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1 Introduction 

Monte Car lo methods are a powerful tool in many fields of mathematics, physics and 
engineering. It is known, that these methods give statistical estimates for the func
t ional of the solution by performing random sampling of a certain chance variable whose 
mathematical expectation is the desired functional. 

Monte Car lo methods are methods for solving problems using random variables. In 
the book [16] edited by Yu.A.Shreider one can find the following definition of the Monte 
Car lo method. 

Definition 1.1 The Monte Carlo method consists of solving various problems of com
putational mathematics by means of the construction of some random process for each 
such problem, with the parameters of the process equal to the required quantities of the 
problem. 

Usually Monte Car lo methods reduce problems to the approximate calculation of 
their mathematical expectations. 

The year 1949 in generally regarded as the official birthday of the Monte Carlo 
methods when the paper of Metropolis and U l a m [13] was published, although some 
authors point to earlier dates. Ermakov [7], for example, notes that a solution of a 
problem by the Monte Carlo method is contained in the O l d Testament. The development 
of the method is connected wi th the names of John von Neumann, E . Fermi and G . K a h n , 
who worked at Los Alamos (USA) for forty years. The development of modern computers 
and particularly parallel computing systems, provided fast and specialized generators of 
random numbers and gave a new momentum to the development of Monte Carlo methods. 
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There are two main directions in development and studying Monte Car lo a lgor i thms . 
The first direction is Monte Carlo simulation algorithms. These algorithms are used f o r 
simulation of real-life processes and phenomena. In this case, the algorithm fo l lows 
the corresponding physical , chemical or biological processes under consideration. In s u c h 
simulations Monte Car lo is used as a tool for choosing different possibilities. Monte C a r l o 
s imulation could be considered as a method for solving probabilistic problems using some 
k i n d of simulations of random variables or random fields. 

T h e second direction is Monte Carlo numerical algorithms. The Monte Car lo n u m e r 
ical algorithms are usually used for solving deterministic problem by modeling r a n d o m 
variables or random fields. The main idea here is to construct some artificial r a n d o m 
process and to prove that the mathematical expectation of the process is equal to t h e 
unknown solution of the problem or to some functional of the solution. Usually, there 
are more than one possibility to create such an artificial process. After finding the p r o 
cess one needs to define an algorithm for computing realizations of the random var iable . 
Usually , the random variable can be considered as a weight of a random process (usually, 
a M a r k o v process). T h e n , The Monte Carlo algorithm for solving the problem u n d e r 
consideration consists in simulation the Markov process and computing the real izations 
of the random variables. 

In this paper algorithms of the second direction, i.e. Monte Carlo numerical a lgo 
r ithms wi l l be considered. The general scheme of our consideration is the following 

• We define the problem under consideration and show the conditions which have t o 
be satisfied for obtaining the unique solution. 

• Construct a random process and prove that such a process can be used for ob ta in ing 
the approximate solution of the problem. 

• Est imate the probabil ity error of the method. ^ 

• T r y to find the opt imal (in some sense) algorithm, i.e. choose the random process 
for which the statist ical error is min imal . 

• Choose the parameters of the algorithm (such that the number of the realizations 
of the random variable, the length of the Markov chain and, so on) in order to have 
a good balance between the statistical and the systematic errors. 

• O b t a i n a prior i estimates for the speed-up and the parallel efficiency of the a lgor i thm 
when parallel or vector machines are used. 

A n important advantage of the Monte Car lo algorithms is that they allow to find 
directly the unknown functional of the problem solution wi th a number of operations, 
necessary to solve the problem in one point of the domain [17], [4]. Often, one do not 
need to know the solution in the whole domain in which the problem is defined. Usual ly , 
i t is necessary to know the value of some functional of the solution. Problems of this 
k ind could be found in many field of the applied sciences. For example, in stat ist ical 
physics, one is interested in computing linear functional of the solution of the equations 
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for density d istr ibut ion function (such as Bo l t zmann , Wigner or Schroedinger equation), 
i.e., probabi l i ty to find the particle in a given place of the space and in a given time 
(integral of the solution), mean value of the velocity of the particles (the first integral 
moment of the velocity) or the energy (the second integral moment of the velocity) and, 
so on . 

It is well known that , Monte Car lo methods are very efficient when parallel processors 
or parallel computers are available [5], [6]. This is because these methods are inherently 
parallel and have loose dependencies. In addit ion, they are also well vectorizable when 
powerful vector machines are used [5]. Nevertheless, the problem of parallel ization of 
M o n t e Car lo methods is not a t r iv ia l problem. To find the most efficient parallel ization 
i n order to obtain a high value of the speed-up of the algorithm is very important pract ical 
problem. 

2 Iterative Monte Carlo algorithms 
In general, Monte Car lo numerical algorithms may be divided into two classes - direct 
algorithms and iterative algorithms. Define an iteration of order i as a function of the 
following form 

T h e method is called stationary i f Fk = F for al l k, that is, Fk is independent of k. 
T h e iterative process is called linear i f Fk is a linear function of u^k\... ,u^k~i+1\ In 
this paper we study stationary linear iterative Monte Carlo algorithms. 

Consider a general description of the iterative Monte Car lo algorithms. Let X be a 
Banach space of real-valued functions. Let / = f(x) € X and Uk — u(xk) € X be defined 
i n R d and L — L(u) be a linear operator defined on X . 

Consider the sequence u\,U2,defined by the recursion formula . 
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W h e n the infinite series converges, the sum is an element u from the space X w h i c h 
satisfies the equation 

where J{u) is a functional of u. 
T h e computational problem then becomes one of calculating repeated realizations o f 

Ok and combining them into an appropriate statistical estimator of J(uk). 
A s an approximate value of the linear functional J{xik) is set up 

where is the s-th realization of the random variable 0*. 
T h e probable error is defined as a value rn (see, for example [17], [8]) for which t h e 

following condition 

is fulfilled. 
One can show (following [17]) that for algorithms under consideration 
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•Any state Si is associated with a set of conditional probabilities p,j, such that is 
the probabil ity that the system, which at the t -th time, is in the state Sj , wi l l be in the 
state Sj at the (t + l ) - t h time, i.e. P{sth+1 - Sj\stk = Si) = pij. 

D e f i n i t i o n 2.1 The state is called absorbing if the chain terminates in this state with 
probability 1. 

In the general case, iterative Monte Car lo algorithms can be defined as terminated 
Markov chains: 

where s^, {q — l,...,k) is one of the absorbing states. This determines the value of 
some function F(S) = 6k, which depends on the sequence (6). The function F(S) is a 
random variable. After the value of F(S) has been calculated, the system is restarted to 
its in i t ia l state St0 and the transitions are begun anew. A number of n independent runs 
are made through the Markov chain starting from the state sto to any of the absorbing 
states. T h e average - £ ] T F(S) is taken over a l l actual sequences of transitions. Th i s 
value approximates E{F(S)}, which is the required functional. 

We also w i l l be interested in computational complexity. 

D e f i n i t i o n 2.2 The computational complexity is defined by nE(k)to, where E(k) is 
the mathematical expectation of the number of transitions in the sequence (6) and to is 
the mean time needed for realization of one transition. 

There are two approaches which correspond to two special cases of the operator L : 
(i) L is a matr ix and u and / are vectors; 
(ii) L is an ordinary integral transform 

F i rs t consider the second case. Equat ion (3) becomes 

Monte Car lo algorithms frequently involve the evaluation of linear functionals of the 
solution of the following type 

In fact, the equation (8) defines an inner product of a given function h{x) G X wi th 
the solution of the integral equation (7). . 

Sometimes, the adjoint equation 
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w i l l be used. 
is the adjoint functional space to X and L* i s 

an adjoint operator. 
For some important applications X = L i and . ,g 

If it is assumed that || Lm ||< 1, where m is any natural number, then the N e u m a n n 
series u = Y^Lo^1} converges. T h e condition || Lm ||< 1 is not very strong, since i t 
is possible to construct a Monte Car lo method for which the Neumann series does n o t 
converge. A n a l y t i c a l l y extending the resolvent by a change of the spectral parameter 
gives a possibil ity to obtain a convergent method when Neumann series for the o r i g i n a l 
problem does not converge or to accelerate the rate of convergence when it converges 
slowly. 

Consider the Monte Car lo method for evaluation the functional (8). It can be seen 
that when l(x, x') = 0 evaluation of the integrals can pose a problem. Consider a r a n d o m 
point f € G w i th a density p(x) and let there be n realizations of the random po int 

— 1,2, . . . ,n ) . Let a random variable 0(f) be defined i n G , such that E6(£) = J. 
A n approximate value of the functional J , defined by (8) is 

where (6)s is the s-th realization of the random variable 9. 
T h e random variable whose mathematical expectation is equal to J(u) is given by 

the fol lowing expression 

where is a M a r k o v chain i n G 

with i n i t i a l density function p(x) and transit ion density function p(x,y). 
For the first case, when the linear operator L is a matr ix , the equation (2) can be 

writ ten in the following form : 

(10) 

where I is the unit (identity) matr ix ; 
and matr ix I — L is supposed to be non-singular. 
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It is well known that if a l l eigenvalues of the matr ix L lie wi th in the unit circle of 
the complex plane there exists a vector u such that u = l i m ^ o o Uk , which satisfies the 
equation 

(11) 
(see, for example, [11]). 

Now consider the problem of evaluating the inner product 

(12) 

where h G R m is a given vector . 
To construct a random variable whose mathematical expectation coincides wi th (12). 

Consider the integral equation (7) for which G = [0, m) is an one-dimensional interval 
divided into equal subintervals d = [i — 1,i), i — 1 ,2 , . . .m such that 

The above permits the construction of the following random variable 

(13) 

where 

(14) 

and ko, k\,... is Markov chain on elements of the matr ix L constructed by using an in i t ia l 
probabil ity po and a transit ion probabil ity Pk„^i,k„ for choosing the element /fc„_1,fe„ of 
the matr ix L. 

Now consider the following system of linear equations 

(15) 

It is possible to choose a non singular matr ix M G R m x m such that MA = I — L 
(I G R m x m is the identity matr ix ) , and Mb = / , / G R m x l Then (11) becomes 
MAu — Mb, i.e, (15). The last equation is equivalent to (12). If matrices M and A are 
both non-singular and L has its eigenvalues a l l inside the unit circle, then (13) becomes 
a stationary linear iterative Monte Carlo algorithm. A s a result the convergence of the 
Monte Car lo method depends on truncation error of (10). 
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3 Monte Carlo Algorithms for Boundary Value 
Problems 

We consider the linear boundary value problem 

(16) 

(17) 
where L is an arbitrary linear elliptic operator in R d of order 2m, aa(x) € C 0 0 ( R " ) a n d 
the function f(x) belongs to the Banach space X ( G ) . 

Assume that f{x), >p(x), and the boundary dG satisfy conditions ensuring that t h e 
solution of the problem (16), (17) exists and is unique [14], [15]. 

We shall study Monte Carlo algorithms for calculating linear functionals (8) of t h e 
solution of the problem (16), (17). 

There are two approaches for calculating (8). The first approach uses a discret isation 
of the problem (16, 17) on a mesh and solves the resulting linear algebraic system, w h i c h 
approximates the original problem (16, 17). This is the so-called grid Monte Carlo 
algorithm, or grid walk algorithm. The second approach (grid-free approach ) uses a n 
integral representation for the problem (16, 17). 

3.1 Grid Monte Carlo Algorithm 
Consider a regular mesh (lattice) with step-size h in R d . Let G / , be the set of a l l inner 
mesh points (7 € Gh i f and only i f 7 € G); dGh be the set of a l l "boundary" mesh points 
(7 € dGh i f there exists a neighboring mesh point 7* which does not belong to R d \ C?) 
and Uh be a function denned on a set of mesh points (a mesh function). 

The differential operator L at the mesh point Xi e Gh is approximated by a difference 
operator Lh as follows: 

(18) 

where a/ , (xj , Xj) are coefficients; and Pfc(ii) is a set of mesh points w i th center in Xi £ Gh 

called a scheme. 
Since L is a linear differential operator, after the discretisation of (18), the fol lowing 

system of linear equation arises: Au — b , where b = (61, . . . ,b m ) € R m x l is an Tri 
dimensional vector and A € R m x m is an m x m-dimensional matr ix . 

Paral le l versions of different grid Monte Car lo algorithm are studied in [4], [6]. 
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3.2 Grid-free Monte Carlo Algorithm 
The grid-free Monte Car lo approach under consideration is based on use of local integral 
representation of the solution. In this case the Green's function for standard domains, 
ly ing inside the domain G (for example - ba l l , sphere, ellipsoid) is used. 

Consider the elliptic boundary value problem: 

(19) 

(20) 

D e f i n i t i o n 3.1 The domain G belongs to the class A ' * ' A ) if for any point x 6 dG the 
boundary dG can be presented as a function Z3 — o{z\,Z2) in the neighborhood of x for 
which o-W(zuz2) e C(°'x\ i.e. 

where the vectors are 2-dimensional vectors, N is 
constant and A G (0,1]. 

If in the closed domain G € A ' 1 , A ' the coefficients of the operator M satisfy the 
conditions bj, c(x) € C(°'A>(G), c{x) < 0 and <f> € C(°-A>(G) n C(G) , i> € C(dG), 
the problem (19), (20) has an unique solution u(x) in C 2 ( G ) n C ( G ) . The conditions 
for uniqueness of a solution can be found in ([14], p. 179, [1], p. 79). 

We obtain an integral representation of the solution u(x). This representation allows 
to use the random variable for calculation the functional (8). We have to estimate the 
functional (8) by means of grid-free Monte Car lo approach. This approach is based on the 
use of a local integral representation of the solution u(x) in the problem (19), (20). The 
representation uses the Green's function approach for standard domains, ly ing inside the 
domain G . The in i t ia l step in studying the grid-free Monte Car lo approach is obtaining 
of an integral representation of the solution in the form: 

(21) 

assuming that a representation exists. 
For the existence of the integral representation, (21) might be obtained using the 

result [15] taking into consideration that the domain B(x) belongs to the space A ( 1 , A ) 
and that the operator M is of elliptic type. 

We seek a representation of the integral kernel k(x, y) using Levy 's function and the 
adjoint operator M* for the in i t ia l differential operator M. 

The Levy 's function for the problem (19), (20) is 
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(22) , ' . > ; i 

where the following notations are used: 

p(p) is a density function; 

It is clear that the Levy's function Lp(y,x), and the parameters qp(R) and p>p(i?) 
depend on the choice of the density function p(p). In fact, the equality (22) defines a 
family of functions. We seek a choice of p(p) which leads to a representation of type (21). 
Moreover, the kernel of the integral transform should be a transition density function, 
i.e. l(x,y)>0. 

From an algorithmic point of view the domain B(x) must be chosen in such a way 
that the coordinates of the boundary points y 6 dB{x) could be easily calculated. 

Denote by B(x) the bal l : 

(23) 

where R(x) is the radius of the bal l . 
It is easy to prove that the conditions 

and 

are satisfied for p(r) = e~kr, where 

and R is the radius of the maximal ball B(x) C G. 
This statement shows that it is possible to construct the Levy 's function choosing 

the density p(p) such that M*Lp(y,x) is non-negative in B(x) and such that Lp(y, x) 
and its derivatives vanish on dB(x). 

It follows that the representation (21) can be written in the form: 

The last representation allows to construct an unbiased estimate for the solution of our 
problem. 

Consider a transit ion density function 
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This transition density function defines a Markov chain £1, £2, • • • > £• such that every point 
£j, j = 1, . . . , i — 1 is chosen on the maximal ball B(XJ-I), lying in G in accordance with 
the density (24). The Markov chain stops when it reaches dGc. So, & £ dGe. 

Let us consider the random variable 

where 

ip(£i) is the value of the boundary function at the last point of the Markov chain 
It is easy to see that the solution of the problem in the point £o can be presented as 

(25) 

Obviously, all non-zero values of Qj are equal to 1 and the problem consists in 
simulating a Markov chain with a transition density function p{x,y) in the form (24). 
Thus, the problem of calculating tf(£o) is reduced to estimation the expectation (25). 

The direct simulation of a random variable with the stationary density function 
p(x,y) is unsuitable since the complexity of the expression for M*L(y,x) would sharply 
increase the algorithm's computational complexity. In this case it is advisable to use the 
selection algorithm. Let us describe the selection algorithm, which we use here. Suppose 
that vi(x) and v2(x) are given functions, 0 < vi(x) < v2(x) and 

where G C R 3 . 
Consider an algorithm for simulation of the random variable with density function 

v2(x)/V2 and simulate other random variable with the density function vi(x)/V\. It 
is necessary to give a realization £ of the random variable with density v2(x)/V2 and an 
independent realization 7 of the random variable uniformly distributed in (0,1), as well 
as to check the inequality "/v2(x) < vi(x). If the last inequality holds, £ is the needed 
realization. Otherwise, the process have to be repeated. The efficiency of the selection 
algorithm is measured by E = V\/V2. 

Denote by po(x,y) the transition density function of the Markov chain M*LP with 
c(x) = 0. One can see, that p(x,y) < po{x,y). 

In [9] it is proved that E > | for the same density function and for the boundary 
value problem in R d ( d > 2). 

In [2] a majorant function hr(w) for po(w/r) was found and the following theoret
ical result for the algorithm efficiency of the selection grid-free Monte Carlo algorithm 
was proved: < 



3.3 Parallel Implementation of the Grid-free Algorithm and N u 
merical Results 

•In the previous subsection a description of the Monte Car lo algorithm for the selection 
algor i thm has been presented. Note that , in the case of implementation on a sequential 
computer, a l l the steps of the algor i thm and al l the trajectory are executed iteratively, 
whereas on a parallel computer each trajectory can be carried concurrently. 
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Example . Numerica l examples for the following problem >, • 

axe considered. 
Note that the cube G = [0, l ] 3 does not belong to the A ' 1 ' * ) , but this restriction is 

not important for our algorithm since an £-strip of the domain G is considered. In fact 
now we consider another domain Ge which belongs to the class A ^ 1 , A ' . 

T h e boundary conditions for our examples are: 

T h e problems are solved using selection grid-free Monte Car lo a lgor i thm. 
We consider two cases for the coefficients: 

T h e efficiency of the selection grid-free Monte Car lo does not depend on the number 
of trajectories ( see, Table 1). T h e result of selection efficiency confirms our corresponding 
theoretical result. ' 

Table 1: Selection efficiency and number of the steps to the boundary domain . 
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One of the advantages of the grid-free Monte Carlo algorithm is that i t has the r a t e 
of convergence (\log r n |/r£) (where r n is the statistical error) which is better than t h e 
rate r ~ 3 of the gr id algorithm. Th is means that the same error can be reached for a 
smaller number of trajectories. 

It is preferable to use the selection algorithm when it is difficult to calculate t h e 
realizations of the random variable directly. 

T h e studied algorithm have high parallel efficiency. It is easily programmable a n d 
parallelizable. 

T h e tests performed show also that Monte Car lo algorithms can be efficiency i m p l e 
mented on M I M D - m a c h i n e s . 

4 Applications: Sensitivity Analysis in Environmen
tal Mathematics * 

Here a special Monte Car lo sensitivity technique to study air -pol lut ion transport over 
Europe is presented. F i r s t , the developed technique is applied on the box-model i n o rder 
to study the sensitivity of the concentrations of some important pollutants (like NO2 a n d 
O 3 ) . It is shown that the most important parameter is the rate constant of the reac t ion 
producing NO2 from O3 and NO. The results are sensitive to small variances of the r a t e 
constant. 

Second, the developed Monte Car lo simulation technique is apply to the D a n i s h 
E u l e r i a n M o d e l . For running the model to get realistic results for a real-live scenario 
of a ir -pol lut ion transport the vector machine C R A Y Y - M P C 9 2 A is used. 

It is shown that the results of the real-live modeling of a ir -pol lut ion transport a re 
not equal sensitive to different parameters used in the model as input parameters. T h e r e 
are some parameters (like the rate constant of the reaction producing NO2 from O 3 a n d 
NO), which are very important since the results are sensitive to the small changes of the 
values of these parameters. In this sense the Monte Car lo sensitivity s imulation c o u l d 
by used as a special "advisor" to physicists, because this simulation permits to find how-
accurate have to be measured the input parameters, as well as how strong theory is 
needed to describe some of the processes of air -pol lution transport. 

H i g h pol lut ion levels may lead to the destruction of eco-systems and may cause d a m 
ages on plants, animals and humans. T h e treatment of the mathematical models w i l l 
lead to very large computational tasks. Indeed, the application of discretization a n d 
sp l i t t ing procedures leads to several systems of ordinary differential equations. E v e r y 
system may contain several mil l ions of equations and has to be treated dur ing m a n y 
time-steps (as a rule several thousand time-steps). It is clear that these computat ional 
problems w i l l cause difficulties even when big modern computers are used. T h i s is w h y 
it is often necessary to perform some simplifications in the model . Such simplif ications 
must be made so that the output results are st i l l reliable. In order to satisfy the last 
requirement, one has to investigate how the changes of some parameters or some phys
ical and chemical mechanisms w i l l influence the output results. If the output results 
are not very sensitive to the variations of certain parameter or mechanism, then this 
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means that the model can be simplified by choosing a simpler algorithm to calculate the 
parameter under consideration or to describe the mechanism under consideration by a 
simpler algorithm. If the output results are sensitive to changes in. a given parameter of 
a lgor i thm, then one must be more careful: the parameter must be calculated i n a more 
accurate way (by a more complicated algorithm), the mechanism must be described by 
a more advanced (and, again, more complicated) algorithm. Th is short discussion shows 
that it is useful to perform some sensitivity analysis in order to understand better the 
relationships between parameters and /or mechanisms used in the model and the output 
results. 

4.1 The Danish Eulerian Model 
T h e Danish Euler ian M o d e l , see [18] is described mathematical ly by the following system 
of part ia l differential equations: 

T h e number q of equations in this system is equal to the number of chemical species 
that are studied by the model. . Th i s number varies from 10 to 168 in the experiments 
described in [18]. T h e other quantities involved in the model can be described as follows: 

• the unknowns c3 are concentrations of the chemical species, 

• u, v and w are the components of the wind along the coordinate axes, 

• Kx, Ky and Kz are diffusion coefficients, 

• the emissions in the space domain are represented by the functions E„, 

• k\a and fos are coefficients of dry and wet deposition respectively (s — 1 , . . .q), 

• the chemical reactions between species are described by the non-linear functions 
Qs(ci, C2, •. • cq), where s = 1 , 2 , . . . , q (the condensed C B M I V scheme that was 
proposed by [10], see also [18], is the particular chemical scheme which wi l l be used 
in this paper). 

It is very difficult to treat directly the above system of equations. Therefore, some 
k i n d of spl i t t ing is to be used. Spl i t t ing according to the major physical processes is 
very popular; see, for example, [19]. Such spl i t t ing procedures lead often to five sub
models which are to be treated cyclicly at every time-step ([18]). F ive large systems 
of ordinary differential equations can be obtained from the sub-models by applying any 
space discretization method: 
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where Nx, Ny and N~ are the numbers of grid-points on the grid-lines parallel to the 
coordinate axes and Ns = q is the number of chemical species involved in the model . 
The function is a vector-function whose components are approximations to the con
centrations at the grid-points, while depends on the particular discretization method 
applied to the corresponding sub-model. 

The number of equations in any of the five O D E systems in (28) is equal to the 
product of the number of grid-points and the number of species. Thus, if Nx = 96, Ny = 
96 ; Nz = 10 and Ns — 35, then every O D E system contains 3225600 equations. F u r 
thermore, the five O D E systems are to be treated numerically during many time-steps 
(typically several thousand time-steps are needed). 

It is important to emphasize the fact that the chemical sub-model consists of Nx x 
Ny x Nz independent O D E systems. Each of these systems contains Ns — q equations 
and can be rewritten as 

where g is a vector whose components are approximations to the concentrations at a given 
grid-point, while the right-hand-side vector / depends on the chemical mechanism which 
is used in the model. It is clear now that (29) can sometimes be considered (instead of the 
whole chemical sub-model) in studies of some phenomena which are directly connected 
to the chemical scheme. The much simpler model (29) wi l l be called the box-model. 

4.2 Finding the reaction that has greatest influence on the ni 
trogen di-oxide and ozone concentrations 

The box model is defined by the system of ordinary differential equations (spdisl ) . T h i s 
model has been used to find the reaction that has greatest influence on the concentrations 
of nitrogen di-oxide and ozone. The Monte Carlo algorithm is used in the experiments. 
In each experiment a sequence of 100 normally distributed random values of the chemical 
rate constant of one of the chemical reactions was produced by using a random number 
generator. After that the box model was run for these 100 random values. This procedure 
has been carried out for al l 70 chemical reactions involved in the chemical scheme used 
in the Danish Euler ian Mode l ; the condensed C B M I V scheme (see [10] and [18]). T h i s 
means that 100 runs were perform per each chemical reaction with normally distr ibuted 
random values. The standard deviations of the nitrogen di-oxide and ozone concentra
tions produced when the chemical rate constants were varied as described above were 
compared. It has been found in this way that the most important chemical reaction for 
the nitrogen di-oxide and ozone concentrations is: 

(30) 
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This means that small changes of the rate constant of this reaction lead to consider
ably large changes in the concentrations of nitrogen di-oxide and ozone and, moreover, 
these changes are larger than the changes, for the same two chemical species, observed 
when the rate constants of the other chemical reactions were varied by using the same 
procedure. 

- ••(*•(•. 

4.3 Sensitivity tests with the Danish Eulerian Model 
Consider the reaction (30). It is interesting to see what wi l l happen i f the experiment wi th 
a sequence of 100 normally distributed random values of the constant rate of reaction (30) 
is performed by using the two-dimensional version of the Danish Euler ian M o d e l (instead 
of the box model used in the previous section). Several such experiments, each of them 
consisting of 100 runs wi th the Danish Euler ian Mode l , have been carried out. The 
standard deviation used in the calculating the sequence of normally distributed random 
values was varied in these experiments. Results obtained when the sequences of 100 
normally distributed random values of the constant rate of reaction (30) are produced by 
using standard deviations a = 0.5 and a = 0.25 wi l l be presented here, but some other 
values of the standard deviations were also used. 

The results, obtained after performing 100 runs wi th normally distributed random 
values of the constant rate of reaction (30), were used to calculate the standard deviations 
and the skewness of the nitrogen dioxide and ozone concentrations for every value of the 
standard deviation a irsed in the experiments. The results are presented in Figure 3 
- Figure 8 (where by X and Y = a the mean value and the standard deviation of 
the randomly generated normalized rate constants are denoted). T h e following major 
conclusions can be drawn from this experiment: 

• The standard deviations of the ozone concentrations given in Figure 3 for a — 0.5 
and Figure 5 for a — 0.25 are greatest in the areas where the European emissions 
are biggest (compare Figure 3 and Figure 5 wi th Figure 1) and where the nitrogen 
di-oxide concentrations are highest (compare Figure 3 and Figure 5 w i th Figure 2). 

• The patterns of the distributions of the standard deviations of the nitrogen di-oxide 
concentrations are not so pronounced (see Figure 4 and Figure 6, where the results 
obtained, respectively, wi th a = 0.5 and a = 0.25 are given). Nevertheless, it is 
clear that the effect is opposite to the effect observed when the standard deviations 
of the ozone concentrations are studied. T h e standard deviations in the most 
pol luted w i th nitrogen species areas are smaller than the standard deviation in the 
areas which are far away from the highly polluted areas; compare Figure 4 and 
Figure 6 wi th Figure 1 and Figure 2). , - •.„«. > 

• If the standard deviation by which the sequences of normally distributed random 
values of the rate constant of reaction (30) is reduced, then the standard deviations 
of the ozone concentrations are also reduced, but the pattern of the distr ibution of 
the highest standard deviations remains the same; compare Figure 3 w i th Figure 
5. T h e same is also true for the pattern of distr ibution of the highest standard 
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deviations of the nitrogen di-oxide concentrations; compare Figure 4 w i th F i g u r e 
6. 

• Results concerning the distribution of the skewness (for the sequence ob ta ined 
wi th standard deviation a = 0.5) are given in Figure 7 for the skewness of t h e 
ozone concentrations and in Figure 8 for the skewness of the nitrogen d i - ox ide 
concentrations. The two plots indicate that also here is the effect opposite: in t h e 
areas where the skewness of the ozone concentrations is greatest, the skewness o f 
the nitrogen di-oxide concentrations is smallest. 

The main result is that the influence of the rate constant of reaction (30) on the ozone 
concentrations seems to be great in the highly polluted with nitrogen pollutants areas . 
Therefore an accurate value of this rate constant is needed if the model is to be used o n 
a space domain in which are highly polluted with nitrogen species areas. O n the o ther 
hand, if in the space domain of the model there are not areas which are highly p o l l u t e d 
w i th nitrogen species, then the accuracy with which this rate coefficient is determined 
becomes less important . 

The author thanks T . Gurov for providing the parallel implementation of the g r i d -
free a lgor i thm in Section 3.3. 
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