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Abstract. The present article is a survey of some of our recent results
on the theory of two-dimensional surfaces in the four-dimensional Euclidean
or Minkowski space. We present our approach to the theory of surfaces in
Euclidean or Minkowski 4-space, which is based on the introduction of an
invariant linear map of Weingarten-type in the tangent plane at any point of
the surface under consideration. This invariant map allows us to introduce
principal lines and an invariant moving frame field at each point of the
surface. Writing derivative formulas of Frenet-type for this frame field, we
obtain a system of invariant functions, which determine the surface up to a
motion.

We formulate the fundamental theorems for the general classes of surfaces
in Euclidean or Minkowski 4-space in terms of the invariant functions.

We show that the basic geometric classes of surfaces, determined by
conditions on their invariants, can be interpreted in terms of the properties
of two geometric figures: the tangent indicatrix and the normal curvature
ellipse.

We apply our theory to some special classes of surfaces in Euclidean or
Minkowski 4-space.
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1. Introduction. Local invariants of surfaces in the four-dimensional Euclid-

ean space R
4 were studied by Eisenhart [9], Kommerell [21], Moore and Wilson

[30], Schouten and Struik [32], Spivak [33], Wong [35], Little [23], and others.

Their study was based on a special configuration, namely a point and an ellipse

lying in the normal space (the ellipse of normal curvature). This configuration

leads to a theory of axial principal directions, along which the vector-valued sec-

ond fundamental form points in the direction of the major and the minor axes of

the curvature ellipse. In higher dimensions there is also a similar configuration

consisting of a point and a Veronese manifold. This configuration determines sec-

ond order scalar invariants and generates principal axes “in general” [23]. Points

where the construction of principal axes fails are regarded as singularities of the

field of axes. Geometric singularities for immersions in Riemannian manifolds are

considered in [1]. Special types of tangent vector fields on a surface in R
4 were

defined in terms of the properties of the normal curvature ellipse and families of

lines determined by such tangent vector fields were studied in [16, 26].

The basic feature of our approach to the theory of 2-dimensional surfaces

in the Euclidean space R
4 or the Minkowski space R

4
1

is the introduction of an

invariant linear map of Weingarten-type in the tangent plane at any point of the

surface.

Studying surfaces in the Euclidean space R
4, in [10] we introduce a linear

map of Weingarten-type, which plays a similar role in the theory of surfaces in

R
4 as the Weingarten map in the theory of surfaces in R

3. We give a geometric

interpretation of the second fundamental form and the Weingarten map of the

surface in [11]. In [12] we find a geometrically determined moving frame field at

each point of the surface and writing derivative formulas of Frenet-type for this

frame field, we obtain eight invariant functions and prove a fundamental theorem

of Bonnet-type, stating that these eight invariants under some natural conditions

determine the surface up to a motion in R
4.

Following our approach to the surfaces in R
4, in [14] we develop the theory

of spacelike surfaces in R
4

1
in a similar way. We consider spacelike surfaces in

R
4
1

whose mean curvature vector at any point is a non-zero spacelike vector or

timelike vector. Using a geometrically determined moving frame of Frenet-type

on such a surface and the corresponding derivative formulas, we obtain eight

invariant functions and prove a fundamental theorem, stating that any spacelike

surface whose mean curvature vector at any point is a non-zero spacelike vector

or timelike vector is determined up to a motion in R
4
1

by its eight invariants

satisfying some natural conditions.
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In [15] we develop the invariant theory of spacelike surfaces in R
4
1

whose

mean curvature vector at any point is a lightlike vector, the so called marginally

trapped surfaces. We use the principal lines on a marginally trapped surface to

find a geometrically determined moving frame field at each point of such a surface

and obtain seven invariant functions which determine the surface up to a motion

in R
4

1
.

We apply our theory to some special classes of surfaces in R
4 or R

4
1
. We

consider rotational surfaces with two-dimensional axis in R
4 or R

4

1
and find their

invariants. We find all Chen rotational surfaces of elliptic or hyperbolic type

in R
4
1
. We also consider general rotational surfaces with plane meridians (in the

sense of C. Moore) in R
4 and construct in a similar way general rotational surfaces

in R
4
1
.

We construct a family of surfaces lying on a rotational hypersurface in the

Euclidean space R
4, which we call meridian surfaces. We describe the meridian

surfaces with constant Gauss curvature and those with constant mean curvature.

We use the same idea to construct a special family of two-dimensional spacelike

surfaces lying on rotational hypersurfaces in R
4

1
. We consider a rotational hy-

persurface with timelike axis and a rotational hypersurface with spacelike axis

to construct two types of meridian surfaces in R
4
1
. We find all meridian surfaces

in R
4
1

which are marginally trapped. The meridian surfaces are a new source of

examples of surfaces in R
4 and R

4
1
.

2. Linear map of Weingarten-type. Let R
4 be the four-dimensional

Euclidean space endowed with the metric 〈, 〉 and M2 be a surface in R
4. Denote

by ∇′ and ∇ the Levi Civita connections on R
4 and M2, respectively. Let x and

y denote vector fields tangent to M and let ξ be a normal vector field. Then the

formulas of Gauss and Weingarten give decompositions of the vector fields ∇′
xy

and ∇′
xξ into tangent and normal components:

∇′
xy = ∇xy + σ(x, y);

∇′
xξ = −Aξx+Dxξ,

which define the second fundamental tensor σ, the normal connection D and the

shape operator Aξ with respect to ξ. The mean curvature vector field H of the

surface M2 is defined as H =
1

2
trσ.

Let M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R
2) be a local parametrization of M2.

The tangent space TpM
2 to M2 at an arbitrary point p = z(u, v) is span{zu, zv}.



180 Georgi Ganchev, Velichka Milousheva

We choose an orthonormal normal frame field {e1, e2} ofM2 so that the quadruple

{zu, zv, e1, e2} is positive oriented in R
4. Then the following derivative formulas

hold:

∇′
zu

zu = zuu = Γ1
11
zu + Γ2

11
zv + c1

11
e1 + c2

11
e2,

∇′
zu

zv = zuv = Γ1
12
zu + Γ2

12
zv + c1

12
e1 + c2

12
e2,

∇′
zv

zv = zvv = Γ1

22
zu + Γ2

22
zv + c1

22
e1 + c2

22
e2,

where Γk
ij are the Christoffel’s symbols and the functions ckij , i, j, k = 1, 2 are

given by

c1
11

= 〈zuu, n1〉; c1
12

= 〈zuv, n1〉; c1
22

= 〈zvv , n1〉;
c2
11

= 〈zuu, n2〉; c2
12

= 〈zuv, n2〉; c2
22

= 〈zvv , n2〉.

Obviously, the surfaceM2 lies in a 2-plane if and only ifM2 is totally geodesic,

i.e. ckij = 0, i, j, k = 1, 2. So, we assume that at least one of the coefficients ckij is

not zero.

We use the standard denotations E = g(zu, zu), F = g(zu, zv), G = g(zv , zv)

for the coefficients of the first fundamental form

I(λ, µ) = Eλ2 + 2Fλµ+Gµ2, λ, µ ∈ R

and we set W =
√
EG− F 2.

The second fundamental form II of the surface M2 at a point p ∈ M2 is

introduced by the following functions

L =
2

W

∣∣∣∣
c1
11

c1
12

c2
11

c2
12

∣∣∣∣ ; M =
1

W

∣∣∣∣
c1
11

c1
22

c2
11

c2
22

∣∣∣∣ ; N =
2

W

∣∣∣∣
c1
12

c1
22

c2
12

c2
22

∣∣∣∣ .

Let X = λzu + µzv, (λ, µ) 6= (0, 0) be a tangent vector at a point p ∈M2. Then

II(λ, µ) = Lλ2 + 2Mλµ+Nµ2, λ, µ ∈ R.

The second fundamental form II is invariant up to the orientation of the tangent

space or the normal space of the surface.

Such a bilinear form has been considered for an arbitrary 2-dimensional sur-

face in a 4-dimensional affine space A
4 (see for example [3, 22, 34]). Here we

consider this form for surfaces in R
4 taking into consideration also the first fun-

damental form of the surface.
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The condition L = M = N = 0 characterizes points at which the space

{σ(x, y) : x, y ∈ TpM
2} is one-dimensional. We call such points flat points of the

surface. These points are analogous to flat points in the theory of surfaces in R
3.

In [22] and [23] such points are called inflection points. E. Lane [22] has shown

that every point of a surface is an inflection point if and only if the surface is

developable or lies in a 3-dimensional space.

Further we consider surfaces free of flat points, i.e. (L,M,N) 6= (0, 0, 0).

Using the functions L, M , N and E, F , G we introduce in [10] the linear

map γ in the tangent space at any point of M2

γ : TpM
2 → TpM

2

similarly to the theory of surfaces in R
3.

The linear map γ is invariant with respect to changes of parameters on M2

as well as to motions in R
4. Thus the functions

k =
LN −M2

EG− F 2
, κ =

EN +GL− 2FM

2(EG − F 2)

are invariants of the surface.

The sign of k is a geometric invariant and the sign of κ is invariant under

motions in R
4. However, the sign of κ changes under symmetries with respect

to a hyperplane in R
4. It turns out that the invariant κ is the curvature of the

normal connection of the surface.

The map γ plays a similar role in the theory of surfaces in R
4 as the Wein-

garten map in the theory of surfaces in R
3. Analogously to R

3 the invariants k

and κ divide the points of M2 into the following types: elliptic (k > 0), parabolic

(k = 0), and hyperbolic (k < 0).

The second fundamental form II determines conjugate, asymptotic, and prin-

cipal tangents at a point p of M2 in the standard way.

Two tangents g1 : X = α1zu + β1zv and g2 : X = α2zu + β2zv are said to be

conjugate tangents if

Lα1α2 +M(α1β2 + α2β1) +Nβ1β2 = 0.

A tangent g : X = αzu + βzv is said to be asymptotic if it is self-conjugate,

i.e.

Lα2 + 2Mαβ +Nβ2 = 0.
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The first fundamental form I and the second fundamental form II generate

principal tangents and principal lines, as in R
3.

A tangent g : X = αzu + βzv is said to be principal if it is perpendicular to

its conjugate. The equation for the principal tangents at a point p ∈M2 is
∣∣∣∣∣
E F

L M

∣∣∣∣∣λ
2 +

∣∣∣∣∣
E G

L N

∣∣∣∣∣λµ+

∣∣∣∣∣
F G

M N

∣∣∣∣∣µ
2 = 0.

A line c : u = u(q), v = v(q); q ∈ J ⊂ R on M2 is said to be an asymp-

totic line, respectively a principal line, if its tangent at any point is asymptotic,

respectively principal. The surface M2 is parameterized by principal lines if and

only if F = 0, M = 0.

The notion of conjugacy can also be introduced in a geometric way as follows.

Let g be a tangent at the point p ∈M2 determined by the vector X = λzu +µzv.

We consider the linear map σg : TpM
2 → (TpM

2)⊥, defined by

σg(Y ) = σ

(
λzu + µzv√
I(λ, µ)

, Y

)
, Y ∈ TpM

2.

Let g1 : X1 = λ1zu + µ1zv and g2 : X2 = λ2zu + µ2zv be two tangents at

p ∈M2. The oriented areas of the parallelograms spanned by the pairs of normal

vectors σg1
(zu), σg2

(zv) and σg2
(zu), σg1

(zv) are denoted by S(σg1
(zu), σg2

(zv)),

and S(σg2
(zu), σg1

(zv)), respectively. We assign the quantity ζ g1,g2
to the pair of

tangents g1, g2, defined by

ζ g1,g2
=
S(σg1

(zu), σg2
(zv))

W
+
S(σg2

(zu), σg1
(zv))

W
.

We prove that ζ g1,g2
is an invariant (under any change of the parameters) of the

pair of tangents g1, g2.

Using this invariant we give the following definition.

Definition 1 ([11]). Two tangents g1 : X1 = λ1zu + µ1zv and g2 : X2 =

λ2zu + µ2zv are said to be conjugate tangents if ζ g1,g2
= 0.

Calculating the oriented areas in ζ g1,g2
, we find that

ζ g1,g2
=
Lλ1λ2 +M(λ1µ2 + µ1λ2) +Nµ1µ2√

I(λ1, µ1)
√
I(λ2, µ2)

=
II(λ1, µ1;λ2, µ2)√
I(λ1, µ1)

√
I(λ2, µ2)

.
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Thus, ζ g1,g2
= 0 if and only if Lλ1λ2 +M(λ1µ2 +λ2µ1)+Nµ1µ2 = 0. Hence,

the tangents g1 and g2 are conjugate according to Definition 1 if and only if they

are conjugate with respect to the second fundamental form II.

In terms of the invariant ζ g1,g2
we define two invariants νg and αg of any

tangent g of the surface as follows:

νg = ζ g,g; αg = ζ g,g⊥.

The invariant νg is expressed by the first and the second fundamental forms

of the surface in the same way as the normal curvature of a tangent in the theory

of surfaces in R
3, i.e. νg =

II(λ, µ)

I(λ, µ)
.

The invariant αg can be written in the following way:

αg =
λ2(EM − FL) + λµ(EN −GL) + µ2(FN −GM)

WI(λ, µ)
.

Hence, αg is expressed by the coefficients of the first and the second fundamental

forms in the same way as the geodesic torsion in the theory of surfaces in R
3.

That is why we call νg the normal curvature of g, and αg - the geodesic torsion

of g.

As in the classical case we have that a tangent g is asymptotic if and only if

νg = 0; a tangent g is principal if and only if αg = 0.

If p is an elliptic point of M2 (k > 0) then there are no asymptotic tangents

through p; if p is a hyperbolic point (k < 0) then there are two asymptotic

tangents passing through p, and if p is a parabolic point (k = 0) then there is

one asymptotic tangent through p. Thus, the sign of the invariant k determines

the number of asymptotic tangents at the point.

As in the classical case the following inequality holds at each point of the

surface:

κ
2 − k ≥ 0.

If κ
2 − k = 0, every tangent is principal, and if κ

2 − k > 0, there exist exactly

two principal tangents.

In [14] we apply the same approach to the theory of spacelike surfaces in

Minkowski space. Let R
4

1
be the four-dimensional Minkowski space endowed

with the metric 〈, 〉 of signature (3, 1). A surface M2 : z = z(u, v), (u, v) ∈ D
(D ⊂ R

2) in R
4

1
is said to be spacelike if 〈, 〉 induces a Riemannian metric g
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on M2. Thus at each point p of a spacelike surface M2 we have the following

decomposition:

R
4

1 = TpM
2 ⊕NpM

2

with the property that the restriction of the metric 〈, 〉 onto the tangent space

TpM
2 is of signature (2, 0), and the restriction of the metric 〈, 〉 onto the normal

space NpM
2 is of signature (1, 1).

Let M2 be a spacelike surface in R
4
1
, i.e. 〈zu, zu〉 > 0, 〈zv, zv〉 > 0. We

choose a normal frame field {n1, n2} such that 〈n1, n1〉 = 1, 〈n2, n2〉 = −1, and

the quadruple {zu, zv , n1, n2} is positively oriented in R
4
1
. Then we have the

following derivative formulas:

∇′
zu

zu = zuu = Γ1
11
zu + Γ2

11
zv + c1

11
n1 − c2

11
n2;

∇′
zu

zv = zuv = Γ1

12
zu + Γ2

12
zv + c1

12
n1 − c2

12
n2;

∇′
zv

zv = zvv = Γ1
22
zu + Γ2

22
zv + c1

22
n1 − c2

22
n2.

In the same way as in R
4 we define conjugate tangents at any point of the

surface M2. Again we assign the quantity ζ g1,g2
to the pair of tangents g1, g2,

defined by the formula

ζ g1,g2
=
S(σg1

(zu), σg2
(zv))

W
+
S(σg2

(zu), σg1
(zv))

W
,

where S(σg1
(zu), σg2

(zv)), and S(σg2
(zu), σg1

(zv)) denote the oriented areas of

the parallelograms determined by the pairs of normal vectors σg1
(zu), σg2

(zv)

and σg2
(zu), σg1

(zv) in the Lorentz plane span{n1, n2}.
We prove that ζ g1,g2

is invariant under any change of the parameters on M2.

By means of this invariant we define conjugate tangents and the notions of normal

curvature and geodesic torsion of a tangent g in the same way as in the Euclidean

case:

νg = ζ g,g; αg = ζ g,g⊥.

The second fundamental form II of the surface M2 at a point p ∈ M2 is

introduced on the base of conjugacy of two tangents at the point. The second

fundamental form determines an invariant linear map of Weingarten-type γ :

TpM
2 → TpM

2 at any point of M2 and generates the invariants k and κ:

k =
LN −M2

EG− F 2
, κ =

EN +GL− 2FM

2(EG − F 2)
.
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As in the theory of surfaces in R
4 the following inequality holds at each point

of the surface:

κ
2 − k ≥ 0.

If κ
2 − k = 0, every tangent is principal, and if κ

2 − k > 0, there exist exactly

two principal tangents.

3. Classes of surfaces characterized in terms of the invariants

k and κ. The minimal surfaces and the surfaces with flat normal connection in

R
4 or R

4
1

are characterized in terms of the invariants k and κ as follows.

Proposition 3.1. Let M2 be a surface in R
4 or a spacelike surface in R

4
1

free of flat points. Then M2 is minimal if and only if

κ
2 − k = 0.

The last equality is equivalent to

L = ρE, M = ρF, N = ρG.

It is interesting to note that the “umbilical” points, i.e. points at which the

above equalities hold good, are exactly the points at which the mean curvature

vector H is zero. So, the surfaces consisting of “umbilical” points in R
4 or R

4
1

are

exactly the minimal surfaces.

The surfaces with flat normal connection are characterized by

Proposition 3.2. Let M2 be a surface in R
4 or a spacelike surface in R

4

1

free of flat points. Then M2 is a surface with flat normal connection if and only

if

κ = 0.

We note that the condition κ = 0 implies that k < 0 and each surface with

flat normal connection has two families of orthogonal asymptotic lines.
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4. Classes of surfaces characterized in terms of the tangent

indicatrix and the normal curvature ellipse. The minimal surfaces and

the surfaces with flat normal connection can also be characterized in terms of a

geometric figure in the tangent space at any point of the surface.

Let M2 be a surface in R
4 or a spacelike surface in R

4
1
. The normal curva-

tures of the principal tangents are said to be principal normal curvatures of M2.

Similarly to the theory of surfaces in R
3, we introduce a geometric figure - the

indicatrix χ in the tangent space TpM
2 at an arbitrary point p of M2, defined by

χ : ν ′X2 + ν ′′Y 2 = ε, ε = ±1,

where ν ′ and ν ′′ are the principal normal curvatures.

Then the elliptic, hyperbolic and parabolic points of a surface, defined by the

sign of the invariant k, are characterized in terms of the indicatrix χ as in R
3: if p

is an elliptic point (k > 0), then the indicatrix χ is an ellipse; if p is a hyperbolic

point (k < 0), then the indicatrix χ consists of two hyperbolas (for the sake of

simplicity we say that χ is a hyperbola); if p is a parabolic point (k = 0), then the

indicatrix χ consists of two straight lines parallel to the principal tangent with

non-zero normal curvature.

The conjugacy in terms of the second fundamental form coincides with the

conjugacy with respect to the indicatrix χ, i.e. the following statement holds

true.

Proposition 4.1. Two tangents g1 and g2 are conjugate tangents of M2 if

and only if g1 and g2 are conjugate with respect to the indicatrix χ.

The minimal surfaces and the surfaces with flat normal connection are char-

acterized in terms of the tangent indicatrix of the surface as follows.

Proposition 4.2. Let M2 be a surface in R
4 or a spacelike surface in R

4
1

free of flat points. Then M2 is minimal if and only if at each point of M2 the

tangent indicatrix χ is a circle.

Proposition 4.3. Let M2 be a surface in R
4 or a spacelike surface in R

4
1

free of flat points. Then M2 is a surface with flat normal connection if and only

if at each point of M2 the tangent indicatrix χ is a rectangular hyperbola.

Now we shall characterized the minimal surfaces and the surfaces with flat

normal connection in terms of the ellipse of normal curvature.
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The notion of the ellipse of normal curvature of a surface in R
4 was introduced

by Moore and Wilson [29, 30]. The ellipse of normal curvature associated to the

second fundamental form of a spacelike surface in R
4
1

was first considered in [20].

The ellipse of normal curvature at a point p of a surface M2 is the ellipse in

the normal space at the point p given by {σ(x, x) : x ∈ TpM
2, 〈x, x〉 = 1}. Let

{x, y} be an orthonormal base of the tangent space TpM
2 at p. Then, for any

v = cosψ x+ sinψ y, we have

σ(v, v) = H + cos 2ψ
σ(x, x) − σ(y, y)

2
+ sin 2ψ σ(x, y),

where H is the mean curvature vector of M2 at p. So, when v goes once around

the unit tangent circle, the vector σ(v, v) goes twice around the ellipse centered

at H.

A surface M2 in R
4 is called super-conformal [2] if at any point of M2 the

ellipse of curvature is a circle. An explicit construction of any simply connected

super-conformal surface in R
4 that is free of minimal and flat points is given in

[8].

Obviously, M2 is a minimal surface if and only if for each point p ∈ M2 the

ellipse of curvature is centered at p. We give a characterization of the surfaces

with flat normal connection in terms of the ellipse of normal curvature by

Proposition 4.4. Let M2 be a surface in R
4 or a spacelike surface in R

4
1

free of flat points. Then M2 is a surface with flat normal connection if and only

if for each point p ∈M2 the ellipse of normal curvature is a line segment, which

is not collinear with the mean curvature vector field.

Proposition 4.3 and Proposition 4.4 give us the following

Corollary 4.5. Let M2 be a surface in R
4 or a spacelike surface in R

4

1
free

of flat points. Then the tangent indicatrix χ is a rectangular hyperbola if and only

if the ellipse of normal curvature is a line segment, which is not collinear with

the mean curvature vector field.

5. Fundamental theorems. In the local theory of surfaces in Euclidean

space a statement of significant importance is a theorem of Bonnet-type giving

the natural conditions under which the surface is determined up to a motion.
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A theorem of this type was proved for surfaces with flat normal connection in

Euclidean space by B.-Y. Chen in [4].

The general fundamental existence and uniqueness theorems for submanifolds

of pseudo-Riemannian manifolds are formulated in terms of tensor fields and

connections on vector bundles (e.g. [5], Theorem 2.4 and Theorem 2.5). In [12],

we introduce a geometric moving frame field of Frenet-type on a surface in R
4

and using the corresponding derivative formulas, we find eight invariant functions

which determine the surface up to a motion in R
4. We formulate and prove the

fundamental theorem for surfaces in R
4 in terms of these invariant functions.

This theorem is a special case of the general fundamental theorem but in the

present form it is more appropriate and easier to apply.

Let M2 be a surface in R
4 free of minimal points, i.e. κ

2 − k > 0 at each

point. We assume that M2 is parameterized by principal lines and denote the

unit vector fields x =
zu√
E

, y =
zv√
G

. The equality M = 0 implies that the normal

vector fields σ(x, x) and σ(y, y) are collinear. We denote by b a unit normal vector

field collinear with σ(x, x) and σ(y, y), and by l the unit normal vector field such

that {x, y, b, l} is a positive oriented orthonormal frame field of M2 (the vectors

b, l are determined up to a sign). Thus we obtain a geometrically determined

orthonormal frame field {x, y, b, l} at each point p ∈ M2. With respect to this

frame field we have the following derivative formulas of Frenet-type:

∇′
xx = γ1 y + ν1 b; ∇′

xb = −ν1 x− λ y + β1 l;

∇′
xy = −γ1 x + λ b + µ l; ∇′

yb = −λx− ν2 y + β2 l;

∇′
yx = −γ2 y + λ b + µ l; ∇′

xl = −µ y − β1 b;

∇′
yy = γ2 x + ν2 b; ∇′

yl = −µx − β2 b,

where γ1, γ2, ν1, ν2, λ, µ, β1, β2 are invariant functions determined by the geomet-

ric frame field, µ 6= 0. The invariants k, κ, and the Gauss curvature K of M2

are expressed as follows:

k = −4ν1 ν2 µ
2, κ = (ν1 − ν2)µ, K = ν1 ν2 − (λ2 + µ2).

We prove the following fundamental theorem for surfaces in R
4 free of minimal

points.

Theorem 5.1 ([12]). Let γ1, γ2, ν1, ν2, λ, µ, β1, β2 be smooth functions, de-
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fined in a domain D, D ⊂ R
2, satisfying the conditions

µu

2µγ2 + ν1 β2 − λβ1

> 0;
µv

2µγ1 − λβ2 + ν2 β1

> 0;

−γ1

√
E
√
G = (

√
E)v; −γ2

√
E
√
G = (

√
G)u;

ν1 ν2 − (λ2 + µ2) =
1√
E

(γ2)u +
1√
G

(γ1)v −
(
(γ1)

2 + (γ2)
2
)
;

2λγ2 + µβ1 − (ν1 − ν2) γ1 =
1√
E
λu − 1√

G
(ν1)v;

2λγ1 + µβ2 + (ν1 − ν2) γ2 = − 1√
E

(ν2)u +
1√
G
λv;

γ1 β1 − γ2 β2 + (ν1 − ν2)µ = − 1√
E

(β2)u +
1√
G

(β1)v,

where
√
E =

µu

2µγ2 + ν1 β2 − λβ1

,
√
G =

µv

2µγ1 − λβ2 + ν2 β1

. Let x0, y0, b0, l0

be an orthonormal frame at a point p0 ∈ R
4. Then there exist a subdomain

D0 ⊂ D and a unique surface M2 : z = z(u, v), (u, v) ∈ D0, passing through

p0, such that γ1, γ2, ν1, ν2, λ, µ, β1, β2 are the geometric functions of M2 and

x0, y0, b0, l0 is the geometric frame of M2 at the point p0.

The Bonnet-type fundamental theorem for surfaces free of minimal points

shows that the eight invariants under some natural conditions determine the

surface up to a motion in R
4.

In [14] we consider spacelike surfaces in R
4

1
whose mean curvature vector at

each point is a non-zero spacelike vector or timelike vector. In a similar way as in

R
4 we introduce a geometric moving frame field of Frenet-type on such a surface

and using the corresponding derivative formulas, we formulate and prove the

fundamental theorem for this class of surfaces in terms of their invariant functions.

The theorem states that any spacelike surface with spacelike or timelike mean

curvature vector field is determined up to a motion in R
4
1

by its eight invariant

functions satisfying some natural conditions.

6. Marginally trapped surfaces in Minkowski 4-space. The con-

cept of trapped surfaces was introduced by Roger Penrose in [31] and it plays

an important role in general relativity. These surfaces were defined in order to

study global properties of spacetime. A surface in a 4-dimensional spacetime

is called marginally trapped if it is closed, embedded, spacelike and its mean

curvature vector is lightlike at each point of the surface. In Physics similar or
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weaker definitions attract attention. Recently, marginally trapped surfaces have

been studied from a mathematical viewpoint. In the mathematical literature, it

is customary to call a codimension-two surface in a semi-Riemannian manifold

marginally trapped it its mean curvature vector H is lightlike at each point, and

removing the other hypotheses, i.e. the surface does not need to be closed or

embedded.

Classification results in 4-dimensional Lorentz manifolds were obtained im-

posing some extra conditions on the mean curvature vector, the Gauss curvature

or the second fundamental form. Marginally trapped surfaces with positive rel-

ative nullity in Lorenz space forms were classified in [6]. Marginally trapped

surfaces with parallel mean curvature vector in Lorenz space forms were classi-

fied in [7]. In [17] marginally trapped surfaces which are invariant under a boost

transformation in 4-dimensional Minkowski space were studied, and marginally

trapped surfaces in Minkowski 4-space which are invariant under spacelike rota-

tions were classified in [18]. The classification of marginally trapped surfaces in

Minkowski 4-space which are invariant under a group of screw rotations (a group

of Lorenz rotations with an invariant lightlike direction) is obtained in [19].

In [15] we consider marginally trapped surfaces in the four-dimensional Min-

kowski space R
4
1
. Our approach to the study of these surfaces is based on the

principal lines generated by the second fundamental form similarly to the case

of spacelike surfaces whose mean curvature vector at any point is a non-zero

spacelike vector or timelike vector.

Let M2 : z = z(u, v), (u, v) ∈ D be a local parametrization on a marginally

trapped surface. The geometric moving frame field for a marginally trapped

surface is introduced as follows. Since the mean curvature vector is lightlike at

each point of the surface, i.e. 〈H,H〉 = 0, there exists a pseudo-orthonormal

normal frame field {n1, n2}, such that n1 = H and

〈n1, n1〉 = 0; 〈n2, n2〉 = 0; 〈n1, n2〉 = −1.

We assume that M2 is free of flat points, i.e. (L,M,N) 6= (0, 0, 0). Then at

each point of the surface there exist principal lines and without loss of generality

we assume that M2 is parameterized by principal lines. Let us denote x =
zu√
E

,

y =
zv√
G

. Thus we obtain a special frame field {x, y, n1, n2} at each point p ∈
M2, such that x, y are unit spacelike vector fields collinear with the principal

directions; n1, n2 are lightlike vector fields, 〈n1, n2〉 = −1, and n1 is the mean
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curvature vector field. We call such a frame field a geometric frame field of M2.

With respect to this frame field we have the following Frenet-type derivative

formulas of M2:

∇′
xx = γ1 y + (1 + ν)n1; ∇′

xn1 = µ y + β1 n1;

∇′
xy = −γ1 x + λn1 + µn2; ∇′

yn1 = µx + β2 n1;

∇′
yx = −γ2 y + λn1 + µn2; ∇′

xn2 = (1 + ν)x+ λ y − β1 n2;

∇′
yy = γ2 x + (1 − ν)n1; ∇′

yn2 = λx+ (1 − ν) y − β2 n2,

where γ1, γ2, ν, λ, µ, β1, β2 are invariant functions determined by the geometric

frame field. In terms of these invariants we prove the following Bonnet-type

theorem for marginally trapped surfaces in R
4

1
free of flat points.

Theorem 6.1 ([15]). Let γ1, γ2, ν, λ, µ, β1, β2 be smooth functions, defined

in a domain D, D ⊂ R
2, and satisfying the conditions

µu

µ(2 γ2 + β1)
> 0;

µv

µ(2 γ1 + β2)
> 0;

−γ1

√
E
√
G = (

√
E)v ; −γ2

√
E
√
G = (

√
G)u;

2λµ =
1√
E

(γ2)u +
1√
G

(γ1)v −
(
(γ1)

2 + (γ2)
2
)
;

2λγ2 − 2ν γ1 − λβ1 + (1 + ν)β2 =
1√
E
λu − 1√

G
νv;

2λγ1 + 2ν γ2 + (1 − ν)β1 − λβ2 =
1√
E
νu +

1√
G
λv;

γ1 β1 − γ2 β2 + 2ν µ = − 1√
E

(β2)u +
1√
G

(β1)v,

where
√
E =

µu

µ(2γ2 + β1)
,
√
G =

µv

µ(2γ1 + β2)
. Let {x0, y0, (n1)0, (n2)0} be vec-

tors at a point p0 ∈ R
4

1
, such that x0, y0 are unit spacelike vectors, 〈x0, y0〉 =

0, (n1)0, (n2)0 are lightlike vectors, and 〈(n1)0, (n2)0〉 = −1. Then there ex-

ist a subdomain D0 ⊂ D and a unique marginally trapped surface M2 : z =

z(u, v), (u, v) ∈ D0 free of flat points, such that M2 passes through p0, the func-

tions γ1, γ2, ν, λ, µ, β1, β2 are the geometric functions of M2 and {x0, y0, (n1)0,

(n2)0} is the geometric frame of M2 at the point p0.
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Theorem 6.1 shows that each marginally trapped surface in R
4
1

is determine

up to a motion in R
4
1

by seven invariants satisfying some natural conditions.

7. Examples. We apply our theory to some special classes of surfaces in

R
4 or R

4
1
.

7.1. Rotational surfaces with two-dimensional axis in R
4. The rota-

tional surfaces with two-dimensional axis in the Euclidean space R
4 are defined

as follows. Let Oe1e2e3e4 be a fixed orthonormal base of R
4 and R

3 be the sub-

space spanned by e1, e2, e3. We consider a smooth curve c : z̃ = z̃(u), u ∈ J in

R
3, parameterized by z̃(u) = (x1(u), x2(u), r(u)). Without loss of generality we

assume that c is parameterized by the arc-length, i.e. (x′
1
)2 + (x′

2
)2 + (r′)2 = 1.

We assume also that r(u) > 0, u ∈ J .

The rotational surface M2, obtained by the rotation of the curve c about the

two-dimensional axis Oe1e2 (the rotation of c that leaves the plane Oe1e2 fixed),

is given by

z(u, v) = (x1(u), x2(u), r(u) cos v, r(u) sin v) ; u ∈ J, v ∈ [0; 2π).

In [10] we find the invariants of this rotational surface and describe all rota-

tional surfaces, for which the invariant k is constant.

7.2. Rotational surfaces with two-dimensional axis in R
4

1
. There are

three types of spacelike rotational surfaces with two-dimensional axis in the

Minkowski space R
4

1
: elliptic, hyperbolic, and parabolic. They can be defined

as follows. Let Oe1e2e3e4 be a fixed orthonormal coordinate system in R
4
1
, such

that 〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e4, e4〉 = −1.

First we consider a smooth spacelike curve c : z̃ = z̃(u), u ∈ J , lying in the

three-dimensional subspace R
3
1

= span{e1, e2, e4} of R
4
1

and parameterized by

z̃(u) = (x1(u), x2(u), 0, r(u)) .

We assume that (x′
1
)2 + (x′

2
)2 − (r′)2 = 1, r(u) > 0, u ∈ J . Let us consider the

surface M2 in R
4
1

given by

z(u, v) = (x1(u), x2(u), r(u) sinh v, r(u) cosh v) ; u ∈ J, v ∈ R.

It is a spacelike surface, which is an orbit of a spacelike curve under the action

of the orthogonal transformations of R
4

1
which leave a spacelike plane point-wise
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fixed (in our case the plane Oe1e2 is fixed). It is called a spacelike rotational

surface of hyperbolic type.

A classification of all spacelike rotational surfaces of hyperbolic type with

non-zero constant mean curvature in the three-dimensional de Sitter space S
3

1
is

given in [24] and the spacelike Weingarten rotational surfaces in S
3
1

are classified

in [25]. Marginally trapped rotational surface of hyperbolic type are found in

[17].

In a similar way we consider a spacelike surface in R
4
1

which is an orbit of

a spacelike curve c under the action of the orthogonal transformations of R
4
1

which leave a timelike plane point-wise fixed. Now we consider a spacelike curve

c : z̃ = z̃(u), u ∈ J , parameterized by

z̃(u) = (r(u), 0, x1(u), x2(u)) ; u ∈ J.

The curve c lies in the three-dimensional subspace R
3

1
= span{e1, e3, e4} of R

4

1
.

We assume that (r′)2 + (x′
1
)2 − (x′

2
)2 = 1, r(u) > 0, u ∈ J . Let us consider the

surface M2 given by

z(u, v) = (r(u) cos v, r(u) sin v, x1(u), x2(u)) ; u ∈ J, v ∈ [0; 2π).

It is a spacelike surface in R
4
1
, obtained by the rotation of the curve c about the

two-dimensional Lorentz plane Oe3e4. It is called a spacelike rotational surface

of elliptic type.

A local classification of spacelike surfaces in R
4
1
, which are invariant under

spacelike rotations, and with mean curvature vector either vanishing or lightlike,

is obtained in [18].

In [13] we study spacelike rotational surfaces of elliptic or hyperbolic type in

R
4
1

and describe all such surfaces, for which the invariant k is constant. We also

describe the class of Chen spacelike rotational surfaces of elliptic or hyperbolic

type.

A spacelike surface in R
4

1
, which is the orbit of a spacelike curve under the ac-

tion of the orthogonal transformations of R
4
1

leaving a degenerate plane point-wise

fixed, is called a spacelike rotational surface of parabolic type or screw invariant

surface. Screw invariant surfaces can be parameterized as follows. We consider

a spacelike curve c : z̃ = z̃(u), u ∈ J , lying in the three-dimensional subspace

R
3
1

= span{e1, e3, e4} of R
4
1

and parameterized by

z̃(u) = (x1(u), 0, x3(u), x4(u)) .
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We assume that (x′
1
)2 + (x′

3
)2 − (x′

4
)2 = 1, x1(u) 6= 0, u ∈ J . The spacelike

rotational surface of parabolic type is defined by

z(u, v) =
(
x1(u), v(x3(u) + x4(u)),

x3(u) −
v2

2
(x3(u) + x4(u)), x4(u) +

v2

2
(x3(u) + x4(u))

)
.

The spacelike Weingarten rotation surfaces of parabolic type in S
3
1

are found

in [25]. The screw invariant surfaces with vanishing or lightlike mean curvature

vector field are classified in [19].

7.3. General rotational surfaces in R
4. Considering general rotations in

R
4, C. Moore introduced general rotational surfaces as follows [28]. Let c : x(u) =(
x1(u), x2(u), x3(u), x4(u)

)
; u ∈ J ⊂ R be a smooth curve in R

4, and α, β be

constants. A general rotation of the meridian curve c in R
4 is given by

X(u, v) =
(
X1(u, v),X2(u, v),X3(u, v),X4(u, v)

)
,

where

X1(u, v) = x1(u) cosαv − x2(u) sinαv;

X2(u, v) = x1(u) sinαv + x2(u) cosαv;

X3(u, v) = x3(u) cos βv − x4(u) sin βv;

X4(u, v) = x3(u) sin βv + x4(u) cos βv.

In the case β = 0 the plane Oe3e4 is fixed and one gets the classical rotation

about a fixed two-dimensional axis.

In [27] we consider a special case of such surfaces, given by

M : z(u, v) = (f(u) cosαv, f(u) sin αv, g(u) cos βv, g(u) sin βv) ,

where u ∈ J ⊂ R, v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying

α2f2(u) + β2g2(u) > 0, f ′ 2(u) + g′ 2(u) > 0, and α, β are positive constants. In

the case α 6= β each parametric curve u = const is a curve in R
4 with constant

Frenet curvatures, and in the case α = β each parametric curve u = const is

a circle. The parametric curves v = const of M are plane curves with Frenet

curvature κ =
|g′f ′′ − f ′g′′|

(
√
f ′ 2 + g′ 2)3

. So, for each v = const the parametric curves are

congruent in R
4. These curves are the meridians of M.
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The surfaces given above are general rotational surfaces in the sense of C.

Moore with plane meridian curves. We find the invariant functions γ1, γ2, ν1,

ν2, λ, µ, β1, β2 of these surfaces and find all minimal super-conformal general

rotational surfaces in R
4 [27].

7.4. General rotational surfaces in R
4

1
. In [14] we consider a class of

spacelike surfaces in R
4
1

which are analogous to the general rotational surfaces

with plane meridians in R
4.

Let us consider the surface M1 parameterized by

M1 : z(u, v) = (f(u) cosαv, f(u) sinαv, g(u) cosh βv, g(u) sinh βv) ,

where u ∈ J ⊂ R, v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying

α2f2(u) − β2g2(u) > 0, f ′ 2(u) + g′ 2(u) > 0, and α, β are positive constants.

M1 is a spacelike surface with spacelike mean curvature vector field, para-

meterized by principal parameters (u, v).

Analogously, we consider the surface M2 given by

M2 : z(u, v) = (f(u) cosαv, f(u) sinαv, g(u) sinh βv, g(u) cosh βv) ,

where u ∈ J ⊂ R, v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying

f ′ 2(u) − g′ 2(u) > 0, α2f2(u) + β2g2(u) > 0, and α, β are positive constants.

M2 is a spacelike surface with timelike mean curvature vector field, parame-

terized by principal parameters (u, v).

We find the invariants of the general rotational spacelike surfaces M1 and

M2 [14].

7.5. Meridian surfaces in R
4. In [12] we construct a family of surfaces

lying on a rotational hypersurface in the Euclidean space R
4 as follows. Let

{e1, e2, e3, e4} be the standard orthonormal frame in R
4, and S2(1) be the 2-

dimensional sphere in R
3 = span{e1, e2, e3}, centered at the origin O. Let f =

f(u), g = g(u) be smooth functions, defined in an interval I ⊂ R, such that

ḟ2(u) + ġ2(u) = 1, u ∈ I, where ḟ(u) =
df(u)

du
and ġ(u) =

dg(u)

du
. The standard

rotational hypersurface M in R
4, obtained by the rotation of the meridian curve

m : u→ (f(u), g(u)) about the Oe4-axis, is parameterized as follows:

M : Z(u,w1, w2) = f(u) l(w1, w2) + g(u) e4,

where l(w1, w2) is the unit position vector of S2(1) in R
3.
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We consider a smooth curve c : l = l(v) = l(w1(v), w2(v)), v ∈ J, J ⊂ R on

S2(1), parameterized by the arc-length. Using this curve we construct a surface

Mm in R
4 in the following way:

Mm : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J.

The surface Mm lies on the rotational hypersurface M . Since Mm is a one-

parameter system of meridians of the rotational hypersurface, we call Mm a

meridian surface.

We describe the meridian surfaces with constant Gauss curvature, with con-

stant mean curvature, and with constant invariant k [12].

7.6. Meridian surfaces in R
4

1
. In [15] we use the same idea to construct

a special family of two-dimensional spacelike surfaces lying on rotational hyper-

surfaces in R
4
1
. We consider a rotational hypersurface with timelike axis and a

rotational hypersurface with spacelike axis.

Let {e1, e2, e3, e4} be the standard orthonormal frame in R
4
1
, i.e. 〈e1, e1〉 =

〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e4, e4〉 = −1. First we consider a rotational hypersurface

with timelike axis. Let S2(1) be the 2-dimensional sphere in the Euclidean space

R
3 = span{e1, e2, e3}, centered at the origin O. Let f = f(u), g = g(u) be

smooth functions, defined in an interval I ⊂ R, such that ḟ2(u)−ġ2(u) > 0, u ∈ I.

We assume that f(u) > 0, u ∈ I. The standard rotational hypersurface M′ in

R
4

1
, obtained by the rotation of the meridian curve m : u → (f(u), g(u)) about

the Oe4-axis, is parameterized as follows:

M′ : Z(u,w1, w2) = f(u) l(w1, w2) + g(u) e4,

where l(w1, w2) is the unit position vector of S2(1) in R
3. The hypersurface M′

is a rotational hypersurface in R
4
1

with timelike axis.

We consider a smooth curve c : l = l(v) = l(w1(v), w2(v)), v ∈ J, J ⊂ R on

S2(1), parameterized by the arc-length, and construct a surface M′
m in R

4
1

in the

following way:

M′

m : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J.

The surface M′
m lies on the rotational hypersurface M′ in R

4

1
. Since M′

m is a

one-parameter system of meridians of M′, we call M′
m a meridian surface on

M′.
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In a similar way we consider meridian surfaces lying on a rotational hypersur-

face in R
4
1

with spacelike axis. Let S2
1
(1) be the timelike sphere in the Minkowski

space R
3
1

= span{e2, e3, e4}, i.e. S2
1
(1) = {V ∈ R

3
1

: 〈V, V 〉 = 1}. S2
1
(1) is a

timelike surface in R
3

1
known as the de Sitter space. Let f = f(u), g = g(u) be

smooth functions, defined in an interval I ⊂ R, such that ḟ2(u) + ġ2(u) > 0,

f(u) > 0, u ∈ I. We denote by l(w1, w2) the unit position vector of S2

1
(1) in R

3

1

and consider the rotational hypersurface M′′ in R
4
1
, obtained by the rotation of

the meridian curve m : u→ (f(u), g(u)) about the Oe1-axis. It is parameterized

as follows:

M′′ : Z(u,w1, w2) = f(u) l(w1, w2) + g(u) e1.

The hypersurface M′′ is a rotational hypersurface in R
4

1
with spacelike axis.

Now we consider a smooth spacelike curve c : l = l(v) = l(w1(v), w2(v)), v ∈
J, J ⊂ R on S2

1
(1), parameterized by the arc-length, and construct a surface M′′

m

in R
4
1

as follows:

M′′

m : z(u, v) = f(u) l(v) + g(u) e1, u ∈ I, v ∈ J.

The surface M′′
m lies on the rotational hypersurface M′′. We call M′′

m a meridian

surface on M′′, since M′′
m is a one-parameter system of meridians of M′′.

We find all meridian surfaces in R
4
1

which are marginally trapped [15].
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