
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62661005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Pliska Stud. Math. Bulgar. 21 (2012), 217–236
STUDIA MATHEMATICA
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ON THE 3-WAVE EQUATIONS WITH CONSTANT

BOUNDARY CONDITIONS

V. S. Gerdjikov, G. G. Grahovski

Abstract. The inverse scattering transform for a special case of the 3-
wave resonant interaction equations with non-vanishing boundary conditions
is studied. The Jost solutions and the fundamental analytic solutions (FAS)
for the associated spectral problem are constructed. The inverse scattering
problem for the Lax operator is formulated as a Riemann-Hilbert problem
on a Riemannian surface. The spectral properties of the Lax operator are
formulated.

1. Introduction. One of the important nonlinear models with numerous
applications in physics that appeared at the early stages of development of the
inverse scattering method (ISM), see [38, 39, 25, 40, 30, 13, 27], is the 3-wave
resonant interaction model described by the equations:

i
∂q1
∂t

+ iv1
∂q1
∂x

+ κq∗2q3 = 0,

i
∂q2
∂t

+ iv2
∂q2
∂x

+ κq∗1q3 = 0,(1)

i
∂q3
∂t

+ iv3
∂q3
∂x

+ κq1q2 = 0.
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Here qi = qi(x, t), i = 1, 2, 3, κ is the interaction constant, vi are the group
velocities of the model and the asterisk stays for complex conjugation. The 3-
wave equations can be solved through the ISM due to the fact that Eq. (1) allows
a Lax representation (see eq. (3) below). The main result of the pioneer papers
[38, 39] consist also in proving that if uk(x, t), k = 1, 2, 3 satisfy the system (1),
then the one-parameter family of ordinary differential operators (3) is iso-spectral
(assuming vanishing boundary conditions as |x| → ∞: lim|x|→∞ qk(x, t) = 0,
k = 1, 2, 3).

The 3- and N -wave interaction models describe a special class of wave-wave
interactions that are not sensitive on the physical nature of the waves and bear
an universal character. This explains why they find numerous applications in
physics and attract the attention of the scientific community over the last few
decades [38, 39, 40, 10, 25, 26, 27, 7, 8, 9, 11, 31, 12, 19, 4, 5].

The interpretation of the inverse scattering method (ISM) as a generalized
Fourier transform and the expansions over the so called squared solutions started
in [2] for the nonlinear Schrödinger type equations, was soon generalized also for
the N -wave equations [22, 23], see [24] and the numerous references therein. It
allows one to study all fundamental properties of the relevant nonlinear evolu-
tionary equations (NLEEs) which include:

1. the description of the whole class of NLEE related to a given spectral prob-
lem (Lax operator L(λ) in the form (3)) solvable by the ISM;

2. derivation of the infinite family of integrals of motion associated with L(λ);

3. the Hamiltonian properties of the NLEEs.

For the case of (1) one can show that the model equations are Hamiltonian
[38, 39, 40] and possess a hierarchy of pairwise compatible Hamiltonian structures
[22, 23, 24]. The (canonical) Hamiltonian of (1) is given by [40, 16, 25, 27]:

(2) H3−w =
1

2

∫ ∞

−∞
dx

(

3
∑

k=1

vk

(

qk
∂q∗k
∂x

− q∗k
∂qk
∂x

)

+ κ(q3q
∗
1q

∗
2 + q∗3q1q2)

)

.

Along with the case of (1) with vanishing boundary conditions, a special interest
deserves the case when some (or all) of the functions qk(x, t) tend to a constant
as x→ ±∞. Below we choose:

q1,2(x, t) → 0, q3(x, t) → ρeiφ± , x→ ±∞.
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Here the constants θ = φ+ − φ− and ρ are of a physical origin [13] and play a
basic role in determining the properties of (1) with constant boundary conditions
and its soliton solutions. More specifically, ρ characterizes the end-points of the
continuous spectrum of (1) of the Lax operator L(λ). The discrete spectrum,
in this case, may consist of real simple eigenvalues λk, k = 1, . . . , N lying in
the lacuna −2ρ < λk < 2ρ. To them, there correspond the so-called “dark
solitons” whose properties and behavior substantially differ from the ones of the
bright solitons. The dark solitons for the nonlinear Schrödinger type equations
and their generalizations with non-vanishing boundary conditions are studied in
[20, 21, 29, 28, 32, 33]. Similar results for the discrete nonlinear Schrödinger type
equations (the Ablowitz-Ladik hierarchy) are obtained in [1, 36].

It is normal to expect that the properties 1 – 3, known for the case of van-
ishing boundary conditions will have their counterparts for the case of constant
boundary conditions. However there is no easy and direct way to do so. The most
concise and systematic treatment of both problems (on the example of nonlinear
Schrödinger equation) is given in [13]. It is shown there that one may relate both
cases by taking a limit ρ → 0. Of course, in this limit most of the difficulties,
related mostly with the end-points of the continuous spectrum disappear. From
[13] one can see that the spectral data, the analyticity properties of the Jost
solutions and the corresponding Riemann-Hilbert [14, 37, 34, 35] problem are
substantially different and more difficult for ρ > 0.

The aim of the present paper is to study the direct scattering problem for
the Lax operator and its spectral properties. In Section 2 we start with the Lax
representation and the construction of the Jost solutions of the Lax operator L.
In Section 3 we outline the construction of the fundamental analytic solutions
(FAS) of L. We also formulate the Riemann-Hilbert problem on the relevant
Riemannian surface, that is satisfied by the FAS. In section 4 we derive the time
evolution for the scattering matrix. Section 5 is devoted to constructing the
resolvent of L in terms of the FAS and the spectral properties of L. The effects
of the boundary conditions on the conserved quantities of the 3-wave equations
are analyzed in Section 6. We finish with a brief discussion and conclusions.

2. Lax representation and Jost solutions. The idea of the Inverse
Scattering Method (ISM) is based on the possibility to linearise the nonlinear
evolutionary equation (NLEE) [3, 6, 40]. To this end we consider the solution of
the NLEE uk(x, t), k = 1, 2, 3 as a potential in the Lax operator L(λ).

Consider the pair of Lax operators:

Lψ ≡

(

i
∂

∂x
+ [J,Q(x, t)] − λJ

)

ψ(x, t, λ) = 0,(3)
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Mψ ≡

(

i
∂

∂t
+ [I,Q(x, t)] − λI

)

ψ(x, t, λ) = 0,

with

(4) Q =







0 q1 q3

q∗1 0 q2

q∗3 q∗2 0






,

J = diag (J1, J2, J3),

I = diag (I1, I2, I3).

We presume that the potential matrices Q(x, t), I and J are traceless (i.e. the
Lax operators take values in the algebra sl(3,C)) and the eigenvalues of I and
J are ordered as follows: J1 > J2 > J3, I1 > I2 > I3 (J1 + J2 + J3 = 0 and
I1 + I2 + I3 = 0). Here λ ∈ C is a spectral parameter.

The compatibility condition for (3) leads to

(5) i[J,Qt] − i[I,Qx] + [[I,Q], [J,Q]] = 0,

which is equivalent to (1), if the potential matrices are taken from (4). The group
velocities in (1) take the form:

v1 =
I1 − I2
J1 − J2

, v2 =
I2 − I3
J2 − J3

, v3 =
I1 − I3
J1 − J3

,

while the interaction constant κ reads:

κ = J1I2 + J2I3 + J3I1 − J2I1 − J3I2 − J1I3.

We will assume also, that the potential of the Lax operator is a subject of constant
boundary conditions as |x| → ∞:

lim
x→±∞

q1(x, t) = lim
x→±∞

q2(x, t) = 0, lim
x→±∞

q3(x, t) = q±3 = ρeiφ± .(6)

Equivalently, for the potential matrix Q(x, t) one can write:

lim
x→±∞

Q(x, t) = Q±, Q± =







0 0 ρeiφ±

0 0 0

ρe−iφ± 0 0







The difference θ = φ+−φ− of the asymptotic phases φ± plays a crucial rôle in the
Hamiltonian formulation of the 3-wave model with constant boundary conditions:
its values label the leaf on the phase space M of the model (1) where one can
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determine the class of admissible functionals, and to construct a Hamiltonian
formulation. The two asymptotic potentials Q± are related by

Q+ = Q(θ)Q−(t)Q−1(θ),(7)

where θ = φ+ − φ− and

Q(θ) =







eiθ/2 0 0

0 1 0

0 0 e−iθ/2






.(8)

The direct and the inverse scattering problem for the Lax operator (6) will be
done for fixed t and in most of the corresponding formulae t will be omitted.

The starting point in developing the direct scattering transform for the Lax
operator (3) are the eigenfunctions (the so-called Jost solutions) of the auxiliary
spectral problem

L(x, t, λ)ψ±(x, t, λ) = 0,(9)

determined uniquely by their asymptotic behavior for x→ ±∞ respectively:

lim
x→±∞

ψ±(x, t, λ)eiJ(λ)x = ψ±,0(λ)P (λ),(10)

where P (λ) is a projector:

P (λ) = diag (θ(|Reλ| − 2ρ), 1, θ(|Re λ| − 2ρ))(11)

and θ(z) is the step function. As we shall see below, P (λ) ensures that the
continuous spectrum of L has multiplicity 3 for |Reλ| − 2ρ > 0 and multiplicity
1, for −2ρ < Reλ < 2ρ. The x and t-independent matrices ψ±,0(λ) in (10)
diagonalize the asymptotic Lax operators:

L±(x, t, λ) = i
∂

∂x
+ [J,Q±] − λJ.(12)

Indeed,

([J,Q±] − λJ)ψ±,0(λ) = −ψ±,0(λ)J(λ),(13)
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where

(14)

J(λ) = −diag (J1(λ), J2(λ), J3(λ)),

J1(λ) =
1

2

[

J2λ+ (J1 − J3)
√

λ2 − 4ρ2
]

, J2(λ) = −λJ2,

J3(λ) =
1

2

[

J2λ− (J1 − J3)
√

λ2 − 4ρ2
]

, k(λ) =
√

λ2 − 4ρ2.

For the choice of Q± as in (7) we have:

(15) ψ±,0(λ) =
1

√

2λ(k + λ)







2ρ 0 −(λ+ k)eiφ±

0 1 0

(λ+ k)e−iφ± 0 2ρ







Here and below we will deal with the Riemannian surface related to k(λ); its first
sheet is fixed up by the condition: sign Im k(λ) = sign Imλ. The Jost solutions
ψ+(x, t, λ) and ψ−(x, t, λ) are related by the scattering matrix T (t, λ):

T (t, λ) = ψ−1
+ (x, t, λ)ψ−(x, t, λ), detT (λ) = 1.(16)

For a sake of convenience, from now on, instead of the spectral parameter λ we
will be using the so-called “uniformizing variable”

ζ =
1

2ρ
(λ+ k(λ)).(17)

In terms of ζ we have:

λ = ρ

(

ζ +
1

ζ

)

, k(λ) = ρ

(

ζ −
1

ζ

)

.

Then, the formulas (14) take the form:

(18) J(ζ) = −ρdiag

(

J3ζ +
J1

ζ
, J2

(

ζ +
1

ζ

)

, J1ζ +
J3

ζ

)

.

Along with the Jost solutions (10) it is convenient to consider slightly modified
Jost solutions:

η±(x, ζ) = ψ−1
±,0(ζ)ψ±(x, ζ)eiJ(ζ)x, lim

x→±∞
η±(x, ζ) = 11,(19)
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and satisfying the following associated to (9) equation:

(20) i
∂η±
∂x

+ψ−1
±,0[J,Q(x, t)−Q±]ψ±,0η±− ρ(ζ + ζ−1)[J(ζ), η±(x, t, ζ)] = 0.

Equivalently, η±(x, ζ) can be regarded as solutions to the following Volterra-type
integral equations:

(21) η±(x, ζ) = 11 + i

∫ x

±∞
dy e−iJ(ζ)(x−y)

× ψ−1
±,0[J,Q(y) −Q±]ψ±,0η±(y, ζ)eiJ(ζ)(x−y), ζ ∈ R,

where the diagonal matrix J(ζ) is given in (18).

In addition the second column of the Jost solution is defined also on the unit
circle in the ζ-plane:

(22) (η
(2)
± )k2(x, ζ) = δk2 + i

∫ x

±∞
dy e−i(Jk(ζ)−J2(ζ))(x−y)

×
(

ψ−1
±,0[J,Q(y) −Q±]ψ±,0η±(y, ζ)

)

, |ζ| = 1.

3. The fundamental analytic solutions of L. In order to construct
the fundamental analytic solutions (FAS) of L we first need to determine the
regions of the complex ζ-plane in which the imaginary parts of the eigenvalues of
J(ζ) are ordered. To do this we first need to find the curves on which

Im (Jj(ζ) − Jk(ζ)) = 0, 1 ≤ j < k ≤ 3; Im J1(ζ) = 0.(23)

Writing down ζ = |ζ|eiφ0 we find:

Im (J1(ζ) − J2(ζ)) = ρ

(

(J2 − J3)|ζ| +
J1 − J2

|ζ|

)

sinφ0,

Im (J2(ζ) − J3(ζ)) = ρ

(

(J1 − J2)|ζ| +
J2 − J3

|ζ|

)

sinφ0,

Im (J1(ζ) − J3(ζ)) = ρ(J1 − J3)

(

|ζ| +
1

|ζ|

)

sinφ0,

Im J2(ζ) = −J2ρ

(

|ζ| −
1

|ζ|

)

sinφ0.

(24)
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Since J1 − J2 > 0, J1 − J3 > 0 and J2 − J3 > 0 it is easy to see that the solutions
of the eqs. (23) are φ0 = 0 and φ0 = π, i.e. the real axis in the complex ζ-plane;
in addition ImJ2(ζ) = 0 for |ζ|2 = 1.

The complex ζ-plane is split into four regions Ωk, k = 1, . . . , 4 formed by the
intersections of the upper and lower complex half-planes C+ and C− with the
unit circle S, see figure 1. The ordering of Im Jk(λ) in each of them depends on
the sign of J2 and are as follows:

(25)

Ω1 : Im J1(λ) > 0 > Im J2(λ) > Im J3(λ),

Ω2 : Im J1(λ) > ImJ2(λ) > 0 > Im J3(λ),

Ω3 : Im J3(λ) > 0 > Im J2(λ) > Im J1(λ),

Ω4 : Im J3(λ) > ImJ2(λ) > 0 > Im J1(λ),

for J2 > 0 and

(26)

Ω1 : Im J1(λ) > ImJ2(λ) > 0 > Im J3(λ),

Ω2 : Im J1(λ) > 0 > Im J2(λ) > Im J3(λ),

Ω3 : Im J3(λ) > ImJ2(λ) > 0 > Im J1(λ),

Ω4 : Im J3(λ) > 0 > Im J2(λ) > Im J1(λ),

for J2 < 0.

6

-

C+

C
−

−2ρ 2ρ

λ 6

-

Ω1

Ω2

Ω3

Ω4

ζ

Fig. 1. The continuous spectrum of L in the complex λ plane (left panel) and in the
complex ζ plane (right panel)
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Let us first construct the FAS in the region Ω1. Following the ideas of [40, 24]
we introduce it as the solution of the following set of integral equations:

(27)
{

ξ+(1)(x, ζ)
}

kl
= δkl + i

∫ x

∞
dy e−i(Jk(ζ)−Jl(ζ))(x−y)

×
{

ψ−1
+,0[J,Q(y) −Q+]ψ+,0ξ

+
(1)(y, ζ)

}

kl
, k < l.

{

ξ+(1)(x, ζ)
}

kl
= i

∫ x

−∞
dy e−i(Jk(ζ)−Jl(ζ))(x−y)

×
{

ψ−1
+,0[J,Q(y) −Q−]ψ+,0ξ

+
(1)(y, ζ

}

kl
, k ≥ l.

The proof of the fact that ξ+(1)(x, ζ) is an analytic function of ζ for any ζ ∈ Ω1 is

based on the fact, that due the ordering (25) all exponential factors in eqs. (27)
for ζ ∈ C+ are decaying. This ensures the convergence of all integrals as well as
the existence of ξ+(1)(x, ζ) for all ζ ∈ Ω1. Similar conclusions can be drawn also

for the (d/dζ)kξ+(1). Indeed, taking derivatives of (27) with respect to ζ would
give rise to terms polynomial in x in the integrands. Such terms, however, are
suppressed by the exponential factors, which allows to conclude, that along with
ξ+(1)(x, ζ) also its derivatives (d/dζ)kξ+(1) exist for any positive k. Thus, we briefly

outlined the idea of the proof that χ+
(1)(x, ζ) = ξ+(1)(x, ζ)e

iJ(ζ)x are FAS of the
Lax operator L for ζ ∈ Ω1.

Similarly, the FAS in the region Ω4 is the solution of the set of integral
equations:

(28)
{

ξ−(4)(x, ζ)
}

kl
= δkl + i

∫ x

−∞
dy e−i(Jk(ζ)−Jl(ζ))(x−y)

×
{

ψ−1
+,0[J,Q(y) −Q−]ψ+,0ξ

−
(4)(y, ζ)

}

kl
, k ≤ l.

{

ξ−(4)(x, ζ)
}

kl
= i

∫ x

∞
dy e−i(Jk(ζ)−Jl(ζ))(x−y)

×
{

ψ−1
+,0[J,Q(y) −Q+]ψ+,0ξ

−
(4)(y, ζ

}

kl
. k > l.

The proof of the analyticity of ξ−(4)(x, ζ) for any ζ ∈ Ω4 is similar to the one for

ξ+(1)(x, ζ).
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It remains to outline the construction of ξ−(2)(x, λ) and ξ+(3)(x, λ) for the regions
Ω2 and Ω3. To this end we make use of the involution of the Lax operator L that
is a consequence of Q = −Q†. Then we conclude:

(29) χ−
(3)(x, ζ) = (χ+,†

(1) )−1(x, 1/ζ∗), χ+
(2)(x, ζ) = (χ−,†

(4) )−1(x, 1/ζ∗).

The next step is to analyze the interrelations between the Jost solutions ψ±(x, ζ)
and the FAS χ+(x, ζ) and χ−(x, ζ). It is natural to expect that they are linearly
related. Skipping the details we note that:

(30)
χ+

(α)(x, ζ) = ψ−(x, ζ)S+
(α)(ζ), χ+

(α)(x, ζ) = ψ+(x, ζ)T−
(α)(ζ)D

+
(α)(ζ),

χ−
(β)(x, ζ) = ψ−(x, ζ)S−

(β)(ζ), χ−
(β)(x, ζ) = ψ+(x, ζ)T+

(β)(ζ)D
−
(β)(ζ),

where ζ ∈ R ∪ S, α = 1, 3 and β = 2, 4 match the indices of the regions of
analyticity Ωk. We will often omit the indices α and β, since their values are clear
from the figure 1. Here S+

(α) and T+
(α) (resp. S−

(β) and T−
(β)) are upper triangular

(resp. lower triangular) matrices whose diagonal elements are all equal to 1; the
matrices D±

(α)
, D±

(β)
are diagonal ones. In fact these matrices are directly related

to the Gauss decomposition of the scattering matrix T (ζ) (16):

(31) T (ζ) = T∓(ζ)D±(ζ)(S±(ζ))−1,

where:

(32)

T+(ζ) =







1 T+
1 (ζ) T+

3 (ζ)

0 1 T+
2 (ζ)

0 0 1






, T−(t, ζ) =







1 0 0

T−
1 (ζ) 1 0

T−
3 (ζ) T−

2 (ζ) 1






,

S+(ζ) =







1 S+
1 (ζ) S+

3 (ζ)

0 1 S+
2 (ζ)

0 0 1






, S−(t, ζ) =







1 0 0

S−
1 (ζ) 1 0

S−
3 (ζ) S−

2 (ζ) 1






,

D+(ζ) = diag

(

m+
1 (ζ),

m+
2 (ζ)

m+
1 (ζ)

,
1

m+
2 (ζ)

)

,

D−(ζ) = diag

(

1

m−
2 (ζ)

,
m−

2 (ζ)

m−
1 (ζ)

,m−
1 (ζ)

)

,

(33)
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Here m±
k (ζ) are the principal upper/lower minors of order k of the scattering

matrix (16); the explicit expressions for the matrix elements of T± and S± in
terms of Tij(ζ) are given by:

(34)

S+
1 (ζ) = −

T12

T11
, S+

2 (ζ) =
T13T21 − T11T23

m+
2 (ζ)

,

S+
3 (ζ) =

T12T23 − T13T22

m+
2 (ζ)

, T−
1 (ζ) =

T21

m+
1 (ζ)

,

T−
2 (ζ) =

T32T11 − T31T12

m+
2 (ζ)

, T−
3 (ζ) =

T31

m+
1 (ζ)

,

m+
1 (ζ) = T11, m+

2 (ζ) = T11T22 − T21T12.

and

(35)

S−
1 (ζ) =

T23T31 − T21T33

m−
2 (ζ)

, S−
2 (ζ) = −

T32(ζ)

m−
1 (ζ)

,

S−
3 (ζ) =

T32T21 − T31T22

m−
2 (ζ)

, T+
1 (ζ) =

T12T33 − T13T32

m−
2 (ζ)

,

T+
2 (ζ) =

T23

m−
1 (ζ)

, T+
3 (ζ) =

T13

m−
1 (ζ)

,

m−
1 (ζ) = T33, m−

2 (ζ) = T22T33 − T23T32,

Due to the the special choice of the matrix Q(x, t) (4) it follows that S−(ζ) =
(S+(1/ζ∗))† and T+(ζ) = (T−(1/ζ∗))†, so the matrix elements of S−(ζ) and
T+(ζ) can be reconstructed from (34).

One of the most effective method for solving the inverse scattering problem
for a given Lax operator L is to reduce it to a RHP [34, 35]. On the complex
ζ-plane it can be formulated as follows:

ξ+(α)(x, ζ) = ξ−(β)(x, ζ)Gα,β(x, t, ζ), lim
k→∞

ξ+(x, ζ) = 11,

G(ζ) = e−iJ(ζ)x−iF (ζ)t(S−)−1S+eiJ(ζ)x+iF (ζ)t.
(36)

The relation (36) holds true for k ∈ R in the complex k-plane. The RHP for
Lax operators with vanishing boundary conditions look similarly. However, the
relation (36) is more complicated due to the fact, that we are dealing with an RHP
formulated on the Riemannian surface related to the root k(λ) =

√

λ2 − 4ρ2.
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The sewing function G(x, ζ) gives the minimal set of scattering data, sufficient
to reconstruct the scattering matrix T (ζ).

One of the important uses of the RHP is that it allows one to use the
Zakharov-Shabat dressing method and construct the soliton solutions of the rel-
evant NLEE. Doing this one should specify the dressing factor as a rational
function of the uniformizing variable ζ rather than λ.

4. The time evolution of the scattering matrix. We start by noting
that we could use a bit more general M -operator than the one in (3), namely:

Mψ ≡

(

i
∂

∂t
+ [I,Q(x, t)] − ζI

)

ψ(x, t, ζ) = ψ(x, t, ζ)F (ζ).(37)

The compatibility condition [L,M ] = 0 holds true for any x- and t-independent
matrix F (ζ). We will fix up F (ζ), requiring that the definition of the Jost so-
lutions (10) holds true for all t. Let us identify ψ(x, t, ζ) as ψ+(x, t, ζ) (resp.
ψ−(x, t, ζ)) and take the limit x→ ∞ (resp. x→ −∞). This gives:

([I,Q±] − ζI)ψ±,0 = ψ±,0F (ζ).(38)

It is easy to check that ψ±,0 diagonalize also [I,Q±]− ζI and therefore F (ζ) is a
diagonal matrix:

F (ζ) = diag (f1(ζ), f2(ζ), f3(ζ)),

where fj(ζ) are the eigenvalues of [I,Q±] − ζI. In terms of ζ we have:

F (ζ) = ρdiag

(

I1ζ +
I3
ζ
, I2

(

ζ −
1

ζ

)

, I3ζ +
I1
ζ

)

.(39)

Next, we insert ψ = ψ+(x, t, ζ) into (37) and take the limit x → −∞. Thus we
obtain, that if the matrix elements uk(x, t), k = 1, 2, 3 of the potential of L(ζ)
satisfy the NLEE (1) then the time evolution of the associated scattering matrix
is given by the linear ODE:

i
dT

dt
− [F (ζ), T (t, ζ)] = 0.(40)

As a consequence the Gauss factors of T (t, ζ) satisfy

(41)
i
dT±

dt
− [F (ζ), T±(t, ζ)] = 0, i

dS±

dt
− [F (ζ), S±(t, ζ)] = 0,

i
dD±

dt
= 0,
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From the last equation it follows that the principle minors m±
1 (ζ) and m±

2 (ζ) of
the scattering matrix are time-independent and can be considered as generating
functionals of the integrals of motion for (1), while for the off-diagonal ones we
get:

Tij(t, ζ) = Tij(0, ζ)e
−i(fi(ζ)−fj(ζ))t.(42)

The function F (ζ) is known as the dispersion law for the 3-wave equations with
constant boundary conditions.

5. Spectral Properties of the Lax Operator. The crucial fact that
determines the spectral properties of the operator L(ζ) is the choice of the class
of functions where from we shall choose the potential Q(x). Below, for a sake of
simplicity, we assume that Q(x, t) satisfies

Condition C.1 Q(x, t) is smooth for all x and t and is such that

lim
x→±∞

|x|p(Q(x, t) −Q±) = 0 for all p = 0, 1, . . . .

The FAS χ±(x, ζ) of L(ζ) allows one to construct the resolvent of the operator
L and then to investigate its spectral properties. By a resolvent of L(ζ) we
understand an integral operator R(ζ) with kernel R(x, y, ζ) which satisfies

(43) L(ζ)(R(ζ)f)(x) = f(x),

where f(x) is an 3-component vector complex-valued function with bounded
norm, i.e.

∫∞
−∞ dy|fT (y)f(y)| <∞.

From the general theory of linear operators we know that the point ζ in the
complex ζ-plane is a regular point if R(ζ) is a bounded integral operator. In each
connected subset of regular points R(ζ) is analytic in ζ. The points ζ which are
not regular constitute the spectrum of L(ζ). Roughly speaking, the spectrum of
L(ζ) consist of two types of points:

• i) the continuous spectrum of L(ζ) consists of all points ζ for which R(ζ)
is an unbounded integral operator;

• ii) the discrete spectrum of L(ζ) consists of all points ζ for which R(ζ)
develops pole singularities.
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Let us now show how the resolvent R(ζ) can be expressed through the FAS
of L(ζ). Indeed, if we write down R(ζ) in the form:

(44) R(ζ)f(x) =

∫ ∞

−∞
R(x, y, ζ)f(y),

the kernel R(x, y, ζ) of the resolvent is given by:

(45) R(α)(x, y, ζ) = R±
(α)(x, y, ζ), for ζ ∈ Ω(α).

where

(46) R±
(α)(x, y, ζ) = −iχ±

(α)(x, ζ)Θ
±
(α)(x− y)(χ±

(α))
−1(y, ζ), ζ ∈ Ω(α),

and

Θ+
1 (x− y) = diag (−θ(y − x), θ(x− y), θ(x− y)),

Θ−
2 (x− y) = diag (−θ(y − x),−θ(y − x), θ(x− y)),

Θ+
3 (x− y) = diag (θ(x− y),−θ(y − x),−θ(y − x)),

Θ−
4 (x− y) = diag (−θ(x− y), θ(x− y),−θ(y − x)),

(47)

for J2 > 0, and

Θ+
1 (x− y) = diag (−θ(y − x),−θ(y − x), θ(x− y)),

Θ−
2 (x− y) = diag (−θ(y − x), θ(x− y), θ(x− y)),

Θ+
3 (x− y) = diag (θ(x− y), θ(x− y),−θ(y − x)),

Θ−
4 (x− y) = diag (−θ(x− y),−θ(y − x),−θ(y − x)),

(48)

for J2 < 0. The next theorem establishes that R(x, y, ζ) is indeed the kernel of
the resolvent of L(ζ).

Theorem 1. Let Q(x) satisfy the conditions (C.1) and is such that the mi-
nors m±

k (ζ) have a finite number of simple zeroes ζ±j . Then

1. R±(x, y, ζ) is an analytic function of ζ for ζ ∈ C± having pole singularities
at ζ±j ;

2. R±(x, y, ζ) is a kernel of a bounded integral operator for ζ ∈ R ∪ E;

3. R(x, y, ζ) is uniformly bounded function for ζ ∈ R∪E and provides a kernel
of an unbounded integral operator;



On the 3-wave Equations with Constant Boundary Conditions 231

4. R±(x, y, ζ) satisfy the equation:

(49) L(ζ)R±(x, y, ζ) = 11δ(x− y).

P r o o f.

1. is obvious from the fact that χ±(x, ζ) are the FAS of L(ζ);

2. Assume that ζ ∈ Ω1 and consider the asymptotic behavior of R+(x, y, ζ)
for x, y → ∞. From equations (30) and (46) we find that

R+
ij(x, y, ζ) =

3
∑

p=1

χ+
ip(x, ζ)e

−iJp(ζ)(x−y)Θ+
1,pp(x− y)χ̂+

pj(y, ζ).

Due to the fact that χ+(x, ζ) has triangular asymptotics for x → ∞ and
ζ ∈ C+ and for the correct choice of Θ+(x− y) (47) we check that the right
hand side of (50) falls off exponentially for x→ ∞ and an arbitrary choice
of y. All other possibilities are treated analogously [15, 22, 23].

3. For ζ ∈ R ∪ S the arguments of 2) can not be applied because the expo-
nentials in the right hand side of (50) only oscillate. Thus we conclude
that R±(x, y, ζ) for ζ ∈ R ∪ S is only a bounded function and thus the
corresponding operator R(ζ) is an unbounded integral operator.

4. The proof of eq. (49) follows from the fact that L(ζ)χ±(x, ζ) = 0 and

(50)
dΘ±(x− y)

dx
= 11δ(x − y).

�

Thus we conclude that the continuous spectrum of L in the complex k-plane
coincides with the contour of the RHP R ∪ S with multiplicity 3 on R and mul-
tiplicity 1 on S. On the complex λ-plane the continuous spectrum of L is on the
real axis; it has multiplicity 3 on the semi-axis Reλ < −2ρ and Reλ > 2ρ and
multiplicity 1 in the ‘lacuna’ −2ρ < Reλ < 2ρ.
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6. Conserved Quantities for the 3-wave Equations. As we already
mentioned above, the diagonal factors D±(ζ) are time independent and can be
used to generate the infinite set of integrals of motion for (1). For the 3-wave
resonant interaction equations, these matrices are expressed through the principal
upper/lower minors m±(ζ) of the scattering matrix T (ζ) (16). Skipping the
details (see [22, 23]) we get:

lnD±
k,1 = −

i

4
(Jk − Jk+1)Pk + (J1 − J3)P3,(51)

The momenta Pk, k = 1, 2, 3 are given by:
(52)

P1 =

∫ ∞

−∞
dx |q1(x)|

2, P2 =

∫ ∞

−∞
dx |q2(x)|

2, P3 =

∫ ∞

−∞
dx (|q3(x)|

2 − ρ2).

The fact that lnm±
1 generates integrals of motion can be considered as natural

analog of the Manley–Rowe relations [38, 39, 25]. In the case of (4), then (51) is
equivalent to the existence of two additional first integrals for the model (1)

I1 = (J1 − J2)P1 + (J1 − J3)P3 = const,

I2 = (J2 − J3)P2 + (J1 − J3)P3 = const,
(53)

which are linear combinations of the momenta (52) and can be interpreted as
relations between the densities |qα|

2 of the waves of type α. The total momentum
for the 3-waves is also a conserved quantity:

P = (J1 − J2)P1 + (J2 − J3)P2 + (J1 − J3)P3 = const.(54)

The integral of motion D2 is proportional to the Hamiltonian of the 3-wave
equations (2).

For the case of constant boundary conditions, the functional P3 is subject
of regularization (51) by using the asymptotic values of the potential Q±, while
the functional H3−w remains the same as for the case of vanishing boundary
conditions.

7. Conclusions. We studied the direct scattering problem for the Lax op-
erator and its spectral properties. This includes: the construction of Lax repre-
sentation and the Jost solutions of the Lax operator L. Furthermore, we outlined
the construction of the fundamental analytic solutions (FAS) of L and formulated
a Riemann-Hilbert problem for the FAS on a relevant Riemannian surface.
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We also outlined the construction of the resolvent of L(ζ) in terms of the
FAS and the spectral properties of L. Finally, we briefly discuss the effects of
the boundary conditions on the conserved quantities of the 3-wave equations: we
showed that the total momentum for non-vanishing boundary conditions needs
regularization, while the Hamiltonian remains the same.

Similar analysis can be done for a 3-wave resonant interaction model with
more general boundary conditions: limx→−∞ qk(x, t) = q−k (k = 1 or 2) and
limx→+∞ q3(x, t) = q−3 . This may require the matrices Q(θ) (8) to have also
off-diagonal entries.

It is an open problem to to derive the soliton solutions of (1) in the case
of constant boundary conditions (the so-called ”dark solitons”), the dark-dark
and dark-bright soliton solutions [32] by modifying the dressing Zakharov-Shabat
method [40], or by using the Darboux transformation method [11].

Another challenge is to extend this analysis also for systems, describing reso-
nant interactions of N waves [40, 17] or to N -wave type systems related to simple
Lie algebras [17, 18].

Another open problem is to study the behavior of the scattering data at
the end-points of the continuous spectrum in the complex λ-plane; this requires
generalization of the the method developed in [13].
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