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A METHOD FOR SOLVING A CLASS OF
MULTIPLE-CRITERIA ANALYSIS PROBLEMS

V. Vassilev, K. Genova, L. Kirilov

The paper proposes an interactive method solving the multiple criteria choice prob-
lem (MCCP) with a large number of discrete alternatives and a small number of
quantitative criteria. The decision maker (DM) sets his preferences in terms of
desired directions of improving or relaxing of the criteria. On this base the so
called reference cone is constructed. A small subset of relatively closed alternatives
is defined according to this cone and to the maximal deterioration of the criteria
values at each iteration. This subset is evaluated by the DM, who selects the most
preferred alternative or enters his/her new preferences.

The method suggested has user-friendly dialog. It enables the DM to explore
the set of alternatives comparatively quickly and easy. The method is included in
a DSS. It is tested by a number of real multiple criteria choice problems.
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1 Introduction

The problems of multicriteria decision making (MCDM), that begin to play a still more
important part in operation research area, can be divided in two basic classes [16], [15]:
multiple objective mathematical programming problems (MOMP), in which a finite num-
ber of explicitly set constraints define implicitly an infinite number of alternatives, the
constraints and objective functions being defined by mathematical expressions, and prob-
lems of multicritreria decision analysis (MCDA), in which a finite number of explicitly
set alternatives is represented into a table form.

The purpose of the interactive MOMP methods is to generate a nondominated (ef-
ficient) solution, which satisfies mostly the DM’s preferences in the mode of a dialogue
between the computing procedure and the DM on the basis of different types of scalariz-
ing techniques. This solution is usually called the best compromise or the best preferred
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solution. In order to achieve its selection, the DM sets his/her preferences at each it-
eration and they serve to improve the solution currently found. During the search of
the best preferred solution in these methods, it is assumed that the DM optimizes an
explicitly or implicitly set value (utility) function or that by learning during the search
process he/she tries to satisfy to the highest degree his/her aspirations concerning the
values of the separate criteria (the aspiration levels of the criteria). In the two types of
methods convergence of the solution process is presumed. Mathematical convergence of
the computing process is ensured in the first type of methods called “search methods”. In
the second type of methods, named “learning oriented methods”, behavioral or intuitive
convergence of the solution process is expected, which is ensured by the DM. In both
types of methods it is assumed that the DM can easily compare two alternatives and in
this way estimate whether to prefer one of them or whether the two are equivalent for
him/her (indifference). Because of the fact that when solving MOMP problem the pur-
pose is to find the best preferred solution, MOMP problems can be called multicriteria
choice problems.

The problems of MCDA can be classified in three main groups. The best preferred
nondominated alternative is searched for in the first group of problems (choice problem
– MCCP). In the second group of problems, ranking of the nondominated alternatives
is established, starting from the best towards the worst one (ranking problem). In the
third group of problems the set of alternatives is divided into separate groups (sorting
problem). The MCDA problems usually contain a finite number of alternatives and
criteria, but they can be of considerable number as well. When the alternative number
is large, the DM can hardly perceive these alternatives as a whole, which makes these
problems comparatively close to MOMP problems. When the criteria number is large,
the DM cannot perceive these criteria as a whole either, particularly when some of them
are contradicting. That is why some procedures (techniques) are included in the main
MCDA methods, which compare two nondominated alternatives based on preference
information set by the DM or more exactly based on DM preference model. Two types
of DM preference models are used in the main MCDA methods. The first type of a
preference model enables the comparison of every pair of alternatives. This type of
a preference model is the utility function. The main methods using this type of DM
preference model to different extent are the multiattribute utility theory methods and
the analytical hierarchy process methods (see [3], [6], [2] and [13]). The second preference
model allows the existence of incomparable alternatives, when the preference information
obtained by the DM is insufficient to determine whether one of the alternatives is to be
preferred or whether the two alternatives are equal for the DM. Such a preference model
is the outranking relation. The methods using this type of a preference model are called
outranking methods (see [10], [11] and [1]).

In spite of the continuous development of the MCDA methods discussed, including
their interactive variants, there still remain some serious problems, two of them being
the following:

– difficulties connected with the design of procedures, user-friendly to the DM. The
DM is responsible for the obtaining of the final solution and he must well comprehend
these procedures in order to be sure in the quality of the final solution;
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– difficulties connected with the possibilities for DM training with respect to the
problems solved, especially problems with a large number of alternatives and criteria.
This refers to the relative importance of the criteria, the correlation among the criteria,
the possibilities for compensation, scaling effects, amplitude of deviations among the
criteria values and others.

In order to solve multicriteria choice problems with a large number of alternatives
and a small number of quantitative criteria, which can be regarded by the DM as prob-
lems close to MOMP problems, the so called “optimizationally motivated” interactive
methods, inspired by MOMP methods, have been suggested. On account of the higher
pressure and engagement of the DM, some of the difficulties above described are overcome
in these methods (see [4], [7], [9], [5], [8] and [14]).

The paper offers learning oriented interactive method designed to solve multicite-
ria choice problems (MCCP) with a large number of alternatives and a small number
of quantitative criteria, which is similar to the above given optimizationally motivated
methods,but in this method the DM interference is considerably decreased. This is
achieved introducing two main alterations. The first one consists in the fact, that to
improve the alternative currently found, the DM is obliged to give the desired directions
of the criteria alteration only. The second change is that the DM is provided with a few
(sometimes only two) close or comparable alternatives for comparison. In this way he can
take into consideration more definitely and realistically the criteria importance, their cor-
relation, the possibilities for compensation among them, as well as to estimate better the
criteria values in the alternatives being compared. Besides this, taking into account the
current preferred solutions at each iteration, the DM can compare the distributed alter-
natives also. In this way the interactive method suggested enables also the combination
of efficient search and DM learning in the set of the nondominated alternatives.

The paper is organized in the following way. Some notations and definitions are
introduced in the next section. A general description of the method is given in Section
3, and its algorithmic scheme is shown in Section 4. Section 5 represents one illustrative
example. The advantages of the method are summarized in the conclusion.

2 Preliminary considerations

The multiple criteria choice problem can be defined as follows:
A set I of n (> 1) of deterministic alternatives and a set J of k (≥ 2) criteria be given
which define a n × k decision matrix A.

By criterion we mean any concept used by the DM to compare the available alter-
natives. A criterion is quantitative when its magnitude can be described on a numerical
scale and the preference or utility function of the DM is monotonous on this scale.

The element aij of the matrix A denotes the evaluation of the alternatives i ∈ I
with respect to the criterion j ∈ J . The evaluation of the alternative i ∈ I with respect
to all the criteria in the set J is given by the vector (ai1, ai2, . . . , aik).

The assessment of all the alternatives in the set I for the criterion j ∈ J is given by
the column vector (a1j , a2j , . . . , anj).
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A unique solution of the above problem in the criteria space Rk rarely exists because
of conflicting nature of criteria in most cases. Therefore, a conception of satisfactory
(best compromise and so on) solution is used in solving MCCP. This solution is searched
through the set of non-dominated alternatives.

The alternative i ∈ I is called non-dominated if there is no other alternative r ∈ I
for which arj ≥ aij for all j ∈ J and arj > aij for at least one j ∈ J .

Further, the following definitions are introduced.
A current preferred alternative is a non-dominated alternative the DM chooses as

the best one from the set presented at the current iteration with respect to the set of the
criteria.

The alternative preferred best (a best compromise alternative, a final alternative) is
a preferred alternative that satisfies the DM to the greatest degree.

Desired directions of change for the criteria at each iteration are the directions (of
improving or relaxing), along which the criteria values are acceptable for the DM.

A reference cone is a convex cone, in which k generators are defined by the desired
directions of change for the criteria in a current preferred alternative. A reference cone
contains of all the alternatives, for which the sign of the differences between the values
for each criterion and the preference alternative coincide with the changes of the last one
desired by the DM.

3 Description of the proposed method

The idea of the presented here method is to generate at each iteration iter a ranked set
M = {m1, m2, . . . , mp} of alternatives, the first alternative being the current preferred
alternative. There p is the number of generated alternatives he/she is willing or is able
to evaluate at the each iteration The DM has to estimate the relatively close alternatives
of this set and to choose one of them either as a current preferred or as the best preferred
alternative. In the second case the discrete multiple criteria choice problem is solved. In
the first case on the basis of the preferred alternative selected the DM sets the desired
changes of the criteria (in terms of desired directions for improving/relaxing) in order to
search for a new better alternative with respect to all the criteria.

Let denotes
Lh – the set of indices j ∈ J of the criteria, for which the DM wishes to increase their
values in comparison with the values in the current preferred alternative, its index being
assigned to h.
Eh – the set of indices j ∈ J of the criteria for which the DM is inclined to deteriorate
their values in comparison with the values in the current preferred alternative h.

Lh ∪ Eh = J.

Let ai denotes the point (vector) of the criteria space Rk, which corresponds to the
alternative with an index i ∈ I. When the DM sets the desired directions of change of
the criteria values, the defining of the set M by alternatives neighboring to the current
preferred alternative h can be determined in space Rk on the basis of the alternatives
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allocation with respect to a convex cone with a vertex in the current preferred alternative.
This cone is called a reference cone. The generators of the reference cone are defined
on the basis of the directions desired by the DM for change of the criteria values they
have in the current preferred alternative. The reference cone V (h) has q ≤ k generators
v1, . . . , vs, . . . , vq and may be defined as follows:

V (h) =

{

v ∈ Rk v = ah +
∑

s∈J

βsv
s, βs ≥ 0

}

,

The components vs
j of the generator vs are defined according to the relations:

vs
j =







0, if j 6= s;
1, if j = s and s ∈ Lh;

−1, if j = s and s ∈ Eh.

Further, for every alternative i ∈ I, i 6= h, a vector µi is entered, whose components
are defined as follows:

µi
j =

{

1, if aij ≥ ahj

−1, otherwise.
, j ∈ J

Let the distance d(V (h), i) between the reference cone V (h) and every alternative i ∈
I/i 6= h be defined as:

d(V (h), i) =
∑

j∈J

|vi
j − µi

j |/2.

From mathematical point of view, d(V (h), i) shows the number of directions of change
for the criteria by which the alternative i ∈ I/i 6= h differ from every alternative that
belongs to the cone V (h). It is obvious that these alternatives have a distance equal
to zero. From a view point of the multicriteria choice problem total number of the
directions along which the alternative with the index i ∈ I/i 6= h differs from each
alternative belonging to the reference cone V (h) is not so important as the number of
directions, where these two alternatives differ, having in mind the criteria the values
of which the DM wants to improve. This number is given by the distance d′(V (h), i),
defined as follows:

d′(V (h), i) =
∑

j∈Lh

|vi
j − µi

j |/2, for i ∈ I

If the alternative i belongs to the cone V (h), then d′(V (h), i) = 0. The following proce-
dure can be used for generating the set M at iteration iter: At first, rank the alternatives
into no more than |Lh| + 1 groups Gl, l = 1, . . . , |Lh| + 1, according to their distance
d′(V (h), i) and choose the first nonempty one. Here |Lh| denotes the number of elements
in the set Lh. Let Gl(h) is this group. Further, rank the alternatives from Gl(h) in
ascending order according to the value of the parameter t(i, h), defined as follows:

t(i, h) = max
j∈J

(ahj − aij)
+/wj ,
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where
wj = amax j − amin j , j = 1, 2, . . . , k;
amax j is the maximal element in the j-th column of input matrix A;
amin j is the minimum element in the j-th column of input matrix A;
(ahj − aij)

+ = max(ahj − aij , 0).
The set M contains the first p−1 alternatives of the group Gl(h). These alternatives

form the set M if their number is less than p − 1.
Note that:
1. The parameter t(i, h) shows the maximal deterioration that the alternative with

an index i has with respect to the current alternative with an index h according to all of
the criteria.

2. wj > 0 always. If wj = 0 for some j, then the j criterion is rejected in the initial
phase of the algorithm.

4 The algorithmic scheme

On the basis of the distance function d′(V (h), i), and parameter t(i, h) an algorithmic
scheme can be designed for solving the multiple criteria choice problem. With the help
of this algorithm the DM has the possibility, setting desired directions of change of the
criteria values, to estimate iteratively a small subset of alternatives. The alternatives
of these subsets are to some extent close to the current preferred alternative. Thus in
the learning process and after that the DM can take into mind such factors that can be
hardly formalized. In order to assist the DM in the estimation of the alternatives from
the set M it is useful to give additional parameters for each alternative from this set, such
as the values of the function d′(V (h), i) and parameter t(i, h), the maximal deterioration
of the criteria, which the DM agrees to be weakened, the criteria levels reached upto
that moment, the maximal and minimal feasible values of the criteria and others. The
visualization of the alternatives is particularly appropriate (bar graphs and so on).

The main steps of the algorithm proposed are as follows:

Step 1. Reject all the dominated alternatives and define the decision matrix A. Set
iter = 1 and ask the DM to choose an initial preferred alternative and assign it to
h. Check if wj = 0 for some j ∈ J and reject the corresponding criterion in this
case.

Step 2. If the DM wants to store the current preferred alternative h – check if it has
been saved before and if it has not been saved – add h to LIST – a set of stored
preferred alternatives; otherwise – inform the DM and if this is the final choice –
Stop.

Step 3. Ask the DM to define the desired directions for change of the values of the
criteria according to h. The sets Lh and Eh are formed. Lh includes the indices
of the criteria which the DM wishes to improve and Eh includes the indices of the
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criteria that the DM agrees to be weakened. Ask the DM to specify a parameter
p – the number of generated alternatives he/she is willing or is able to evaluate at
the next iteration.

Step 4. Rank the alternatives into the groups Gl, l = 1, . . . , |Lh + 1| according to their
distance d′(V (h), i) and choose the first non-empty one. Let Gl(h) be this group.

Step 5. Rank the alternatives from Gl(h) in ascending order according to t(i, h) – a
parameter, indicating the maximal deterioration of these alternatives with respect
to all the criteria.

Step 6. Select the first p − 1 of them or all of them if their number is less than p − 1
and form the set M by adding the current alternative at the first place.

Step 7. Present the set M to the DM for evaluation.

Step 8. If the best compromise alternative has been found – Stop; otherwise – update
iter = iter + 1.

Step 9. If the DM selects the new current preferred alternative – assign it to h and go
to Step 2;

Step 10. If the DM wants to return to one of the stored alternatives – assign the selected
stored alternative to h and go to Step 3;

Step 11. If the DM wants to update the preferential information not changing the cur-
rent preferred alternative – go to Step 3.

Remark 1. Any alternative can be selected as an initial preferred alternative in Step
1. One acceptable initial preferred alternative can be found optimizing one criterion.

Remark 2. The rejecting of dominated alternatives is done once in the initial phase
of the algorithm (Step 1). A number of algorithms are known – [14]. Their complexity
is measured by O(kn2).

5 An illustrative example

A simple example will be considered in order to illustrate the algorithm proposed for
solving the multiple choice problem. It is about evaluation and choice of a set of 10
industrial enterprises from the “Cellulose – Paper Industry” branch in the process of
privatization in Bulgaria.

The four most characteristic ratios evaluated are: Assets turnover ratio, Liquidity
ratio, Profitability on net sales and Gearing ratio. The ratios are scaled for convenience
of computations. The alternatives (the choice of separate enterprise) are nondominated.
The decision matrix A for this multiple attribute choice problem has the following form:
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i\j 1 2 3 4

1 134 125 60 -60
2∗ 618 107 7 -14
3∗∗ 348 122 20 -13
4 120 180 24 -28

5∗∗∗∗ 300 116 58 -13
6∗∗∗ 330 180 33 -36
7 240 90 25 -47
8 425 75 8 -28
9 129 173 5 -38
10 145 165 17 -15
wj 498 136 55 47

Since the fourth criterion is minimized, the column A4 is multiplied by (−1). Let us
suppose that the second alternative is selected as the initial preferred alternative based
on maximizing the first criterion. Set iter = 1 and h = 2.

Also, let the DM wants to improve the second and the third criteria and to relax the
others criteria and he/she wants to evaluate 3 alternatives (p = 3) in the next iteration.

The sets L2 = {2, 3}, E2 = {1, 4} are defined. The distances d′(V (h), i) are com-
puted for every alternative.

i 1 3 4 5 6 7 8 9 10

d′(V (h), i) 0 0 0 0 0 1 1 1 0
t(i, h) 0.98 0.542 1 0.638 0.578 0.949

In accordance with the values of d′(V (h), i) the alternatives (Step 4) are devided
into two groups: G1 = {1, 3, 4, 5, 6, 10} and G2 = {7, 8, 9} The alternatives of the first
non-empty group G1 are arranged in ascending order with respect to the values computed
of the deviation parameter t(i, h). G1(1) = {3, 6, 5, 10, 1, 4} The set M consists of the
first two alternatives and the initial preferred alternative, i.e. – M = {2, 3, 6}. This set
is presented to the DM at Step 7.

Let us suppose that the DM cannot make his/her final decision from this set M . At
the second iteration iter = 2 he/she chooses the third alternative for the current preferred
alternative – h = 3 and go to Step 2. The DM stores this alternative to LIST = {3}.

Then he/she sets the new preferences: to improve the first, second and third criteria
and to deteriorate the fourth. The new sets L3 = {1, 2, 3}, E3 = {4} are defined and
p = 4 at this iteration.

Again, the distances d′(V (h), i) are computed for every alternative.

i 1 2 4 5 6 7 8 9 10

d′(V (h)i, i) 1 2 1 2 1 2 2 2 2
t(i, h) 1 0.458 0.489
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The set Gl are formed: G1 = {Ø}, G2 = {1, 4, 6} G3 = {2, 5, 7, 8, 9, 10}. G2

is ranked according to t(i, h) – G2(2) = {4, 6, 1} and the set M is defined as M =
{3, 4, 6, 1}.

At iteration iter = 3 the DM chooses a new current preferred alternative h = 6, adds
this alternative to LIST = {3, 6} and enters his/her new preferences – L6 = {1, 3, 4},
E6 = {2} and p = 3. d′(V (h), i) is again computed for each of the alternatives and the
first non-empty group G2 is ranked with respect to the values of t(i, h).

i 1 2 3 4 5 7 8 9 10

d′(V (h)i, i) 2 1 1 2 1 3 1 3 2
t(i, h) 0.54 0.43 0.47 0.77

G1 = {Ø}, G2 = {2, 3, 5, 8}, G3 = {1, 4, 10} and G4 = {7, 9}. G2(3) = {3, 5, 2, 8} is
ranked. The set M consist of the alternatives {6, 3, 5}.

At this iteration the DM selects the fifth alternative as the best compromise one.

Conclusion

An “optimization – motivated” method for solving a class of multiple criteria choice
problems with a large number of alternatives and a small number of quantitative criteria,
that are explicitly given is proposed in the paper. The method enables the DM to screen
consecutively and systematically the set of the alternatives.

In comparison with the existing methods solving this class of MCCP, the method
proposed has the following advantages:

– user-understandable by the DM, which gives him confidence about the decision
suggested;

– a comparison of quite close alternatives at each iteration, which does not engage
the DM too much, but enables the more realistic account of his preferences;

– a possibility for a relatively easy learning of the DM about the problem solved;
– possibility for evaluation of distributed alternatives, stored in the proccess of solu-

tion.
The method has been included in a software system for estimation of the efficiency,

the financial stability and economic potential of some industrial enterprises from different
branches and their rating on the basis of the estimates obtained. The experts of sev-
eral Bulgarian investment funds have used this system in the purchase of various state
enterprises during the process of privatization in the country.
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