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BULGARICA

CANONICALLY CONJUGATE VARIABLES

FOR THE µCH EQUATION

Ognyan Christov∗

Abstract. We consider the µCH equation which arises as an asymptotic
rotator equation in a liquid crystal with a preferred direction if one takes
into account the reciprocal action of dipoles on themselves. This equation
is closely related to the periodic Camassa–Holm and the Hunter-Saxton
equations. The µCH equation is also integrable and bi-Hamiltonian, that is,
it is Hamiltonian with respect to two compatible Poisson brackets. We give
a set of conjugated variables for both brackets.

1. Introduction. The µCH equation was derived recently in [1, 2] as

(1.1) −utxx = −2µ(u)ux + 2uxuxx + uuxxx,

where u(t, x) is a spatially periodic real-valued function of time variable t and

space variable x ∈ S1 = [0, 1), µ(u) =

∫ 1

0
udx. This equation is closely related

to the Camassa-Holm equation (CH)

(1.2) ut − utxx + 3uux = 2uxuxx + uuxxx

and the Hunter-Saxton equation (HS)

(1.3) −utxx = 2uxuxx + uuxxx.
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In order to keep certain symmetry and analogy with CH, one can write the
equation (1.1) in the form (see also [3])

(1.4) µ(ut) − utxx = −2µ(u)ux + 2uxuxx + uuxxx.

Note that µ(ut) = 0 in the periodic case. By introducing m = Au = µ(u) − uxx,
the equation (1.4) becomes

(1.5) mt + umx + 2mux = 0, m = µ(u) − uxx.

The µCH equation can be interpreted as an equation in a liquid crystal with a
preferred direction if one takes into account the reciprocal action of dipoles on
themselves [1, 2].

Similar to its relatives (1.2), (1.3) the µCH equation is integrable. The bi-
Hamiltonian form of (1.5) is

(1.6) mt = −B1 δH2[m]

δm
= −B2 δH1[m]

δm
,

where B1 =
1

2
∂A = −1

2
∂3,B2 = m∂ + ∂m are the two compatible Hamiltonian

operators and the corresponding Hamiltonians are

(1.7) H1[m] =
1

2

∫

mudx, H2[m] =

∫

(

2µ(u)u2 + uu2
x

)

dx.

There exists an infinite sequence of conservation laws Hn[m] n = 0,±1,±2, . . .
such that (see [1] for some representatives)

(1.8) B1 δHn[m]

δm
= B2 δHn−1[m]

δm
.

The µCH equation can be written as

(1.9) mt = −{m,H2}1 = −{m,H1}2,

where the two compatible Poisson brackets are

(1.10) {f, g}1 =

∫ 1

0

δf

δm
B1 δg

δm
dx, {f, g}2 =

∫ 1

0

δf

δm
B2 δg

δm
dx.

Note that H0 =

∫

mdx =

∫

µ(u)dx = µ(u) is a Casimir for the first bracket and

H−1 =

∫ √
mdx is a Casimir for the second bracket.

The equation (1.1) can be expressed as a condition of compatibility between

(1.11) ψxx = −λmψ
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and

(1.12) ψt = −
(

1

2λ
+ u

)

ψx +
1

2
uxψ,

that is, (ψxx)t = (ψt)xx, where λ is a spectral parameter.
The µCH equation is an Euler equation on the diffeomorphism group of the

circle corresponding to a natural right invariant Sobolev metric. It is also well-
posed (see [1]). This equation enjoys other geometric descriptions [3], for example
it is geometrically integrable. Moreover, its Kuperschidt deformation is also geo-
metrically integrable [4]. Let us give also another important ingredient for the
integrable PDEs, the so called zero curvature representation

Xt − Tx + [X,T ] = 0,

where the matrices X and T for the µCH equation are the following

X = −
(

λ −1

λm+ λ2 −λ

)

,

T =
1

2







1 + 2λu+ ux −2u− 1

λ

2λ

(

ux + um+ λu+
1

2

)

+ µ(u) −(1 + 2λu+ ux)






.

In this paper, canonically conjugated variables with respect to the both brack-
ets (1.10) are constructed. We follow Penskoi [5], where the conjugated variables
are obtained for the periodic CH equation (1.2), although many essential facts
can be found in Flaschka, McLaughlin [6], where the conjugated variables for the
periodic KdV equation are constructed.

The paper is organized as follows. In section 2 we summarize some results for
the spectral problem and formulate the main result. Then in section 3 we prove
it. In section 4 we discuss the motion of the auxiliary spectrum.

2. Spectral problem. In what follows we assume that m(0) > 0. It is
shown in [1] that then m(x) > 0 as long as u(x, t) exists.

The disposition of the spectra is similar to the cases of the Korteweg de Vries
equation and the CH equation. For instance, if m ∈ C2[0, 1] with the above

assumption, the Liouville transformation ψ → m−1/4Φ(x̄), x̄ =

∫ x

0

√
mdτ brings

(1.11) to a Hill’s equation

−d
2Φ

dx̄2
+

(

mxx

4m2
− 5m2

x

16m3

)

Φ = λΦ.
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However, we shall proceed as in [9, 10] or [11].

Consider the spectral problem (1.11). Recall that u(x + 1) = u(x) and
m(x+ 1) = m(x).

Let y1(x, λ) and y2(x, λ) be a fundamental system of solutions of (1.11) sub-
jected to the normalization

y1(0, λ) = 1, y′1(0, λ) = 0,

y2(0, λ) = 0, y′2(0, λ) = 1.

Every solution ψ of (1.11) can be expressed as a linear combination of y1,2:

(2.1) ψ(x, λ) = ψ(0, λ)y1(x, λ) + ψ′(0, λ)y2(x, λ).

This produces

(2.2)

(

ψ(x, λ)

ψ′(x, λ)

)

=

(

y1(x, λ) y2(x, λ)

y′1(x, λ) y′2(x, λ)

)(

ψ(0, λ)

ψ′(0, λ)

)

.

Denote the matrix in the last formula by U(x, λ). From the definition of y1,2

we have that detU(x, λ) = Wr(y1, y2) = Wr(0) = 1. Let us define also the
discriminant

(2.3) ∆(λ) =
1

2
trU(1, λ) =

1

2

(

y1(1, λ) + y′2(1, λ)
)

.

We first consider (1.11) conditioned by the periodic boundary conditions

ψ(0) = ψ(1), ψ′(0) = ψ′(1).

There exists an infinite sequence of eigenvalues

λ+
0 < λ+

1 ≤ λ+
2 < λ+

3 . . . , λ+
n → ∞ as n→ ∞.

Next we consider the antiperiodic eigenvalue problem, that is, the boundary
conditions for (1.11) are of the form

ψ(1) = −ψ(0), ψ′(1) = −ψ′(0).

The corresponding sequence of eigenvalues is

λ−1 ≤ λ−2 < λ−3 ≤ λ−4 . . . , λ−n → ∞ as n→ ∞.

The quantities λ±m are the roots of ∆(λ) = ±1, λ+
0 is always simple. It is known

that

λ+
0 < λ−1 ≤ λ−2 < λ+

1 ≤ λ+
2 < λ−3 ≤ λ−4 < λ+

3 . . . .
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The intervals

(λ+
0 , λ

−

1 ), (λ−2 , λ
+
1 ), (λ+

2 , λ
−

3 ), . . .

are called intervals of stability. Similarly we can name the other intervals – the
intervals of instability or gaps. Some of intervals of instability may disappear –
(−∞, λ0) always is present. Trivial arguments show that in our case λ+

0 = 0 and
for λ ∈ (−∞, 0) the solutions of (1.11) are unbounded.

Recall that a solution of (1.11) is said to be a Floquet solution if there exists
a number ρ called a Floquet multiplier satisfying

ψ(x+ 1, λ) = ρψ(x, λ).

It is straightforward from (2.2) that a Floquet solution and the corresponding ρ
are an eigenvector and an eigenvalue of U(x, λ).

Hence, ρ is obtained from

(2.4) ρ2 − 2∆(λ)ρ+ 1 = 0.

Now let us consider the auxiliary eigenvalues µj defined as solutions of the
equation y2(1, µj) = 0. Since m(x) is periodic, y2(x+1, µj) is a solution of (1.11)
for λ = µj . Due to (2.1) we have

y2(x+ 1, µj) = y′2(1, µj)y2(x, µj),

that is, y2(x, µj) is a Floquet solution with ρj = y′2(1, µj). So, we have a root of

(2.4) for λ = µj namely ρj. The other root is ρ̃j =
1

ρj
. Denote by y(x, µj) the

corresponding to ρ̃j Floquet solution

(2.5) y(x+ 1, µj) = ρ̃jy(x, µj).

Since, y and y2 are linearly independent, we normalize y by y(0, µj) = 1.

The points of the “auxiliary spectrum” µj must lie in the gaps (see Fig. 1).
Indeed, since Wr(y1, y2) = y1y

′
2 − y′1y2 = 1, then at x = 1 Wr(y1, y2)(µj) =

y1y
′
2 = 1 so,

∆(µj) =
1

2
(y1(1µj) + y′2(1, µj)) =

1

2

(

y1(1, µj) +
1

y1(1, µj)

)

≥ 1.

Remark. If m changes the sign, there are infinite sequences of positive and
negative eigenvalues for both periodic and antiperiodic spectra. This result goes
back to Lyapunov.

The following lemma is more or less known.
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Fig. 1. Disposition of Spectra

Lemma 1. Let ψ,ϕ be solutions (not necessarily different) of the spectral
problem (1.11) for the same λ. Then the following identity holds

(2.6) λB2ψϕ = B1ψϕ.

The proof is straightforward.
Let us also give an additional formula which will be used in the next section.

Suppose the functions p and q are such that p, p′, q, q′ are zero at 0, 1. Then we
have

(2.7)

∫ 1

0
pBsqdx = −

∫ 1

0
qBspdx, s = 1, 2.

Since µj 6= 0 we can define the following variables fj = − ln |ρj|
µ2

j

and gj =

− ln |ρj|
µ3

j

. Our main result is the following

Theorem 1. a) The variables µi and fj = − ln |ρj |
µ2

j

are conjugate with respect

to the bracket { , }2;

b) The variables µi and gj = − ln |ρj |
µ3

j

are conjugate with respect to the bracket

{ , }1.
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3. Conjugate variables. We will prove only part a) of the Theorem 1.
The part b) goes in the similar fashion. Since we follow Penskoi, only the key
points will be given. We need to show that

(3.1) {µi, µj}2 =

∫ 1

0

δµi

δm
B2 δµj

δm
dx = 0,

(3.2) {µi, fj}2 =

∫ 1

0

δµi

δm
B2 δfj

δm
dx = δij ,

(3.3) {fi, fj}2 =

∫ 1

0

δfi

δm
B2 δfj

δm
dx = 0.

Let us first calculate
δµi

δm
. We have

(3.4) y′′2 (x, µi) = −µimy2(x, µi),

which we write y′′2 = −µmy2 for short. The variation of (3.4) reads

(3.5) δy′′2 = −δµmy2 − µδmy2 − µmδy2.

We multiply this identity by y2 and integrate. Then the l.h.s. is transformed by
integrating by parts to obtain

(3.6) 0 = −δµ
∫ 1

0
my2

2dx−
∫ 1

0
µδmy2

2dx.

Since,

∫ 1

0
my2

2dx 6= 0, we get

(3.7)
δµi

δm
= −Aiµiy

2
2(x, µi),

where Ai =

[
∫ 1

0
my2

2(x, µi)dx

]−1

.

To calculate
δρi

δm
we first multiply (3.5) by y(x, µi), defined in (2.5). Next, we

multiply y′′ = −µmy by δy2, subtract so obtained identities and, finally integrate
to obtain

∫ 1

0
(yδy′′2 − y′′δy2)dx = −

∫ 1

0
δµmyy2dx−

∫ 1

0
µδmyy2dx.
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The l.h.s. gives
∫ 1

0
(yδy′′2 − y′′δy2)dx =

∫ 1

0
(yδy′2 − y′δy2)

′dx =

(yδy′2 − y′δy2)|10 = δy′2(1, µi)y(1, µi) =
δρi

ρi
= δ ln |ρi|.

Then

δ ln |ρi| = −δµiBi − µi

∫ 1

0
δmy2ydx,

where Bi =
∫ 1
0 my2(x, µi)y(x, µi)dx. Using (3.7) we get

(3.8)
δρi

δm
= AiBiµiy

2
2(x, µi) − µiy2(x, µi)y(x, µi).

Now we are ready to calculate the brackets (3.1)–(3.3).

{µi, µj}2 =

∫ 1

0

δµi

δm
B2 δµj

δm
dx = AiAjµiµj

∫ 1

0
y2
2(x, µi)B2y2

2(x, µj)dx.

The last integral is zero. This can be seen from

µiµj

∫ 1

0
y2
2(x, µi)B2y2

2(x, µj)dx
L1
= µi

∫ 1

0
y2
2(x, µi)B1y2

2(x, µj)dx
(2.7)
=

−µi

∫ 1

0
y2
2(x, µj)B1y2

2(x, µi)dx
L1
= −µ2

i

∫ 1

0
y2
2(x, µj)B2y2

2(x, µi)dx =

µ2
i

∫ 1

0
y2
2(x, µi)B2y2

2(x, µj)dx.

Hence, {µi, µj}2 = 0.
Next, we will show that {µi, ln |ρj |}2 = µ2

i δij from where (3.2) follows. The
case i 6= j is treated similarly as above. Let us consider the case i = j.

{µi, ln |ρi|}2 =

∫ 1

0

δµi

δm
B2 δ ln |ρi|

δm
dx =

−
∫ 1

0
Aiµiy

2
2(µi)B2

(

AiBiµiy
2
2(µi) − µiy2µi)y(µi)

)

dx =

−A2
iBiµ

2
i

∫ 1

0
y2
2(µi)B2y2

2(µi)dx+Aiµ
2
i

∫ 1

0
y2
2(µi)B2y2(µi)y(µi)dx =
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Aiµ
2
i

∫ 1

0
y2
2(µi)(m∂ + ∂m)y2(µi)y(µi)dx =

Aiµ
2
i

∫ 1

0
my2

2(µi)
(

y′(µi)y2(µi) − y′2(µi)y(µi)
)

dx.

The expression y′(µi)y2(µi) − y′2(µi)y(µi) is the Wronskian Wr(y, y2) which is a
constant. Then

Wr(y, y2) = y′(1, µi)y2(1, µi) − y′2(1, µi)y(1, µi) = −y(0, µi)

ρi
y′2(1, µi) = −1.

So, {µi, ln |ρi|}2 = −Aiµ
2
i

∫ 1
0 my

2
2(µi)dx = −µ2

i and hence

{µi, ln |ρj |}2 = −µ2
i δij and {µi, fj}2 = δij .

It remains to verify that {ln |ρi|, ln |ρj |}2 = 0. These calculations are similar to
those for the bracket {µi, µj}2 = 0. Therefore, {fi, fj}2 = 0. This finishes the
proof of the part a) of the Theorem 1. The part b) follows in an analogous way.

4. Evolution of the auxiliary spectrum. It is natural to express the
Hamiltonians Hn via the variables µi, fj , for example. It turns out that this is a
difficult task. That is why we shall study the motion of the auxiliary spectrum.
To do this we assume first that y1, y2 are the Floquet solutions of (1.11)

y1(0, λ) = 1, y′1(0, λ) = 0,

y2(0, λ) = 0, y′2(0, λ) = 1,

in particular

y1(x+ 1, µn) = y1(1, µn)y1(x, µn), y2(x+ 1, µn) = y′2(1, µn)y2(x, µn)

and according to the Wronskian relation

(4.1) y1(1, µn)y′2(1, µn) = 1.

Moreover, we also assume that

(4.2) y1(1, µn) = ∆ −
√

∆2 − 1, y′2(1, µn) = ∆ +
√

∆2 − 1.

If we denote y•2 to be the derivative with respect to λ, an easy calculation gives
that

∫ 1

0
my2

2(x, µn)dx = y•2y
′

2(1, µn).
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We may write the formula (3.7) as

(4.3)
δµn

δm
= −µn

y2
2(x, µn)

y•2y
′
2(1, µn)

.

Next, we compute (see [7])

(4.4)
δ∆

δm
= −λ

2
(y2(x+ 1, λ)y1(x, λ) − y2(x, λ)y1(x+ 1, λ)) = −λ

2
y+x
2 (1, λ),

where the superscript +x means that y2(1, λ) is computed for m translated in

amount 0 ≤ x < 1. Since
δ∆

δm
is a linear combination of products of solutions of

(1.11), it satisfies Lemma 1.

(4.5) λB2 δ∆

δm
= B1 δ∆

δm
.

Now, with h =
δµn

δm
we have

λ{µn,∆(λ)}2 =

∫ 1

0
hλB2 δ∆

δm
dx =

∫ 1

0
hB1 δ∆

δm
dx =

−1

2

[

h

(

δ∆

δm

)′′

− h′
(

δ∆

δm

)′

+ h′′
δ∆

δm

]1

0

−
∫ 1

0

δ∆

δm
B1hdx.

Note that h(0) = h(1) = h′(0) = h′(1) = 0, so

λ{µn,∆(λ)}2 = −1

2

[

h′′
δ∆

δm

]1

0

− µn

∫ 1

0

δ∆

δm
B2hdx

or

λ{µn,∆(λ)}2 = −1

2

[

h′′
δ∆

δm

]1

0

+ µn

∫ 1

0
hB2 δ∆

δm
dx.

Now, it is easy to obtain from here

{µn,∆(λ)}2 = −µn
λ

2

(y′2(1, µn))2 − 1

y•2y
′
2(1, µn)

y2(1, λ)

λ− µn

and with the help of (4.1) and (4.2)

(4.6) {µn,∆(λ)}2 = −µnλ

√
∆2 − 1

y•2(1, µn)

y2(1, λ)

λ− µn
.

It is known that the Hamiltonians Hn, n = 1, 2, . . . are coefficients in an
expansion of ∆(λ) : ∆(λ) = 1 −∑∞

n=1Hnλ
n. Since ∆•(0) = −H1, from (4.6)
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we can obtain the motion of the auxiliary spectrum under the flow of the µCH
equation

(4.7) µ̇n = {µn,H1}2 = µn

√
∆2 − 1

y•2(1, µn)

y2(1, 0)

−µn
= −

√
∆2 − 1

y•2(1, µn)
, n ≥ 1.

Similarly we can obtain the motion µn under the flows of the higher Hamiltonians
from (4.6).

It is seen that (4.7) is a system of infinitely many nonlinear differential equa-
tions in infinitely many variables. Only in the case of so called finite-gap poten-
tials (4.7) becomes a finite system whose solutions are usually expressed via theta
functions. This will be reported elsewhere.

5. Discussion. It turns out that the conjugate variables obtained here for
the µCH equation are practically the same as for the periodic CH equation.
Perhaps, the reason is that these equations, although different, have similar bi-
hamiltonian structures.

Let us return to the µCH equation (1.1). Formally we may think of µCH
equation in a following way. We take the HS equation and add a nonlocal term

−2µ(u)ux = −2H0[m]ux,

where H0 was defined in the Introduction.

One can consider an equation obtained in this way, but the other conserved
quantity is taken instead H0. For example, we may take H1 and obtain

−utxx = −2H1[m]ux + 2uxuxx + uuxxx.

Of course, the physical interpretation is missing, but the question is: Whether
this equation, obtained in that formal way, is integrable?
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