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Abstract. We prove a new Hardy–type inequality with weights that are
possibly singular at internal point and on the boundary of the domain. As
an illustration some applications and examples are given.

1. Introduction. With p ≥ 2, n ≥ 2 consider a function F ∈ C1(Rn) ∩
W 1,p(Rn) and sets Gs = {x ∈ Rn : |F (x)| = s}, Gδ,M = {x ∈ Rn : δ < |F (x)| <
M}, δ ≥ 0,M ≤ ∞. Suppose that there exist functions f , ψ ∈ W 1,p(G0,M ) and
the following conditions are satisfied:

(1) F∆pψ = −f ≤ 0

(2) ∇F∇ψ ≥ 0

Define a set of functions UF = {u ∈ C1(G0,∞) and u|Gδ
= o(δ1/p′) for δ → 0}

and with

w = |F |−p∇F∇ψ

|∇ψ|2
|∇ψ|p, h =

F

|F |

(

∇F∇ψ

|∇ψ|2

)−1/p′ ∇ψ

|∇ψ|
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and u ∈ UF consider the functions

L(t) =

∫

G0,t

|h∇u|p dx, R(t) =

∫

G0,t

w|u|pdx, N(t) =

∫

G0,t

f |F |−p|u|pdx.

The aim of the paper is to prove a new Hardy inequality with singular weights
and to give some applications.

Theorem 1. Under the conditions (1) and (2), for every function u ∈ UF

the following inequalities hold

(3)
a) L(t) ≥ N(t),

b) L(t) ≥

(

1

p′

)p

R(t).

The form of the Hardy inequalities (3) depends on two functions F , ψ, satisfying
(1) and (2). Also the domain where inequalities (3) take place is defined by the
union of the level surfaces of function F .

Starting with the work of [1] the 1-dimensional inequality is proved

(4)

∫ ∞

0
|u′(x)|pxαdx ≥

(

p− 1 − α

p

)p ∫ ∞

0
x−p+α|u(x)|pdx

where 1 < p <∞, α < p− 1, u(x) is absolutely continuous on [0,∞), u(0) = 0.
There is a number of generalizations of (4) for n-dimensional case, see the

reviews in [2, 3]. Mainly two types of Hardy inequalities are studied.
First type concerns the optimal properties of the domain Ω ⊂ Rn, n ≥ 2

where inequality with kernels singular on the boundary ∂Ω holds

(5)

∫

Ω
|∇u(x)|pd(x)αdx ≥ C

∫

Ω
d(x)−p+α|u(x)|pdx

with d(x) = dist(x, ∂Ω), p ≥ 2, α < p− 1, see [4, 5, 6, 7, 3, 8, 9, 10, 11] etc.
Second type concerns inequalities with a kernel, singular in internal point of

Ω, i.e.

(6)

∫

Ω
|∇u(x)|2dx ≥ C

∫

Ω

|u(x)|2

|x|2
dx

where u ∈ C∞
0 (Ω), Ω ⊆ Rn, 0 ∈ Ω, n ≥ 3, see [12, 13, 14, 15, 8, 16, 17] etc.

Let us note that the possibility to use two functions F and ψ in the inequalities
(3) serves many new Hardy–type inequalities.

In what follows, in section 2 we will prove Theorem 1, together with the sharp-
ness results in Theorem 2. In section 3 are shown and commented applications
and two examples for some particular choices of F and ψ.
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2. Main result. We start with the proof of Theorem 1.
P r o o f. Applying the Hölder inequality we get

1

p

∫

Gδ,t

w1/p′h∇|u|pdx =

∫

Gδ,t

w1/p′ |u|p−2uh∇udx ≤

(

∫

Gδ,t

w|u|pdx

)1/p′ (
∫

Gδ,t

|h∇u|pdx

)1/p

,

and hence

(7)

∫

Gδ,t

|h∇u|pdx ≥

(

1

p

)p

∣

∣

∣

∣

∣

∫

Gδ,t

w1/p′h∇|u|pdx

∣

∣

∣

∣

∣

p

(

∫

Gδ,t

w|u|pdx

)p−1 .

Using the definition of h and w and integrating by parts for the numerator of (7)
we obtain

∫

Gδ,t

w1/p′h∇|u|pdx = t1−p

∫

Gt

∇F∇ψ

|∇F |
|∇ψ|p−2|u|pdσ

+(p− 1)

∫

Gδ,t

|F |−p∇F∇ψ|∇ψ|p−2|u|p

−

∫

Gδ,t

|F |−pF∆pψ|u|
p − δ1−p

∫

Gδ

∇F∇ψ

|∇F |
|∇ψ|p−2|u|pdσ.

Recall that u ∈ UF , so the integral over Gδ tends to 0 for δ → 0, then after the
limit we get

∫

G0,t

w1/p′h∇|u|pdx ≥ t
d

dt
R(t) + (p− 1)R(t) +N(t).

Note that L(t) <∞ and from (7) we obtain

L(t) ≥

(

1

p

)p
(

t d
dtR(t) + (p− 1)R(t) +N(t)

)p

Rp−1(t)
.

Since t
d

dt
R(t) ≥ 0, N(t) ≥ 0 and R(t) ≥ 0 we get (3) b).

To prove (3) a) we use the Jensen inequality

(8)
cap

cp′bp−1
≥ pca− (p − 1)cp

′

b, c > 0.
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From (8) with a =
1

p

(

t
d

dt
R(t) + (p− 1)R(t) +N(t)

)

, b = R(t) and c = 1 it

follows

L(t) ≥

(

t
d

dt
R(t) +N(t)

)

.

and we get (3) a). �

The following sharpness result holds.

Theorem 2. Suppose that F and ψ satisfy (1) and (2). Then for uε =

|F |
1+ε

p′ , ε > 0 it follows that R(t) <∞ and the inequality (3) b) is ε-sharp, i.e.:

(9) L(t) =

(

1 + ε

p′

)p

R(t).

P r o o f. The kernels of L(t) and R(t) for the case are correspondingly:

|h∇uε|
p =

∣

∣

∣

∣

∣

F

|F |

(

∇F∇ψ

|∇ψ|2

)−1/p′ ∇ψ

|∇ψ|
∇uε

∣

∣

∣

∣

∣

p

=

(

1 + ε

p′

)p ∣
∣

∣(∇F∇ψ)
1− 1

p′ |F |
1+ε

p′
−1

|∇ψ|
2

p′
−1
∣

∣

∣

p

=

(

1 + ε

p′

)p

(∇F∇ψ) |F |
1+ε

p′
−1

|∇ψ|p−2,

w|uε|
p = |F |−p∇F∇ψ

|∇ψ|2
|∇ψ|p|uε|

p

= |F |−p∇F∇ψ|∇ψ|p−2|F |
1+ε

p′
p

and (9) holds. �

3. Applications.

3.1. Inequality with distance to ∂Ω. With the appropriate choice of F
and ψ such that N > 0 we can use (3) a) and to obtain a generalization of the
result of [16].

Consider Ω ⊂ Rn and let K be a smooth surface with codimK = k, 1 ≤ k <

n. Let d(x) = dist(x,K), denote λ =
p− k

p− 1
and let the condition (C) from [16]

holds, i.e.

(10) ∆pd
λ ≤ 0 in Ω\K, λ 6= 0
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An equivalent form of (10) is

(11) −λd∆d ≥ λ(λ− 1)(p − 1) on Ω\K

Let F = ψ = ψ(d), then condition (2) is true. As for the condition (1) using (11)

and assuming that
ψ′

λ
> 0 we have

(12) −∆pψ ≥
|ψ′|p−2

d
(p − 1)[(λ− 1)ψ′ − dψ′′].

For example, let us choose ψ such that

(13) dψ′ = λψV (ln d) with V > 0

We have to determine V such that condition (1), i.e. F∆pψ ≤ 0 holds and to
find the kernel of N , i.e. N0 = −|F |−pF∆pψ.

From (12) and (13) we get

dψ′′ = ψ′(λV − 1) +
λψ

d
V ′ = V

λψ

d
(λV − 1) +

λψ

d
V ′,

so

d(λ− 1)ψ′ − d2ψ′′ = λ(λ− 1)ψV − λψ(λV − 1)V − λψV ′ = λψ[λ(V − V 2)− V ′].

Then

N0 = −ψ|ψ|−p∆pψ ≥ (p − 1)
ψ1−p|dψ′|p−2

dp
[(λ− 1)dψ′ − d2ψ′′]

= (p − 1)
|λ|p−2V p−2

dp
[λ2(V − V 2) − λV ′]

= (p − 1)
|λ|pV p−2

dp

[

−
1

λ
V ′ + V − V 2

]

and

N0 ≥ (p − 1)
|λ|pV p

dp

[

−
V ′

λV 2
+

1

V
− 1

]

.

Denote G(t) = −
V ′(t)

λV (t)2
+

1

V (t)
− 1 and we need to have G > 0. Since

(14)

(

1

V

)′

= −λ
1

V
+ λ(1 +G).
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then a solution
1

V
of (14) is

(15)

(

1

V

)

= 1 + λe−λt

∫ t

t0

eλsG(s)ds.

where for λ > 0, t0 = −∞ and for λ < 0, t0 ≥ t.
From (15) we get

N0 ≥ (p− 1)
|λ|p

dp

G(t)

[1 + λe−λt
∫ t
t0
eλsG(s)ds]p

.

With a change of function G(t) =
1

p− 1
H(eλt) we obtain

(16) N0 ≥
|µ|p

dp

H(s)
[

1

p′
+

1

ps

∫ s

s0

H(σ)dσ

]p =
N1

dp
.

where µ =
k − p

p
, s = eλt = dλ and: for λ > 0, H(0) = 1, s0 = 0 and H is

increasing on the interval (0, δ), δ > 0; for λ < 0, H(∞) = 1.
At this point, using Theorem 1, (3) a) we obtain the Hardy inequality

(17)

∫

Ω
|∇u(x)|pdx ≥

∫

Ω
N0|u(x)|

pdx ≥

∫

Ω

N1

dp
|u(x)|pdx

Example 1. Now let us show that with a certain choice of H we can obtain
the result of [16], Theorem A, equation (1.8).

Let λ > 0 and replacing H(s) = 1 +Q(s) from (16) we obtain for N1 = dpN0

N1 = |µ|p
1 +Q(t)

[

1 +
1

ps

∫ s

0
Q(σ)dσ

]p .

We can find Q(s) such that

(18) N1 ≥ |µ|p
1

p

(

1 +
p′

2

1

ln2(s/D)

)

, D > D0 = max
Ω\K

d.

Denote

z =

[

1 +
1

ps

∫ s

0
Q(σ)dσ

]1−p
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and to obtain (18) it is enough to find z such that

(19)

sz′

1 − p
+ z −

1

p′
zp′ −

1

p



1 +
p′

2

1

ln2 s

D



 ≥ 0,

z(0) = 1, z > 0, z is increasing.

We are asking for z in the form

z = 1 +
1

ln
s

D

+
b

ln2 s

D

, then z′ = −
1

s ln2 s
D



1 +
2b

ln
s

D





and for every D > D0 we can find b such that z′ ≥ 0, i.e.

(20) b ≤ −
1

2
ln

s

D
, for s < D.

Expanding the term zp′ in (19) in a Taylor series up to the third term and
simplifying, the inequality in (19) becomes

1

1 − p

(

b−
p− 2

6(p − 1)

)

1

ln3( s
D )

+ o
(

ln−3
( s

D

))

≥ 0, for b >
p− 2

6(p − 1)
.

So for
p− 2

6(p − 1)
< b ≤ −

1

2
ln

s

D
, for s < D.

the inequality (19) holds and (17) becomes the result of [16]. In a similar way
but using the Taylor expansion of zp′ up to the mth term we can obtain the result
in [17].

Note that the equation (13) is very essential. It can be used also for Hardy
inequality base on (3) b).

Example 2. By means of (13) with V ≡ 1, i.e. ψ = dλ, if (10) holds with
k = 1, so that λ = 1, we can get inequality (5). Indeed, if F = dγ , 0 < γ < 1,
then (1) and (2) hold and by (3) b) we get

(21)

∫

Ω
|∇d(x)∇u(x)|pd(x)αdx ≥

∣

∣

∣

∣

p− 1 − α

p

∣

∣

∣

∣

p ∫

Ω
d(x)−p+α|u(x)|pdx

where Ω = {x : 0 < dγ < t} and α = (1 − γ)(p − 1). Note that Ω can be a strip
and function u in (21) should be 0 only on part of the boundary of Ω, i.e. for
{x : d(x) = 0} but not on {x : d(x) = t}.

Since |∇d| = 1, the inequality (5) follows by (21). Moreover from Theorem 2
the inequality (21) is ε-sharp.



244 A. Fabricant, N. Kutev, T. Rangelov

3.2. Inequality with double singularity in the kernels. Let Ω ⊂ Rn,
n ≥ 2 be a bounded domain, function ψ(x) > 0 in Ω, ∆pψ ≤ 0 and

(22)
There exists a function λ ∈ C0,1(Ω), λ(x) > 0,

such that Ω ⊂ {ψ(x) < λ(x)} and ∇ψ∇λ ≤ 0.

With s =
ψ

λ
∈ (0, 1) define the function

g(s) =















1 − sm

m
for m 6= 0

ln
1

s
for m = 0

, where m will be chosen later.

With ψ and F = −
1

B
ψAgB , B < 0 and m = −

A

B
the conditions (1), (2) are

satisfied, indeed

∇ψ∇F = −
1

B
ψA−1gB−1|∇ψ|2[Ag +mBg −B] = ψA−1gB−1|∇ψ|2 > 0

−F∆pψ = −∆pψ
1

B
ψAgB ≥ 0.

Applying Theorem 1, (3) b) we get

(23)

∫

Ω
(ψA−1gB−1)1−p|∇u|pdx ≥

(

|B|

p′

)p ∫

Ω
ψA(1−p)−1gB(1−p)−1|∇ψ|p|u|pdx.

Due to the Theorem 2, the inequality (23) is sharp.

Example 3. Let ψ =

(

p− 1

p− n

)

|x|
p−n

p−1 , p 6= n, then |∇ψ|p−2∇ψ = |x|−nx.

Define F = −
1

B0
|ψ|A0gB0 , with A0 =

αp− n

p− n
, B0 =

pβ − 1

p− 1
, pβ 6= 1. Note

that condition B0 < 0 is not necessary since ∆pψ = 0, so (1), (2) hold and
inequality (23) becomes

(24)

∫

Ω
|x|p(1−α)gp(1−β)|∇u|pdx ≥

∣

∣

∣

∣

(p − n)B0

p

∣

∣

∣

∣

p ∫

Ω
|x|−αp|g|−βp|u|pdx.

In the particular case α = β = 1, λ = 1, so Ω = B1(0) the inequality (24) becomes

(25)

∫

Ω
|∇u|pdx ≥

∣

∣

∣

∣

p− n

p

∣

∣

∣

∣

p ∫

Ω
|x|−p|g|−p|u|pdx.

Note that |g|−p ≥ 1, so the inequality (25) improves the inequality (6).
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Remark. It is interesting to analyze whether the condition u ∈ UF can be
replaced with weaker condition (26)

(26)

∫

G0,M

|h∇u|pdx <∞ and u|F=0 = 0.
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quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12

(1933), 1–82.

[13] I. Peral, J. Vazquez. The semilinear heat equation with exponential re-
action term. Arch. Rat. Mech. Appl. 129 (1995), 201–224.

[14] H. Brezis, J. Vazquez. Blow–up solutions of some nonlinear elliptic prob-
lem. Rev. Mat. Complut. 10 (1997), 443–469.

[15] Admurthi, S. Fillipas, A. Tetrikas. On the best constant of Hardy–
Sobolev inequalities. Nonlinear Analysis 70 (2009), 2826–2833.

[16] G. Barbitas, S. Fillipas, A. Tetrikas. A unified approach to improved
Lp Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356, 6

(2003), 2169–2196.

[17] G. Barbitas, S. Fillipas, A. Tetrikas. Series expantion for Lp Hardy
inequalities. Ind. Uni. Math. J. 52, 1 (2003), 171–189.

Institute of Mathematics and Informatics

Department of Differential Equations and Mathematical Physics

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mails: fabrican@math.bas.bg, kutev@math.bas.bg, rangelov@math.bas.bg


