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NEW HARDY-TYPE INEQUALITIES WITH SINGULAR
WEIGHTS

Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov

Dedicated to Professor Petar Popivanov on the occasion of his 65th birthday

ABSTRACT. We prove a new Hardy—type inequality with weights that are
possibly singular at internal point and on the boundary of the domain. As
an illustration some applications and examples are given.

1. Introduction. With p > 2, n > 2 consider a function F € C'(R") N
WLHP(R™) and sets Gs = {z € R" : |F(z)| = s}, Gsy = {x € R" : 6 < |F(2)| <
M}, § > 0,M < oco. Suppose that there exist functions f, ¢ € WHP(Gg pr) and
the following conditions are satisfied:

(1) Fpr:_fSO

(2) VFEV) >0

Define a set of functions Up = {u € C'(Goo) and u|g, = o(6/7") for § — 0}
and with

w_’F’,pVFvw _F (www)l/p' Vi

VPP, h=— 2 % 7
~op VY =1 e Z
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and u € Ur consider the functions
L(t) = / |hVulP dz, R(t) = / wluPdx, N(t)= / fIF|7P|ulPdx.
Go,t Go,t Go,t

The aim of the paper is to prove a new Hardy inequality with singular weights
and to give some applications.

Theorem 1. Under the conditions (1) and (2), for every function u € Up
the following inequalities hold

o) L(t) > N(1),
3) b) L(#) (%) R(b).

The form of the Hardy inequalities (3) depends on two functions F, 1, satisfying
(1) and (2). Also the domain where inequalities (3) take place is defined by the
union of the level surfaces of function F'.

Starting with the work of [1] the 1-dimensional inequality is proved

(@) /O i (@) Patde > (u)p /O " o) Pda

p
where 1 < p < 0o, @ < p — 1, u(zx) is absolutely continuous on [0, 00), u(0) = 0.
There is a number of generalizations of (4) for n-dimensional case, see the
reviews in [2, 3]. Mainly two types of Hardy inequalities are studied.
First type concerns the optimal properties of the domain Q@ C R", n > 2
where inequality with kernels singular on the boundary 92 holds

(5) /Q Vu(@)Pd(z)dz > C /Q d(z) PO () P da

with d(x) = dist(z,00Q), p > 2, a <p—1, see [4, 5, 6, 7, 3, 8,9, 10, 11] etc.
Second type concerns inequalities with a kernel, singular in internal point of
Q, i.e.

2 Ju(z)?
(6) /Q]Vu(q:ﬂ dx > C'/Q PE dx

where u € C§°(Q2), Q C R", 0 € Q, n > 3, see [12, 13, 14, 15, 8, 16, 17] etc.

Let us note that the possibility to use two functions F' and v in the inequalities
(3) serves many new Hardy—type inequalities.

In what follows, in section 2 we will prove Theorem 1, together with the sharp-
ness results in Theorem 2. In section 3 are shown and commented applications
and two examples for some particular choices of F' and 1.

Y
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2. Main result. We start with the proof of Theorem 1.
Proof. Applying the Holder inequality we get

1 ’ /
_:/ wwphxquwdﬂzi/ W [P 2uhVude <
G(S t G6,t

1/p

1/
(/ w\u]pdac> (/ \hVu]pdac> ,
G&t G(S,t

and hence
P
/ W bV |ulPda
Gs,t

1 p
7 / hVulPdz > (—) —.
(7) Gm‘ | . P
/ w|u|Pdz
Gt

Using the definition of h and w and integrating by parts for the numerator of (7)
we obtain

VEV
VE]

Ho-1) [ FYETTp

Gs,t
_ _ VFVY

— F|"PEAuP — §17P

/GMH Sl A

/‘zwﬁwvmmmzﬁlp ——— VY|P 2 |ufPdo
Gs

Gy

VP~ |ulPdo.

Gs
Recall that u € Up, so the integral over Gy tends to 0 for § — 0, then after the
limit we get

/ﬁz&mwvmmmzt%R@%HP—UR@V*N“)
Go,t

Note that L(t) < co and from (7) we obtain

1)p (bR + (0 = DR() + N (1)"

> (; B0

Since t%R(t) >0, N(t) >0 and R(t) > 0 we get (3) b).

To prove (3) a) we use the Jensen inequality

caP

W_pca—( —]_)Cp/b7 c> 0.

(®)
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1/.d
From (8) with a = ” (tﬁR(t) + (p—1)R(t) —i—N(t)), b= R(t) and ¢ = 1 it
follows

L) > (t%R(t) + N(t)) .
and we get (3) a). O

The following sharpness result holds.

Theorem 2. Suppose that F and v satisfy (1) and (2). Then for u. =
1+e
\F\:_’, e > 0 it follows that R(t) < oo and the inequality (3) b) is e-sharp, i.e.:

1+e\”
) ze = (25) ro)
p
Proof. The kernels of L(t) and R(t) for the case are correspondingly:
1y P
F VFvw)lm Ve
hVu. P = |— ——Vu
ek = | (eor)  mar
1 P 1 dde 2_qP
= () vy iR v
1 P ite_
B < +/6> (VEVY) [F| 7 |Vyp,
p
VFVY
P — |F|P Pl |P
wluP = PP V0

14e
= |FIPVEVY|Vy P2 P
and (9) holds. O

3. Applications.

3.1. Inequality with distance to 9€2. With the appropriate choice of F
and v such that N > 0 we can use (3) a) and to obtain a generalization of the
result of [16].

Consider 2 C R™ and let K be a smooth surface with codm K =k, 1 < k <

—k
n. Let d(z) = dist(x, K), denote A = P 1 and let the condition (C) from [16]
holds, i.e.

(10) Apd* <0 in Q\K, A#0
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An equivalent form of (10) is
(11) —AdAd > AA=1)(p—1) on QK

Let F' =1 = 1(d), then condition (2) is true. As for the condition (1) using (11)
/

and assuming that Y > 0 we have

W\p ’

(12) At = T——(p = DI = D' — ).

For example, let us choose ¥ such that
(13) dy = X\pV(Ind) with V >0

We have to determine V' such that condition (1), i.e. FA,y < 0 holds and to
find the kernel of N, i.e. Ny = —|F|"PFAp.
From (12) and (13) we get

MV/

A" = ' (AV — 1) + %V’ e ;

OV -1+

A\ — 1)) —d*" = A\ = DYV = Ap(AV = 1)V = XV’ = M[NV = V) = V7]

Then
1-p d /p—2
No = ol A = (- )W iy — a2
Ap2yp—2
= -0 ey v v
APVP2T 1, 2
= -1)—— |-V +V -V
=10y 3V
and APVET V1
No>(p—1)2— |- — 1.
0= -D7g [ Wty ]
"t 1
Denote G(t) = — Vi(Y) + —— — 1 and we need to have G > 0. Since

W2 V()

(14) (%)l = —A% +A1+G).
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1
then a solution v of (14) is

(15) (%) =14 e M /t: MG (s)ds.

where for A > 0,y = —oo and for A < 0,tg > t.
From (15) we get

AP G(t
R Y- N,
14 Xe fto erG(s)ds|P
1
With a change of function G(t) = FH (eM) we obtain
p H N
(16) Nzl HG M
[—, +— H(O‘)dO’:|
D PsSJs

k
where p = —p, s =eM = d* and: for A > 0, H(0) = 1,50 = 0 and H is
p

increasing on the interval (0,0),d > 0; for A < 0, H(oc0) = 1.
At this point, using Theorem 1, (3) a) we obtain the Hardy inequality

(17) /Q|Vu(x)]pdx2/§2N0]u(1:)|pd1:2/ﬂ%]u(1:)|pd1:

Example 1. Now let us show that with a certain choice of H we can obtain
the result of [16], Theorem A, equation (1.8).
Let A > 0 and replacing H(s) = 1+ Q(s) from (16) we obtain for N; = dP Ny

1+ Q)

ot foon]

Ny = |pfP

We can find Q(s) such that

1 P’ 1
18 N > |pP- (145 ———), D> Dy=maxd.

i foon]

Denote
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and to obtain (18) it is enough to find z such that

sz 1, 1 7
——2 ——|14+= >0
(19) =p Ty e\ T aeE )Y
D
2(0) =1, z>0, zisincreasing.
We are asking for z in the form
1 b 1 2b
z:1+—8+—5,thenz/:— 5 5 1+ 5
In— In?= sln D In —
D D D

and for every D > Dj we can find b such that 2’ > 0, i.e.
1
(20) bg—im%,mrs<n

Expanding the term z? in (19) in a Taylor series up to the third term and
simplifying, the inequality in (19) becomes

= <b_ 659_—21>> mi’i%) vo(w ()20 forb> P

So for

p—2 1. s

——<b< ——In—, f D.

6(p—1)< < 2nD, or s <
the inequality (19) holds and (17) becomes the result of [16]. In a similar way
but using the Taylor expansion of P up to the m!” term we can obtain the result
in [17).
Note that the equation (13) is very essential. It can be used also for Hardy
inequality base on (3) b).

Example 2. By means of (13) with V = 1, i.e. ¢ = d*, if (10) holds with

k =1, so that A = 1, we can get inequality (5). Indeed, if FF =d", 0 <y < 1,
then (1) and (2) hold and by (3) b) we get

—1—«

p
(21) / |Vd(z)Vu(x)|Pd(x)*dx > }p ) / d(x) P u(x)|Pdz
Q Q

where Q@ = {z: 0 < d¥ <t} and @ = (1 —v)(p — 1). Note that Q can be a strip
and function u in (21) should be 0 only on part of the boundary of €, i.e. for
{z : d(x) = 0} but not on {z : d(x) = t}.

Since |Vd| = 1, the inequality (5) follows by (21). Moreover from Theorem 2
the inequality (21) is e-sharp.
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3.2. Inequality with double singularity in the kernels. Let 2 C R",
n > 2 be a bounded domain, function ¢(x) > 0 in 2, A,y < 0 and

There exists a function A € C%1(Q), A(z) > 0,

22
(22) such that Q C {¢(x) < A(z)} and Vi)V < 0.
With s = % € (0,1) define the function
1 _
for m # 0
g(s) = . , where m will be chosen later.
In— form=20
s
A
With ¢ and F = — wAg B <0and m = ~5 the conditions (1), (2) are
satisfied, indeed
1
VOVE = —pt g T VP [Ag + mBg — B] = ¢ gP T VY > 0
1
—FAyp = _qu/)EwAgB

Applying Theorem 1, (3) b) we get

@) [y -p|wpdx>( ) [ oA BT,

Due to the Theorem 2, the inequality (23) is sharp.

—1 p—n
Example 3. Let ¢ = (p_) ]m\gfl , p # n, then \VQ/J]p*QVzb = |z| "z
p—n

Y

1 _
Define F' = ———[[40450 with Ag = 2= gy = PP=L 15 21 Note
By p—n

that condition By < 0 is not necessary since A, = 0, so ( ), (2) hold and
inequality (23) becomes

—n)Bn P
@ [Pt gupar > BB ey,

In the particular case « = =1, A = 1, so Q = B;(0) the inequality (24) becomes

P
(25) /\Vu]pdacz ’u} /\xy—pyg\—pyu\pd:c.
Q p Q

Note that |g|™? > 1, so the inequality (25) improves the inequality (6).
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Remark. It is interesting to analyze whether the condition u € Ugr can be
replaced with weaker condition (26)

(26)

1]
2]

3]

/ |hVu|Pdr < oo and u|p—g = 0.
Go,m
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