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Abstract. In this article we obtain closed form solutions of integrable non-
linear evolution equations associated with the nonsymmetric matrix Zakharov-
Shabat system by means of the inverse scattering transform. These solutions
are parametrized by triplets of matrices. Alternatively, the time evolution
of the Marchenko integral kernels and direct substitution are employed in
deriving these solutions.

1. Introduction. The initial-value problem of integrable nonlinear evo-
lution equations such as the Korteweg-de Vries (KdV), nonlinear Schrödinger
(NLS), modified Korteweg-de Vries (mKdV), sine-Gordon (SG), integrable dis-
crete nonlinear Schrödinger (IDNLS), and Toda lattice equations, can be solved
by the inverse scattering transform (IST) method. This method was originally
conceived to solve the initial-value problem of the KdV equation [20] and consists
of associating the nonlinear evolution equation with a linear spectral problem —
the Schrödinger equation on the line for the KdV equation, the Zakharov-Shabat
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system for the NLS, mKdV and SG equations, a discretized Zakharov-Shabat sys-
tem for the IDNLS, and a linear Jacobi matrix system for the Toda lattice equa-
tion — containing its solution u(x, t) as a potential and translating the process of
solving the nonlinear evolution equation into the usually more elementary time
evolution of the so-called scattering data. These scattering data are asymptotic
properties of certain solutions of the associated linear spectral problem which, at
any time t, can be put into 1, 1-correspondence with the solution of the nonlinear
evolution equation. For details we refer to [2, 4, 22, 19, 1, 3].

The transition from the initial solution u(x, 0) of the nonlinear evolution
equation to the initial scattering data is called the direct scattering problem.
After evolving the scattering data in time, we solve the inverse scattering problem
of computing the solution u(x, t) of the nonlinear evolution equation at time
t from the scattering data. In the literature the scattering data are usually
described in a rather messy way as a reflection coefficient, a finite number of
so-called bound state poles, and a norming constant associated with each pole,
but they can also be represented more conveniently as the integral kernel Ω(y +
z; t) of the Marchenko equation [14]. This integral kernel can be formulated
faithfully in terms of the scattering data and the solution of the corresponding
integral equation leads directly to the solution of the nonlinear evolution equation.
Schematically we can represent the IST in the following way:

u(x, 0)
direct scattering
−−−−−−−−−−→ Ω(y + z; 0)





y





y

u(x, t)
inverse scattering
←−−−−−−−−−− Ω(y + z; t)

where, at each time instant t, there exists a 1, 1-correspondence between poten-
tials u(x, t) and Marchenko kernels Ω(y + z; t). In continuous-position problems,
where the position variable x ∈ R and the nonlinear evolution equation is a PDE
in (x, t) ∈ R

2, the Marchenko equation is a linear integral equation whose kernel
Ω(y + z; t) depends on the sum of its variables y, z ∈ R. In discrete-position
problems, where the position variable n ∈ Z and the nonlinear evolution equa-
tion is differential in t and of difference type in n, the Marchenko equation is a
linear summation equation whose kernel Ω(n +m; t) depends on the sum of the
variables n,m ∈ Z.

In this article we consider nonlinear evolution equations, where the corre-
sponding Marchenko equation can be solved by separation of variables and its
kernel satisfies a simple linear pseudo-PDE [in the continuous-position case] or a
simple linear pseudodifferential-difference equation [in the discrete-position case]
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with constant coefficients. In this case it is convenient to parametrize the Mar-
chenko kernel in terms of a matrix triplet (A,B,C) in the following way:

(1.1)

{

Ω(y + z) = Ce−(y+z)AB, continuous-position case,

Ω(n+m) = CA−(n+m)B, discrete-position case.

Here time evolution of the scattering data does not affect A at all, but it has its
impact on one of B and C by replacing B by H(t)B and leaving C unchanged [or
by replacing C by CH(t) and leaving B unchanged], where H(t) is an invertible
time factor commuting with A. As a net result, we obtain closed form solutions
of the nonlinear evolution equations in terms of the matrix triplet (A,B,C).
Symmetries in the integrable evolution equation correspond to symmetries in the
matrix triplets.

In control theory [28, 10], expressions such as appearing in the right-hand
sides of (1.1) arise as the integral/summation kernels of input-output maps of
linear autonomous continuous-time and discrete-time systems governed by the
matrices A (determining time evolution of the system state), B (mapping input
to state), and C (mapping state to output). These representations of Marchenko
kernels have been proven most useful in obtaining closed form solutions. This
method has been applied to get closed form solutions of the KdV [9], NLS [13, 6],
mKdV [12], SG [7], and IDNLS [15] equations.

Matrix and operator triplets have been applied to derive solutions of nonlinear
evolution equations by using a continuous multiplicative functional to pass from a
solution in a large algebra to the actual solution. In this way solutions have been
found of the KdV [5], Toda lattice [23], and SG [24] equations. This procedure
has also been cast in the framework of bidifferential calculus in [16, 18], leading
to explicit solutions of the NLS [17] and Ernst equations [18].

Solutions of integrable nonlinear evolution equations written in terms of ma-
trix triplets (A,B,C) contain virtually all of the known explicit solutions to these
equations, such as N -soliton and breather solutions. Their amenability to com-
puter algebra makes these expressions into excellent tools to obtain solutions in
unpacked analytical or graphical form.

Instead of using two matrix triplets to parametrize the integral kernels of
two coupled Marchenko equations, in this article we employ one matrix triplet,
(A,B,C), whose three matrices of increased size contain the six matrices of the
two constituent triplets as their nontrivial blocks. In this way we economize when
solving the Marchenko equations to derive explicit solutions of integrable equa-
tions, while treating the general case of not having adjoint symmetries at the
same level as the focusing and defocusing cases. In this way we also greatly sim-
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plify the direct substitution of the putative solution into the integrable nonlinear
equation. In this article we do not discuss the simplifications, based on the use
of determinants and matrix traces, in the case of scalar integrable equations.

Let us now discuss the contents of the various sections. In Section 2 we
summarize the direct and inverse scattering theory of the matrix Zakharov-Shabat
system with solutions vanishing as x → ±∞. Although the basic results can be
found in various standard publications, the tendency to maximize using matrices
has led to peculiar notations that require explanation. In this section we also
solve the inverse scattering problem in closed form under the hypothesis that
the reflection coefficients vanish. No symmetries of the potentials are assumed,
although we always discuss the focusing case separately. In Section 3 we employ
the time evolution of the Marchenko integral kernels to derive explicit solutions
of certain integrable nonlinear evolution equations. Similar results are derived
in Section 4 by substitution of the putative solution into the nonlinear evolution
system. In this way we supply two independent proofs of the validity of certain
solution formulas. Appendix A is devoted to the Volterra integral equations
satisfied by the Fourier transforms of the Jost solutions.

We denote the open upper and lower half complex planes by C
+ and C

− and
their closures (each including the point at infinity) by C+ and C−, respectively.
By A† we denote the conjugate transpose of a matrix A and by z∗ the complex
conjugate of z ∈ C.

2. Matrix Zakharov-Shabat systems. In this section we summarize
the direct and inverse scattering theory of the matrix Zakharov-Shabat system
[2, 22, 19, 3] and obtain closed form solutions of the inverse scattering problem.
We do not necessarily make symmetry assumptions on the Zakharov-Shabat po-
tentials.

2.1. Direct and inverse scattering theory. The matrix Zakharov-Shabat
system is given by

(2.1) iJ
∂X

∂x
(λ, x)− V (x)X(λ, x) = λX(λ, x),

where

(2.2) J =

(

Im 0m×n

0n×m −In

)

, V (x) =

(

0m×m iq(x)
ir(x) 0n×n

)

,

the potentials q(x) and r(x) have their entries in L1(R), and λ is a spectral
parameter. Defining the Jost matrices Ψ(λ, x) and Φ(λ, x) as the unique square
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matrix solutions to (2.1) satisfying the asymptotic conditions

Ψ(λ, x) = e−iλJx[Im+n + o(1)], x→ +∞,(2.3a)

Φ(λ, x) = e−iλJx[Im+n + o(1)], x→ −∞,(2.3b)

there exist so-called transition coefficients al(λ) and ar(λ) such that

(2.4) Φ(λ, x) = Ψ(λ, x)ar(λ), Ψ(λ, x) = Φ(λ, x)al(λ).

In that case

Ψ(λ, x) = e−iλJxal(λ) + o(1), x→ −∞,(2.5a)

Φ(λ, x) = e−iλJxar(λ) + o(1), x→ +∞.(2.5b)

Writing

Ψ(λ, x) = e−iλJx +

∫ ∞

x

dy αl(x, y)e
−iλJy,(2.6a)

Φ(λ, x) = e−iλJx +

∫ x

−∞

dy αr(x, y)e
−iλJy ,(2.6b)

we obtain the Marchenko integral equations

αl(x, y) + ωl(x+ y) +

∫ ∞

x

dz αl(x, z)ωl(z + y) = 0(m+n)×(m+n),(2.7a)

αr(x, y) + ωr(x+ y) +

∫ x

−∞

dz αr(x, z)ωr(z + y) = 0(m+n)×(m+n),(2.7b)

where ωl(x + y) and ωr(x + y) are called the left and right Marchenko kernels,
respectively. These kernels anticommute with J in the sense that

Jωl(y + z) = −ωl(y + z)J, Jωr(y + z) = −ωr(y + z)J.

The so-called Jost kernels αl(x, y) and αr(x, y) can be computed from the poten-
tials by solving the respective Volterra integral equations (A.1) and (A.3) given in
Appendix A. The potentials q(x) and r(x) are related to the Marchenko solutions
αl(x, y) and αr(x, y) as follows [cf. (A.2) and (A.4)]:

αl(x, x) = −
1

2







∫ ∞

x

dz q(z)r(z) q(x)

−r(x)

∫ ∞

x

dz r(z)q(z)






,(2.8a)

αr(x, x) = −
1

2









∫ x

−∞

dz q(z)r(z) −q(x)

r(x)

∫ x

−∞

dz r(z)q(z)









.(2.8b)
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Even though the Marchenko kernels could and will themselves be considered
as scattering data, we express them in the traditional scattering data prevailing
in the literature. Writing

Ψ(λ, x) =
(

ψ(λ, x) ψ(λ, x)
)

, Φ(λ, x) =
(

φ(λ, x) φ(λ, x)
)

,

where ψ(λ, x) and φ(λ, x) are (m+ n)×m matrices and ψ(λ, x) and φ(λ, x) are
(m+n)×n matrices called Jost functions, it can be shown that, for each x ∈ R,
eiλxφ(λ, x) and e−iλxψ(λ, x) are analytic in λ ∈ C

+ and continuous in λ ∈ C+

and eiλxψ(λ, x) and e−iλxφ(λ, x) are analytic in C
− and continuous in C−. We

thus obtain the Riemann-Hilbert problem

(2.9)
(

ψ(λ, x) φ(λ, x)
)

=
(

φ(λ, x) ψ(λ, x)
)

JS(λ)J,

where

S(λ) =

(

Tr(λ) L(λ)
R(λ) Tl(λ)

)

, S(λ)−1 =

(

T̆l(λ) R̆(λ)

L̆(λ) T̆r(λ)

)

are called the scattering matrix and its inverse. Under the technical assumption
of absence of spectral singularities, i.e., by assuming that the diagonal m × m
and n × n blocks of the transition matrices are invertible matrices for λ ∈ R,
the transmission coefficients Tl(λ) and Tr(λ) have the same determinant, are
meromorphic in C

+ with finitely many poles in C
+, and tend to the identity as

λ → ∞ from within C+. Under this assumption, the reflection coeffients R(λ)
and L(λ) and the dual reflection coefficients R̆(λ) and L̆(λ) can be written as

R(λ) =

∫ ∞

−∞

dy e−iλyρ(y), L(λ) =

∫ ∞

−∞

dy eiλyℓ(y),(2.10a)

R̆(λ) =

∫ ∞

−∞

dy eiλy ρ̆(y), L̆(λ) =

∫ ∞

−∞

dy e−iλy ℓ̆(y),(2.10b)

where the entries of ρ(y), ℓ(y), ρ̆(y), and ℓ̆(y) belong to L1(R).

If there are no nonreal eigenvalue parameters λ for which (2.1) has a nontrivial
column vector solution with entries belonging to L2(R), then the Marchenko
kernels are given by

ωl(x) =

(

0m×m ρ̆(x)
ρ(x) 0n×n

)

, ωr(x) =

(

0m×m ℓ(x)

ℓ̆(x) 0n×n

)

.

In general and in the absence of spectral singularities, we add to the Marchenko
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kernels the bound state contributions

δl(x) =















0m×m

N̆
∑

j=1

j
∑

s=0

xs

s!
e−xăj [C̆l]js

N
∑

j=1

j
∑

s=0

xs

s!
e−xaj [Cl]js 0n×n















,

δr(x) =















0m×m

N
∑

j=1

j
∑

s=0

xs

s!
exaj [Cr]js

N̆
∑

j=1

j
∑

s=0

xs

s!
exăj [C̆r]js 0n×n















,

where a1, . . . , aN and ă1, . . . , ăN̆
are finite (and possibly empty) sets of distinct

numbers with positive real parts. In fact, ia1, . . . , iaN ,−iă1, . . . ,−iăN̆
are the

so-called bound states, i.e., the eigenvalue parameters λ for which (2.1) has a
nontrivial column vector solution with entries in L2(R). The matrices [Cl]js,
[C̆l]js, [Cr]js, and [C̆r]js are called norming constants. As a result, there exist
matrix triplets (Al, Bl, Cl), (Ăl, B̆l, C̆l), (Ar, Br, Cr), and (Ăr, B̆r, C̆r), where Al,
Ăl, Ar, and Ăr are square matrices having their eigenvalues in the open right
half-plane, such that

ωl(x) =

(

0m×m ρ̆(x) + C̆le
−xĂlB̆l

ρ(x) + Cle
−xAlBl 0n×n

)

,(2.11a)

ωr(x) =

(

0m×m ℓ(x) + Cre
xArBr

ℓ̆(x) + C̆re
xĂrB̆r 0n×n

)

.(2.11b)

In the defocusing case, where r(x) = −q(x)†, there are no bound states nor
spectral singularities, the transmission coefficients Tl(λ) and Tr(λ) are analytic in
C

+, and the scattering matrix S(λ) is unitary. The Fourier transformed reflection
coefficients satisfy the symmetry relations

ρ̆(x) = ρ(x)†, ℓ̆(x) = ℓ(x)†.

The Marchenko kernels satisfy

ωl(x) = ωl(x)
†, ωr(x) = ωr(x)

†.

The Marchenko equations are uniquely solvable [8, 11].
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In the focusing case, where r(x) = q(x)†, bound states usually exist and spec-
tral singularities may exist under exceptional circumstances. Then the scattering
matrix S(λ) is J-unitary in the sense that

S(λ)−1 = JS(λ)†J.

The Fourier transformed reflection coefficients satisfy the symmetry relations

ρ̆(x) = −ρ(x)†, ℓ̆(x) = −ℓ(x)†.

The Marchenko kernels satisfy

ωl(x) = −Jωl(x)
†J, ωr(x) = −Jωr(x)

†J.

The matrix triplets can be chosen in such a way that

(2.12) (Ăl, B̆l, C̆l) = (A†
l , C

†
l ,−B

†
l ), (Ăr, B̆r, C̆r) = (A†

r, C
†
r ,−B

†
r).

The Marchenko equations are uniquely solvable [26, 27, 11].

2.2. Closed form expressions. Write

ωl(x)=C le
−xAlBl =

(

0m×p C̆l

Cl 0n×q

)

(

e−xAl 0p×q

0q×p e−xĂl

)

(

Bl 0p×n

0q×m B̆l

)

,(2.13a)

ωr(x)=Cre
xArBr =

(

Cr 0m×q

0n×p C̆r

)

(

exAr 0p×q

0q×p exĂr

)

(

0m×p Br

B̆r 0n×q

)

.(2.13b)

Solving (2.7a) by separation of variables we get

αl(x, y) = −
{

Cle
−xAl + F l(x)

}

e−yAlBl,

where

F l(x) =

∫ ∞

x

dz αl(x, z)C le
−zAl .

We then easily obtain

F l(x) = −
{

C le
−xAl + F l(x)

}

e−xAlP le
−xAl ,

where

(2.14) P l =

∫ ∞

0
dy e−yAlBlC le

−yAl =

(

0p×p −N l

Ql 0q×q

)

.
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Here

(2.15) Ql =

∫ ∞

0
dy e−yĂlB̆lCle

−yAl , N l = −

∫ ∞

0
dy e−yAlBlC̆le

−yĂl .

As a result,

F l(x) = −C le
−2xAlP le

−xAl
[

Ip+q + e−xAlP le
−xAl

]−1
,

αl(x, y) = −C le
−xAl

[

Ip+q + e−xAlP le
−xAl

]−1
e−yAlBl,

provided the inverse matrix exists. In that case the inverse is given by
(

Γ̆l(x)
−1 e−xAlN le

−xĂlΓl(x)
−1

−e−xĂlQle
−xAlΓ̆l(x)

−1 Γl(x)
−1

)

,

where

Γl(x) = Iq + e−xĂlQle
−2xAlN le

−xĂl ,

Γ̆l(x) = Ip + e−xAlN le
−2xĂlQle

−xAl .

As a result, by using (2.8a) we get







∫ ∞

x

dz q(z)r(z) q(x)

−r(x)

∫ ∞

x

dz r(z)q(z)







= 2C le
−xAl

[

Ip+q + e−xAlP le
−xAl

]−1
e−xAlBl.

It is easily verified that, for each x ∈ R, the invertibility of Γl(x) is equivalent to
the invertibility of Γ̆l(x). We now easily obtain

q(x) = 2C̆le
−xĂlΓl(x)

−1e−xĂlB̆l = 2C̆l

[

e2xĂl + Qle
−2xAlN l

]−1
B̆l,(2.16a)

r(x) = −2Cle
−xAlΓ̆l(x)

−1e−xAlBl = −2Cl

[

e2xAl + N le
−2xĂlQl

]−1
Bl,(2.16b)

∫ ∞

x

dz q(z)r(z) = −2C̆le
−2xĂlQle

−xAl Γ̆l(x)
−1e−xAlBl

= −2C̆le
−2xĂlQl

[

e2xAl + N le
−2xĂlQl

]−1
Bl,(2.16c)

∫ ∞

x

dz r(z)q(z) = 2Cle
2xAlN le

−xĂlΓl(x)
−1e−xĂlB̆l

= 2Cle
2xAlN l

[

e2xĂl −Qle
−2xAlN l

]−1
B̆l.(2.16d)
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The inverse matrices exist for every x ∈ R, with the possible exception of fi-
nitely many x-values where the corresponding Marchenko equation (2.7a) is not
uniquely solvable. Moreover, the potentials q(x) and r(x) decay exponentially as
x→ ±∞.

In the focusing case, where the matrix triplets are related as in (2.12), we
obtain

q(x) = −2B†
l

[

e2xA
†
l + Qle

−2xAlN l

]−1
C

†
l ,(2.17a)

∫ ∞

x

dz q(z)q(z)† = 2B†
l e

−2xA
†
l Ql

[

e2xAl + N le
−2xA

†
l Ql

]−1
Bl,(2.17b)

∫ ∞

x

dz q(z)†q(z) = 2Cle
2xAlN l

[

e2xA
†
l + Qle

−2xAlN l

]−1
C

†
l .(2.17c)

where

Ql =

∫ ∞

0
dy e−yA

†
lC

†
l Cle

−yAl , N l =

∫ ∞

0
dy e−yAlBlB

†
l e

−yA
†
l ,

are nonnegative definite hermitian matrices; these matrices are invertible iff
the matrix triplet (Al, Bl, Cl) is minimal in the sense that the order of the
square matrix Al is minimal among all triplets having the same Marchenko kernel
Ωl(y) = Cle

−yAlBl (cf. [6]). The inverse matrices in (2.17) are easily seen to exist
for each x ∈ R, irrespective of whether the triplet is minimal.

3. Explicit solutions. In this section we find closed form solutions of the
matrix NLS, sine-Gordon, matrix modified KdV equations, and more general
equations. We do not necessarily make symmetry assumptions on the Zakharov-
Shabat potentials and the nonlinear evolution equations. To obtain such explicit
solutions, we modify the Marchenko kernels employed. This amounts to altering
the matrix triplets (Al,Bl,C l) and (Ar,Br,Cr) by inserting time factors.

In the literature we find the following three examples:

1. matrix NLS: The two Marchenko kernels ωl(y; t) = −Jωl(y; t)J and
ωr(y; t) = −Jωr(y; t)J satisfy the PDE’s

[ωl]t + 4iJ [ωl]yy = 0, [ωr]t + 4iJ [ωr]yy = 0.

We thus assume the reflectionless Marchenko kernels to have the form

ωl(y; t) = C le
−yAle−4itJA

2
l Bl, ωr(y; t) = Cre

yAre+4itJA
2
rBr.

In [11, 6], only the focusing case has been worked out.
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2. matrix mKdV: The Marchenko kernels ωl(y; t) = −Jωl(y; t)J and ωr(y; t) =
−Jωr(y; t)J satisfy the PDE’s

[ωl]t + 8J [ωl]yyy = 0, [ωr]t − 8J [ωr]yyy = 0.

We thus assume the reflectionless Marchenko kernels to have the form

ωl(y; t) = C le
−yAle8tJA

3
l Bl, ωr(y; t) = Cre

yAre8tJA
3
rBr.

In [12], the matrix mKdV equation worked out is focusing and contains
only real quantities; thus the triplets consist of real matrices only.

3. sine-Gordon: The Marchenko kernels ωl(y; t) = −Jωl(y; t)J and ωr(y; t) =
−Jωr(y; t)J satisfy the PDE’s

[ωl]yt = 1
2Jωl, [ωr]yt = −1

2Jωr.

Since the sine-Gordon solutions are real and scalar, the two matrix triplets
consist of real matrices only, p = q = 1, and

ωl(y; t) = C le
−yAle−

1
2 tJA

−1
l Bl, ωr(y; t) = Cre

yAre−
1
2 tJA

−1
r Br.

In the examples the time dependent Marchenko kernels have the form

(3.1) ωl(y; t) = Cle
−yAle−itJφl(iJAl)Bl, ωr(y; t) = Cre

yAre−itJφr(iJAr)Br,

where φl(z) and φr(z) are analytic functions defined on a neighborhood of the
eigenvalues of iJAl and iJAr. We call

H l(t) = Hl(t)⊕ H̆l(t) = e−itJφl(iJAl) = e−itφl(iAl) ⊕ eitφl(−iĂl),(3.2a)

Hr(t) = Hr(t)⊕ H̆r(t) = e−itJφr(iJAr) = e−itφr(iAl) ⊕ eitφr(−iĂr),(3.2b)

time factors. The time factors and the signature matrix J obviously commute
with Al and Ar, respectively. In the focusing case, where the matrix triplets are
related as in (2.12), the time factors are related as follows:

(3.3) H̆l(t) = Hl(t)
†, H̆r(t) = Hr(t)

†.

In this case the analytic functions φl(z) and φr(z) are real-valued on the parts of
the real line within their domains.
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Let us now derive explicit solutions of the nonlinear evolution equations. To
do so, we modify the matrix triplets as follows:

(Al,Bl,C l) 7→ (Al,H l(t)Bl,C l),(3.4a)

(Ar,Br,Cr) 7→ (Ar,Hr(t)Br,Cr),(3.4b)

such that (3.1) remains true. Then P l is replaced by H l(t)P l [cf. (2.14)]. More-
over, Ql and N l are replaced by H̆l(t)Ql and Hl(t)N l, respectively [cf. (2.15)].
We then replace Γl and Γ̆l by

Γl(x; t) = Iq + e−xĂlH̆l(t)Qle
−2xAlHl(t)N le

−xĂl ,

Γ̆l(x; t) = Ip + e−xAlHl(t)N le
−2xĂlH̆l(t)Qle

−xAl ,

respectively. Using that Hl(t)
−1 = Hl(−t) and H̆l(t)

−1 = H̆l(−t), we obtain

q(x, t) = 2C̆le
−xĂlΓl(x; t)

−1e−xĂlH̆l(t)B̆l

= 2C̆l

[

H̆l(−t)e
2xĂl + Qle

−2xAlHl(t)N l

]−1
B̆l,(3.5a)

r(x, t) = −2Cle
−xAlΓ̆l(x; t)

−1e−xAlHl(t)Bl

= −2Cl

[

e2xAlHl(−t) + N le
−2xĂlH̆l(t)Ql

]−1
Bl.(3.5b)

The inverse matrices exist for every (x, t) ∈ R
2, with the possible exception of

finitely many x-values for each value of t, where the corresponding Marchenko
equation (2.7a) is not uniquely solvable. Moreover, for every t ∈ R the potentials
q(x, t) and r(x, t) decay exponentially as x → ±∞. In the focusing case, where
the matrix triplets are related as in (2.12) and the time factors as in (3.3), we
obtain

(3.6) q(x, t) = −2B†
l

[

Hl(−t)
†e2xA

†
l + Qle

−2xAlHl(t)N l

]−1
C

†
l ,

where the inverse matrix exists for all (x, t) ∈ R
2.

4. Direct substitution. Exact solutions of integrable nonlinear evolution
equations associated with the matrix Zakharov-Shabat system by means of the
IST can be obtained in the concise form (3.5) or (3.6), provided the time factor
H l(t) is known. Determining the time factor requires the time evolution of the
scattering data. More precisely, it requires proving that the Marchenko kernel
ωl(z) satisfies the partial pseudodifferential equation

(4.1) [ωl]t + iJφl(iJ
d
dx

)ωl = 0.
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This can be achieved by finding the Lax pair for the nonlinear equation involving
the matrix Zakharov-Shabat operator and deriving the time evolution of the
scattering data as in [2, 4].

Another method to determine the time factor is direct substitution of the
putative solution (3.5) or (3.6) into the nonlinear equation. This has been suc-
cesfully accomplished for the KdV equation [9], the focusing NLS equation [6],
the matrix modified KdV equation [12], and the sine-Gordon equation [24]. A
similar direct substitution method has been developed for the Toda lattice equa-
tion [23]. Using bidifferential calculus to generate solutions of suitable nonlinear
equations, exact solutions of the matrix NLS, IDNLS, and the Ernst equations
have been given [16, 17].

Let us start from matrix triplets satisfying (2.12). Departing from the triplet
(A,B,C) where A is an s× s matrix, we define

Π = e−xABCe−xA,(4.2a)

Γ = Is + Π2,(4.2b)

Xn = An + (−1)nΠAnΠ,(4.2c)

where we do not express their dependence on x ∈ R. Then

(4.3) (AΠ + ΠA)Γ−1(AΠ + ΠA) = X2 −X1Γ
−1X1,

provided Γ is invertible. Indeed, using that

ΠΓ−1 = Γ−1Π, Π2Γ−1 = Γ−1Π2 = Is − Γ−1,

we get

(AΠ + ΠA)Γ−1(AΠ + ΠA) = AΓ−1ΠAΠ + ΠAΠΓ−1A

+ A(Is − Γ−1)A + ΠAΓ−1AΠ

= [A2 + ΠA2Π]− (A−ΠAΠ)Γ−1(A−ΠAΠ)

= X2 −X1Γ
−1X1,

as claimed.

Proposition 4.1. Put

(4.4) q(x) = −2Ce−xAΓ−1e−xAB.
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Then

qx = 4Ce−xAΓ−1X1Γ
−1e−xAB,(4.5a)

qxx + 2q3 = −8Ce−xAΓ−1X2Γ
−1e−xAB,(4.5b)

qxxx + 3q2qx + 3qxq2 = 16Ce−xAΓ−1X3Γ
−1e−xAB.(4.5c)

P r o o f. We easily compute that

(Γ−1)x = −Γ−1(ΠxΠ + ΠΠx)Γ−1

= Γ−1([AΠ + ΠA]Π + Π[AΠ + ΠA])Γ−1

= Γ−1(AΠ2 + 2ΠAΠ + Π2A)Γ−1

= Γ−1A(Is − Γ−1) + 2Γ−1ΠAΠΓ−1 + (Is − Γ−1)AΓ−1

= Γ−1A + AΓ−1 − 2Γ−1(A−ΠAΠ)Γ−1

= Γ−1A + AΓ−1 − 2Γ−1X1Γ
−1,

which implies that

(4.6)
(

e−xAΓ−1e−xA
)

x
= −2e−xAΓ−1X1Γ

−1e−xA.

Equations (4.4) and (4.6) imply (4.5a).
Next,

(

Γ−1X1Γ
−1
)

x
= (Γ−1)xX1Γ

−1 + Γ−1X1(Γ
−1)x − Γ−1[ΠxAΠ+ΠAΠx]Γ

−1

= [Γ−1A + AΓ−1]X1Γ
−1 + Γ−1X1[Γ

−1A + AΓ−1]

− 4Γ−1X1Γ
−1X1Γ

−1

+ Γ−1[AΠAΠ + 2ΠA2Π + ΠAΠA]Γ−1

= AΓ−1X1Γ
−1+Γ−1X1Γ

−1A+2Γ−1{X2−2X1Γ
−1X1}Γ

−1.

Thus,

(4.7) qxx = 8Ce−xAΓ−1{X2 − 2X1Γ
−1X1}Γ

−1e−xAB.

Next, using (4.4) and (4.3), we obtain

(4.8) q2 = 4Ce−xAΓ−1[AΠ + ΠA]Γ−1e−xAB.

Using (4.4) once more we get

q3 = −8Ce−xAΓ−1[AΠ + ΠA]Γ−1[AΠ + ΠA]Γ−1e−xAB

= −8Ce−xAΓ−1{X2 − 2X1Γ
−1X1}Γ

−1e−xAB,
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where (4.3) has been used. The last identity together with (4.7) imply (4.5b).
Combining (4.5a) and (4.8) and using (4.3) we get

q2qx + qxq
2

= 16Ce−xAΓ−1[AΠ + ΠA]Γ−1[AΠ + ΠA]Γ−1X1Γ
−1e−xAB

+ 16Ce−xAΓ−1X1Γ
−1[AΠ + ΠA]Γ−1[AΠ + ΠA]Γ−1e−xAB

= 16Ce−xAΓ−1{X2 −X1Γ
−1X1}Γ

−1X1Γ
−1e−xAB

+ 16Ce−xAΓ−1X1Γ
−1{X2 −X1Γ

−1X1}Γ
−1e−xAB.

Next, using (4.6) and (4.2c) we get

(Γ−1X2Γ
−1)x = (Γ−1)xX2Γ

−1

+ Γ−1X2(Γ
−1)x + Γ−1[ΠxA2Π + ΠA2Πx]Γ−1

= AΓ−1X2Γ
−1 + Γ−1X2Γ

−1A

+ 2Γ−1A3Γ−1 + Γ−1[ΠA2ΠA + AΠA2Π]Γ−1

− 2Γ−1X1Γ
−1X2Γ

−1 − 2Γ−1X2Γ
−1X1Γ

−1

− Γ−1[AΠA2Π + 2ΠA3Π + ΠA2ΠA]Γ−1

= AΓ−1X2Γ
−1 + Γ−1X2Γ

−1A

+ 2Γ−1X3Γ
−1 − 2Γ−1X2Γ

−1X1Γ
−1 − 2Γ−1X1Γ

−1X2Γ
−1.

In a similar way we obtain with the help of (4.6)

(Γ−1X1Γ
−1X1Γ

−1)x = AΓ−1X1Γ
−1X1Γ

−1 + Γ−1X1Γ
−1X1Γ

−1A

− 6Γ−1X1Γ
−1X1Γ

−1X1Γ
−1

+ 2Γ−1X2Γ
−1X1Γ

−1 + 2Γ−1X1Γ
−1X2Γ

−1.

Using (4.7) we easily derive (4.5c). �

Let us introduce a function φ(z) which is analytic on a neighborhood of the
eigenvalues of iJA. Consider the time factor

(4.9) H(t) = e−itJφ(iJA),

where J is a signature matrix (i.e., J = J † = J−1) satisfying

(4.10) JA = AJ , JB = BJ , JC = −CJ .

Let us now replace the triplet (A,B,C) by

(A,H(t)B,C).
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Then Π is to be replaced by H(t)Π, while Γ will depend on (x, t) ∈ R
2. In that

case (4.4) is to be replaced by

(4.11) q(x, t) = −2Ce−xAΓ(x; t)−1e−xAH(t)B.

We easily verify that

iJqt = −2JCe−xAΓ−1 {Jφ(iJA)−ΠJφ(iJA)Π]Γ−1e−xAH(t)B

= 2Ce−xAΓ−1 {φ(iJA) + Πφ(iJA)Π]Γ−1e−xAH(t)B,(4.12)

where we have used (4.10), JΠ = −ΠJ , and JΓ = ΓJ .
Let us now apply (4.12) to some well-known evolution equations:

a. φ(z) = −
2

ξ
z for some 0 6= ξ ∈ R:

qt =
4

ξ
Ce−xAΓ−1[A−ΠAΠ]Γ−1e−xAeξtAB =

1

ξ
qx,

which has the travelling wave q(x, t) = F (x− ξt) as its general solution.

b. φ(z) = −4z2 (matrix NLS):

iJqt = 8Ce−xAΓ−1[A2 + ΠA2Π]Γ−1e−xAe−4itJA
2

= −qxx − 2q3.

c. φ(z) = −8z3 (matrix mKdV):

qt = 16Ce−xAΓ−1[A3 −ΠA3Π]Γ−1e−xAe8tA3

B = qxxx + 3q2qx + 3qxq
2.

d. φ(z) = α0 +2α1z+4α2z
2 +8α3z

3 for real coefficients α0, α1, α2, α3 (matrix
Hirota model):

iJqt + α0q + iα1Jqx − α2(qxx + 2q3)

− iα3J(qxxx + 3q2qx + 3qxq2) = 0(m+n)×(m+n).

Writing

(4.13) q =

(

0m×m q

r 0n×n

)

,

we can write the matrix NLS system in the form

(4.14a) iqt + qxx + 2qrq = 0m×n, −irt + rxx + 2rqr = 0n×m,
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the matrix mKdV system in the form

(4.14b) qt = qxxx + 3qrqx + 3qxrq, rt = rxxx + 3rqrx + 3rxqr,

and the matrix Hirota system [21, 25] in the form

iqt + α0q + iα1qx − α2(qxx + 2qrq)− iα3(qxxx + 3qrqx + 3qxrq) = 0m×n,

(4.14c)

−irt + α0r − iα1rx − α2(rxx + 2rqr) + iα3(rxxx + 3rqrx + 3rxqr) = 0n×m.

(4.14d)

In the focusing case we have r = q† and hence q† = q in (4.13). Equations
(4.14) then take the folowing form:

(4.15a) iqt + qxx + 2qq†q = 0m×n,

(4.15b) qt = qxxx + 3qq†qx + 3qxq
†q,

(4.15c) iqt +α0q+ iα1qx−α2(qxx +2qq†q)− iα3(qxxx +3qq†qx +3qxq
†q) = 0m×n,

respectively.

A. Volterra integral equations. Writing αl(x, y) and αr(x, y) in block
form as

αl(x, y) =

(

K
up

(x, y) Kup(x, y)

K
dn

(x, y) Kdn(x, y)

)

, αr(x, y) =

(

Mup(x, y) M
up

(x, y)

Mdn(x, y) M
dn

(x, y)

)

we obtain from the usual Volterra integral equations for the Jost matrices Volterra
integral equations for the blocks of αl(x, y) and αr(x, y). In fact, for the blocks
of αl(x, y) we get

K
up

(x, y) = −

∫ ∞

x

dz q(z)K
dn

(z, z + y − x),(A.1a)

K
dn

(x, y) = 1
2r(

1
2(x+ y)) +

∫
1
2 (x+y)

x

dz r(z)K
up

(z, x+ y − z),(A.1b)

Kup(x, y) = −1
2q(

1
2(x+ y))−

∫
1
2 (x+y)

x

dz q(z)Kdn(z, x + y − z),(A.1c)

Kdn(x, y) =

∫ ∞

x

dz r(z)Kup(z, z + y − x).(A.1d)
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As a result, we can express the potentials and their (partial) energy integrals in
terms of the kernel functions from the right as follows:

q(x) = −2Kup(x, x), r(x) = 2K
dn

(x, x),(A.2a)
∫ ∞

x

dz r(z)q(z) = −2Kdn(x, x),

∫ ∞

x

dz q(z)r(z) = −2K
up

(x, x).(A.2b)

On the other hand, for the blocks of αr(x, y) we get

Mup(x, y) =

∫ x

−∞

dz q(z)Mdn(z, z + y − x),(A.3a)

Mdn(x, y) = −1
2r(

1
2 (x+ y))−

∫ x

1
2 (x+y)

dz r(z)Mup(z, x+ y − z),(A.3b)

M
up

(x, y) = 1
2q(

1
2(x+ y)) +

∫ x

1
2 (x+y)

dz q(z)M
dn

(z, x+ y − z),(A.3c)

M
dn

(x, y) = −

∫ x

−∞

dz r(z)M
up

(z, z + y − x).(A.3d)

As a result, we can express the potentials and their (partial) energy integrals in
terms of the kernel functions from the left as follows:

q(x) = 2M
up

(x, x), r(x) = −2Mdn(x, x),(A.4a)
∫ x

−∞

dz r(z)q(z) = −2M
dn

(x, x),

∫ x

−∞

dz q(z)r(z) = −2Mup(x, x).(A.4b)
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407–439.

[27] J. Villarroel, M. J. Ablowitz, B. Prinari. Solvability of the direct and
inverse problems for the nonlinear Schrödinger equation. Acta Appl. Math.

87 (2005), 245–280.

[28] W. M. Wonham. Linear Multivariable Control: A Geometric Approach,
Third Ed. Berlin and New York, Springer, 1985.

Cornelis van der Mee

Dip. Matematica e Informatica
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