβ
ik has non-negative coordinates, one

obtains the adaptation condition for δ0

min
k 6=i

min
β 6=α

[

vαβ
ik

]T

· R
[

V β
ki

]−1

vαβ
ik ≥ −2ρα.(26)

If the vectors θβ
k − θγ

i ,γ = 1, . . . , A are linearly dependent and r denotes the rank of

V β
ki, then minimum in (25) is attained at r-dimensional boundary of the positive orthant

{s1, . . . , sA > 0}, and the condition (26) can be rewritten in terms of Gram matrices of

linearly independent vectors θβ
k − θγ

i .

5.4 Normal Family with Unknown Mean and Variance

x

y

-

6

no adaptation

-1.0 3.0

Figure 4: The adaptation regions for normal distributions.

The distribution Fα
i on the real line is normal with the mean ηα

i and the variance
κα

i . The vector of natural parameters of the corresponding two-parameter exponential
family with u = (x,−x2/2)T has the form

θα
i = (vα

i , wα
i )T = (ηα

i /κα
i , 1/κα

i )T ,

so that with θ = (v, w)T

χ(θ) =
1

2

[

v2

w
− log w

]

.

One has with t = (t1, t2)
T

2Wθ(t) =
t21
t2

− log t2 −
v2

w
+ log w −

2t1
t2

[t1 − v] +

[

t21
t22

+
1

t2

]

(t2 − w)
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= −w

(

t1
t2

−
u

w

)2

−
w

t2
+ log

w

t2
+ 1.

The Figure 4 shows the adaptation region for θ1
1 = (−1, 1)T , θ1

2 = (1, 1)T , θ2
1 = (x, y)T

and θ2
2 = (x − 2, y)T , so that θ1

1 − θ2
2 = θ1

2 − θ2
1 . Thus, in the notation of Proposition 2,

ζ = −1. In this situation σ1
12 = (0, 1)T with ρ1 = −1/2.
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