
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Pliska Stud. Math. Bulgar. 12 (1998), 119-132
STUDIA MATHEMATICA

BULGARICA
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The algebraic properties of the convex bodies are studied. A theorem of H. R̊adström
for embedding of convex bodies in a normed vector space is generalized by using a
natural extension of the multiplication by scalar.
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1 Introduction

Convex bodies form an abelian cancellative semigroup with respect to addition. By means
of the well-known extension method (used e. g. when defining negative numbers) abelian
cancellative semigroups can be isomorphically extended (embedded) into groups. Clearly,
it is more convenient to compute within a group than whithin a semigroup, where the
elements are not invertible in general. Convex bodies and intervals have been increasingly
used in convex, resp. interval analysis. The application of the extension method to
systems of convex bodies and intervals has been studied by a number of authors. Our
study is closely related to the work of H. R̊adström [16], where the additive semigroup
of convex bodies is embedded in a group and multiplication by real scalar is extended
in a suitable way so that the group becomes a vector space. Here we proceed similarly;
using the classical extension method and a natural extension of the multiplication by real
scalar we obtain a more general, so-called q-linear space, which contains the linear space
constructed by H. R̊adström. A simple distributivity relation is found in the q-linear
space.

The paper is structured as follows: Section 2 is devoted to the operation addition of
convex bodies and its algebraic properties. In Section 3 we consider multiplication by real
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scalar and its algebraic properties especially in relation to addition. In Section 4 some
properties of the Hausdorff metric and the inclusion relation are discussed. Section 5 is
devoted to a theorem of H. R̊adström. The main result — an analogue of the theorem
of H. R̊adström producing isomorphic embedding — is given in Section 6.

In the paper we also present some well-known facts about the algebraic operations
for convex bodies, which may be useful for a better understanding of the obtained results,
although having no direct relation to these results.

2 Addition and summability

By E = E
n, n ≥ 1, we denote the n-dimensional real Euclidean vector space with origin

0. The ordered field of reals is denoted by R. A convex compact subset of E is called
convex body (in E) or just body; a convex body need not have necessarily interior points,
e. g. a line segment and a single point in E are convex bodies [18]. The set of all convex
bodies (in E) will be denoted by K = K(E). The set of all single points in K will be also
denoted by E, the elements of E are sometimes called degenerate elements (of K). In the
case n = 1 the elements of K(E) are compact intervals on the real line; we shall call them
simply intervals.

Addition. The sum of two convex bodies A, B ∈ K (sometimes called Minkowski
sum [5]) is defined by

A + B = {c | c = a + b, a ∈ A, b ∈ B}, A, B ∈ K.(1)

Clearly, (1) defines an algebraic operation in K called addition and K is closed under
this operation. For all A, B, C ∈ K we have

(A + B) + C = A + (B + C),(2)

A + B = B + A,(3)

A + 0 = A,(4)

A + C = B + C =⇒ A = B.(5)

The verification of (2)–(4) is straightforward, for a proof of relation (5) see [16].
If B = {b} ∈ E is degenerate and A ∈ K, then we may write A + B as A + b, and

A + {−b} is written as A + (−b) or as A − b. Of course, the element −b is the opposite
to b in E, that is b + (−b) = 0. A body of the form A = x + B, for x ∈ E, B ∈ K, is
called a translate of B (by the vector x). Using translates, we can write (1) in the form

A + B =
⋃

b∈B

(A + b).(6)

Equation (6) gives a geometrical insight for the sum, especially in relation to the Minkowski
difference to be defined next.

Minkowski difference. Let A, B ∈ K. The expression

A ∗ B =
⋂

b∈B

(A − b),(7)

is defined whenever the right-hand side is not empty; it has been introduced for convex
bodies and studied by H. Hadwiger under the name Minkowski difference [4], [5].
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Expression (7) defines a partial operation in the set K. If the intersection in the
right-hand side of (7) is empty, then A ∗ B is not defined, we shall denote this case by
A ∗ B = Ø; alternatively the symbol A ∗ B 6= Ø means that the convex body A ∗ B
is well defined by (7).

Note that the right-hand side of (7) is not empty, if and only if there exists a vector
t ∈ E, such that t + B ⊂ A. We shall denote the induced partial order relation between
A and B by:

B ≤M A ⇐⇒ A ∗ B 6= Ø ⇐⇒ ∃t : t + B ⊂ A.

In particular, B ⊂ A implies B ≤M A. The following equivalent presentation of (7) holds

A ∗ B = {x ∈ E | x + B ⊂ A},(8)

saying that A ∗ B is the set of all vectors x ∈ E, such that the translate of B by x
belongs to A. Note the important equality A ∗ A = 0 for all A ∈ K. From (8) we have
for A, B ∈ K [5]

(A ∗ B) + B ⊂ A.(9)

Also, we have [5]: (A ∗ B) ∗ C = A ∗ (B +C); other useful equality is: (A+B) ∗ B =
A.

Summability. For two nonempty convex bodies A, B ∈ K we say that B is a
summand of A if there exists X ∈ K, such that A = B + X ; of course, X is also a
summand of A. We see from (8) and (9) that, if B is a summand of A, then A ∗ B is
also a summand of A (see Lemma 3.1.8, [18]). In other words, if B is a summand of A,
then X = A ∗ B is a solution of X + B = A, and in this case inclusion (9) becomes an
equality:

(A ∗ B) + B = A ⇐⇒ B is a summand of A.(10)

For A, B ∈ K we say that B slides freely inside A, if to each boundary point a ∈ A
there exists x ∈ E, such that the translate of B by x contains a and belongs to A:
a ∈ B + x ⊂ A. The following proposition gives a geometrical insight of the relation “B
is a summand of A”:

Proposition 2.1 (Th. 3.2.2 of [18]) Let A, B ∈ K. Then B is a summand of A, if and
only if B slides freely inside A.

Proof. If A = B +X and a ∈ A, there exists b ∈ B and x ∈ X such that a = b+x,
hence a ∈ B + x ⊂ A. Vice versa, let B slides freely inside A. Let a ∈ A be a boundary
point of A. By assumption, there exists x ∈ E, such that a ∈ B+x ⊂ A. Then x ∈ A ∗ B
and a ∈ B + (A ∗ B). Hence, the boundary of A belongs to (A ∗ B) + B and therefore
A = (A ∗ B) + B. By (10) we obtain that B is a summand of A. �

Example. Let A, B be the unit cube, resp. the unit ball in E
3. We have B ⊂ A

and (9): (A ∗ B) + B ⊂ A. The latter inclusion is strong in the sense that B is not a
summand of A (B does not slide freely in A). The situation does not change if instead
of B we take a ball with smaller radius, unless B is not degenerate.

The equation A+X = B may have a solution for certain pairs A, B. The solution X
of B + X = A, if existing, is unique. Indeed, by definition, there is a X ∈ K, such that
A = B + X . Assume that X ′ ∈ K, with X ′ 6= X is such that A = B + X ′. Then we have
B + X = B + X ′, which by the cancellation law (5) implies X = X ′, a contradiction.



122 S. Markov

It follows from (10) that the solution of A = B+X , if existing, is exactly X = A ∗ B.
Obviously, any summand of a degenerate (one-point) body is a degenerate body

itself. Hence, from X + Y = 0 it follows that X and Y are degenerate bodies, and
Y = −X . In K the equation A + X = 0 is not solvable if A ∈ K \ E.

In what follows we shall symbolically denote the partial order relation “B is a sum-
mand of A” by B ≤Σ A, or A ≥Σ B. “B is not a summand of A” will be denoted by
B 6≤Σ A. From Proposition 2.1, we see that B ≤Σ A implies B ≤M A; however, the
inverse is not true. In the Example we have B ≤M A, but not B ≤Σ A.

If A, B ∈ K, then there exist the following possibilities: i) B ≤Σ A and A 6≤Σ B,
denoted B <Σ A; ii) A ≤Σ B and B 6≤Σ A, denoted A <Σ B; iii) A ≤Σ B and B ≤Σ A,
denoted A =Σ B; iv) A 6≤Σ B and B 6≤Σ A.

If one of the cases i)–iii) holds, we say that the pair (A, B) is Σ-comparable. The set
of all Σ-comparable pairs is denoted by LΣ. Clearly, if (A, B) ∈ LΣ, then at least one of
the two convex bodies A ∗ B, B ∗ A is well defined.

In case iii) there exists X ∈ K, such that A = B + X , and there exists Y ∈ K, such
that B = A + Y . Summing up both equations we obtain A + B = (B + X) + (A + Y ) =
(A + B) + X + Y , and by (5), X + Y = 0, hence X, Y ∈ E, Y = −X . Thus, in case iii)
A is a translate of B by some X , and B is a translate of A by −X .

Note that, if A, B ∈ K(E), (A, B) ∈ LΣ, then for the equations

B + X = A,(11)

A + Y = B,(12)

exactly one of the possibilities i)–iii) mentioned above holds true, i. e.:
1) Case B <Σ A: there exists a unique nondegenerate convex body X ∈ K \ E

satisfying (11); equation (12) is not solvable.
2) Case A <Σ B: there exists a unique nondegenerate convex body Y ∈ K \ E

satisfying (12); equation (11) is not solvable.
3) Case A =Σ B: both (11), (12) are solvable for X , resp. Y , and we have Y =

−X ∈ E.

In E
1 the convex bodies are intervals on the real line. In E

1 all elements are Σ-
comparable, (A, B) ∈ LΣ, hence exactly one of the cases 1)–3) is satisfied [9]. If we drop
out the condition (A, B) ∈ LΣ in the general case, then we can only state that:

Proposition 2.2 For every two A, B ∈ K each of the equations (11), (12) may have at
most one solution.

3 The quasidistributive law

Multiplication by real scalar is defined by

α ∗ B = {c | c = αb, b ∈ B}, B ∈ K, α ∈ R.(13)

Recall some properties of (13). For A, B, C ∈ K, α, β, γ ∈ R, we have:

γ ∗ (A + B) = γ ∗ A + γ ∗ B,(14)

α ∗ (β ∗ C) = (αβ) ∗ C,(15)
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1 ∗ A = A,(16)

(α + β) ∗ C = α ∗ C + β ∗ C, αβ ≥ 0.(17)

Relations (14)–(16) are easily verified. To verify (17) recall that a subset C ⊂ E is
convex if for x, y ∈ C:

αx + βy ∈ C, α, β ≥ 0, α + β = 1.

If C is convex and x ∈ α ∗ C + β ∗ C, then x = αa + βb with some a, b ∈ C, hence

x = (α + β)

(

α

α + β
a +

β

α + β
b

)

∈ (α + β) ∗ C.

Therefore α∗C +β ∗C = (α+β)∗C, α, β ≥ 0 (note that the inclusion α∗C +β ∗C ⊃
(α + β) ∗ C is trivially fulfilled even for nonconvex C).

Relation (17) is not valid for αβ < 0 and C nondegenerate. However, we can easily
express (α + β) ∗C in terms of α ∗C and β ∗C for αβ < 0. Indeed, using (10), from (17)
we have for α > 0, β > 0: α ∗C = (α + β) ∗C ∗ β ∗C. Substituting α + β = λ > 0 (and
hence λ > β > 0) we obtain:

(λ − β) ∗ C = λ ∗ C ∗ β ∗ C, λ > β > 0.(18)

Substituting in (18) β = −µ, µ < 0, we have (λ+µ)∗C = λ∗C ∗ (−µ)∗C, λ > −µ > 0
(cf. also [5], [13, 14]). Using the original notation α, β we can write:

(α + β) ∗ C = α ∗ C ∗ (−β) ∗ C, α > −β > 0,(19)

which can be written more symmetrically as

(α + β) ∗ C =

{

α ∗ C ∗ (−β) ∗ C, if αβ < 0, |α| ≥ |β|,
β ∗ C ∗ (−α) ∗ C, if αβ < 0, |α| < |β|.

Combining relation (17) and the above formula we can write a general expression of
(α + β) ∗ C in terms of α ∗ C and β ∗ C, which is valid for all α, β ∈ R:

(α + β) ∗ C =







α ∗ C + β ∗ C, if αβ ≥ 0,
α ∗ C ∗ (−β) ∗ C, if αβ < 0, |α| ≥ |β|,
β ∗ C ∗ (−α) ∗ C, if αβ < 0, |α| < |β|.

(20)

Relation (17) or its corollary (20) will be further refered to as quasidistributive law.
The following equality is also valid [5]:

γ ∗ (A ∗ B) = γ ∗ A ∗ γ ∗ B,

showing that an analogue of the first distributive law (14) holds for the Minkowski dif-
ference.

Negation. The operator neg: K −→ K defined by neg(A) = (−1) ∗ A = {−a | a ∈
A}, A ∈ K, is called negation, and will be symbolically denoted by ¬A.

For brevity, we denote for A, B ∈ K

A¬B ≡ A + (¬B) = {a − b | a ∈ A, b ∈ B};(21)

the operation A¬B is called (outer) subtraction.
We have ¬(γ ∗A) = (−1) ∗ (γ ∗A) = (−γ) ∗A = γ ∗ (¬A) for any real γ and A ∈ K.
Remarks. Instead of “¬” the symbol “−” is widely used in the literature on convex,

set-valued and interval analysis (see e. g. [1], [7], [17], [18], etc.). It should be kept in mind
that A¬A 6= 0 for A ∈ K\E. Since the notation “−” is usually associated with the equality
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A−A = 0, for all A, to avoid confusion in this work we write “¬” instead of “−”. Using
the symbol “¬” we shall also avoid confusion with the opposite in the extended space of
pairs of convex bodies to be introduced in Section 5. In mathematical morphology the
outer subtraction (21) is called dilatation, whereas the Minkowski subtraction is called
erosion [12], [15].

Symmetric bodies. An element A ∈ K is called symmetric with respect to the
origin, if x ∈ E, x ∈ A, implies −x ∈ A.

The set of all symmetric convex bodies is denoted by KS . We have KS = {A ∈
K | A = ¬A}, i. e. A ∈ K is symmetric, if and only if A = ¬A. For A ∈ K, the set A¬A
is called the difference body of A (see [18], p. 127). For A ∈ K, we have A¬A ∈ KS .
Indeed, we have ¬(A¬A) = ¬A + A = A¬A.

Proposition 3.1 The following two conditions for symmetricity of A ∈ K are equivalent:
i) A = ¬A;

ii) there exists Z ∈ K, such that A = Z¬Z.

Proof. i) Let A = ¬A. Assume t ∈ E and set Z = A/2 + t, where A/2 = (1/2) ∗A.
Using A = ¬A we obtain ¬Z = ¬A/2 − t = A/2 − t. Hence Z¬Z = Z + (¬Z) =
(A/2 + t) + (A/2 − t) = A. ii) Assume that A = Z¬Z for some Z ∈ K. Then we have
¬A = ¬(Z¬Z) = ¬Z + Z = Z¬Z = A. �

The element A ∈ K is called t-symmetric, with center t ∈ E, if (A − t) ∈ KS . In
other words, a t-symmetric element is a t-translate of a symmetric element. The latter
can be considered as a special case of t-symmetric element, i. e. a 0-symmetric element.

Proposition 3.2 Every t-symmetric convex body A is a translate of its negation ¬A.

Proof. Let A ∈ K be t-symmetric. This means that A − t is symmetric, that is
A− t = ¬(A− t) = ¬A + t. This implies ¬A +2t = A, hence A is a (2t)-translate of ¬A.
�

Let A ∈ K be t-symmetric, i. e. A − t ∈ KS . By Proposition 3.1 there exists Z ∈ K
such that A − t = Z¬Z. To find an explicit expression for Z, fix s ∈ E and set Z =
(A−t)/2+s; we obtain Z = A/2+s′, s′ ∈ E. Thus A−t = Z¬Z = A/2¬A/2 = (A¬A)/2.
We have A − t = (A¬A)/2, that is, for any t-symmetric element A ∈ K, its symmetric
translate is (A¬A)/2 (by the vector −t).

We shall end this section by proving directly that the terms appearing in the right-
hand side of (20) are Σ-comparable. Due to this fact the expression in the left-hand side
of (20) can be splitted into two terms for any choice of α and β. We first prove the
following:

Lemma 3.1 Let C ∈ K, α ∈ R, α ≥ 0. Then

C ≥Σ α ∗ C, if 0 ≤ α ≤ 1,

C ≤Σ α ∗ C, if α ≥ 1.
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Proof. Let 0 ≤ α ≤ 1. We have to verify that α ∗ C is a summand of C, that is
α ∗ C + X = C for some X ∈ K. Take X = (1 − α) ∗ C. Substituting β = 1 − α ≥ 0 in
(17) we obtain α ∗C + (1− α) ∗ C = (α + 1− α) ∗ C = C, showing that C ≥Σ α ∗C, for
α ∈ [0, 1]. Let α ≥ 1. We look for Y , such that α ∗ C = Y + C. Taking Y = (α − 1) ∗ C
we see that C ≤Σ α ∗ C, for α ≥ 1. �

The above lemma shows that for α ∈ (0, 1) the equation C = α∗C+X has a solution
X = (1 − α) ∗ C; for α ≥ 1 the equation C + X = α ∗ C has a solution X = (α − 1) ∗ C.

Proposition 3.3 Let α, β ∈ R, C ∈ K. If αβ > 0, then (α ∗C, β ∗C) ∈ LΣ. If αβ < 0,
then (¬(α ∗ C), β ∗ C) ∈ LΣ.

Proof. Let αβ > 0, say α ≥ β > 0. We shall show that the pair (α ∗ C, β ∗ C) is
Σ-comparable, i. e. either α ∗ C ≤Σ β ∗ C, or β ∗ C ≤Σ α ∗ C. By the above Lemma
we have that C and (α/β) ∗ C, α/β > 1 are Σ-comparable (α/β) ∗ C ≥Σ C, that is
C + X = (α/β) ∗C is solvable. Then β ∗C + Y = α ∗C is solvable, i. e. α ∗C ≥Σ β ∗C.

Let now αβ < 0. Without loss of generality we may assume that α ≥ −β > 0.
By the Lemma we have that the pair (C, D) with D = (−α/β) ∗ C = (α/β) ∗ (¬C) is
Σ-comparable, and (α/β)∗ (¬C) ≥Σ C. This implies that the pair (¬(α∗C), β ∗C), resp.
the pair (α ∗ C,¬(β ∗ C)) is Σ-comparable. �

Note that A ≤Σ B does imply ¬A ≤Σ ¬B, but does not necessarily imply ¬A ≤Σ

B. Due to this fact for some A, B ∈ K it may happen that A ∗ (¬B) = Ø and
A ∗ B 6= Ø, or vice versa, both relations A ∗ B = Ø and A ∗ (¬B) 6= Ø may hold true
simultaneously.

Proposition 3.4 Let (A,¬B) ∈ LΣ. Then A ∗ (¬B) ≤Σ A + B.

Proof. Obviously A ∗ (¬(B) is a summand of A + B. Indeed, if ¬B ≤Σ A we
have ¬B + (A ∗ (¬B)) = A, hence B¬B + (A ∗ (¬B)) = A + B. If ¬A ≤Σ B, then
¬A + (A ∗ (¬B)) = B, and hence A¬A + (A ∗ (¬B)) = A + B. �

4 Some properties of the metric and the inclusion re-

lation

A natural metric in K is the Hausdorff distance, defined for X, Y ∈ K by

d(X, Y ) = max{max
x∈X

min
y∈Y

|x − y|, max
x∈Y

min
y∈X

|x − y|},

or, equivalently,

d(X, Y ) = minλ≥0{X ⊂ Y + λ ∗ B, Y ⊂ X + λ ∗ B},

where |x − y|, resp. B, is the distance, resp. the unit ball in E. For a proof of the
equivalency see [18], section 1.8.

The Hausdorff distance satisfies the following properties [16]:

d(A + C, B + C) = d(A, B),(22)

d(λ ∗ A, λ ∗ B) = λd(A, B), λ ≥ 0.(23)
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Inclusion “⊂” is a partial order relation in K. Inclusion is consistent with the arith-
metic operations in K in the following sense: for A, B, C, D ∈ K, α, β ∈ R:

A ⊂ C ⇐⇒ A + B ⊂ C + B,(24)

A ⊂ C, B ⊂ D =⇒ A + B ⊂ C + D,(25)

A ⊂ C, B ⊃ D =⇒ A ∗ B ⊂ C ∗ D.(26)

Relations (24), (25) are known as isotonicity of addition. Relation (26) is proved in
[5]. Scalar multiplication is isotone in the sense that:

A ⊂ B ⇐⇒ λ ∗ A ⊂ λ ∗ B, λ ∈ R.

In particular, we have A ⊂ B ⇐⇒ ¬A ⊂ ¬B. The following relation is also formu-
lated in [5]:

(A + B) ∗ (C + D) ⊃ (A ∗ C) + (B ∗ D).(27)

A special case of (27) is:

(A + B) ∗ C ⊃ A + (B ∗ C).(28)

Denote A
∨

B = conv(A
⋃

B) (for the definition of convex hull conv : K −→ K see,
e. g. [17] or [18]). We have [5]:

(A
∨

B) + C = (A + C)
∨

(B + C),

(A
⋂

B) + C = (A + C)
⋂

(B + C),

(A
∨

B) ∗ C = (A ∗ C)
∨

(B ∗ C), A
⋂

B = Ø,

(A
⋂

B) ∗ C = (A ∗ C)
⋂

(B ∗ C),

(A + B) ∗ (B + C) ⊃ (A ∗ C) + (B ∗ C).

Proposition 4.1 Let for A, B, C ∈ K, A + B = C and 0 ∈ A. Then B ⊂ C.

Proof. Equation A + B = C, that is
⋃

a∈A a + B = C, means a + B ⊂ C for all
a ∈ A. Hence for a = 0, B = 0 + B ⊂ C. �

The next proposition is closely related to Proposition 3.4.

Proposition 4.2 Let (A,¬B) ∈ LΣ. Then A ∗ (¬B) ⊂ A + B.

Proof. From Proposition 3.4 we know that A ∗ (¬B) is a summand of A + B.
If ¬B ≤Σ A we have ¬B + (A ∗ (¬B)) = A, hence B¬B + (A ∗ (¬B)) = A + B. If
¬A ≤Σ B, then ¬A + (A ∗ (¬B)) = B, and hence A¬A + (A ∗ (¬B)) = A + B. Since
A¬A ∋ 0, resp. B¬B ∋ 0, we have A ∗ (¬B) ⊂ A + B, using Proposition 4.1 and
A ∗ (¬B) ≤Σ A + B. �

Propositions 3.4 and 4.2 can be generalized for all A, B, for which A ∗ (¬B) is
defined (not necessarily (A,¬B) 6∈ LΣ, see [15]).

The system of convex bodies with addition, multiplication by real scalar, inclusion
and metric will be denoted (K, E, +, R, ∗,⊂, ‖ · ‖). Computations in this system are
hampered by the fact that nondegenerate convex bodies are not invertible. In the next
section we show that this can be overcome by the extension method.
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5 A theorem of H. R̊adström

Due to (2), (3), (5) the set (K, +) is an abelian cancellative (a. c.) semigroup with respect
to addition “+”. Moreover, the a. c. semigroup is an a. c. monoid (K, +, 0), that is,
there exists a neutral element “0” in K, such that (4) holds.

Using the extension method (see e. g. [3], [8], [16]), we can embed isomorphically
any a. c. monoid (Q, +, 0) into a group (G, +); we briefly recall the method below.

The extension method. Let (Q, +, 0) be an a. c. monoid. Define G = (Q×Q)/ρ
to be the set of pairs1 (A, B), A, B ∈ Q, factorized by the equivalence relation ρ :
(A, B)ρ(C, D) ⇐⇒ A+D = B +C. Define addition in G by means of: (A, B)+(C, D) =
(A + C, B + D).

Denote the equivalence class in the group G, represented by the pair (A, B), again
by (A, B), hence we shall write (A, B) = (A + X, B + X). The null element of G is the
class (Z, Z); due to the existence of null element, we have (Z, Z) = (0, 0). The opposite
element to (A, B) ∈ G is denoted by −(A, B). It is easy to see that −(A, B) = (B, A);
indeed (A, B) + (−(A, B)) = (A, B) + (B, A) = (A + B, B + A) = (0, 0). Instead of
(A, B) + (−(C, D)), we may write (A, B) − (C, D); we have (A, B) − (C, D) = (A, B) +
(D, C) = (A + D, B + C). The system (G, +, 0,−) obtained by the extension method is
an abelian group and is unique up to isomorphism.

To embed isomorphically Q into G we identify A ∈ Q with the equivalence class
(A, 0) = (A+X, X), X ∈ Q. Thus all “proper elements” of G are pairs (U, V ), U, V ∈ Q,
such that V + Y = U for some Y ∈ K, i. e. (U, V ) = (V + Y, V ) = (Y, 0).

In an a. c. monoid (Q, +, 0) the set Q0 of all invertible elements forms a group
(Q0, +, 0,−) which is a subgroup of the monoid (in the case of convex bodies Q0 = E).
Since this subgroup plays important role and includes the neutral element, we shall
sometimes denote a monoid (Q, +, 0) also by (Q,Q0, +).

The next proposition shows when an element of G can be presented in one of the
forms (U, 0) or (0, V ).

Proposition 5.1 Let (A, B) ∈ LΣ. Then

(A, B) =

{

(A ∗ B, 0), if B ≤Σ A,
(0,¬(A ∗ B)), if B >Σ A.

Proof. By definition, if B ≤Σ A, then B + (A ∗ B) = A. Hence, (A, B) =
(B + (A ∗ B), B) = (A ∗ B, 0). The case B >Σ A is treated analogously.

Assume that a multiplication by real scalar “∗” is defined on the monoid (Q,Q0, +),
satisfying (14)–(17). The algebraic system (Q,Q0, +, R, ∗) is called a quasilinear system;
for more details see [11].

Consider now the extension of “∗” into G. A natural definition of multiplication by
real scalar in G is

γ ∗ (A, B) = (γ ∗ A, γ ∗ B), A, B ∈ Q, γ ∈ R.(29)

In particular, for γ = −1 we obtain negation in G:

¬(A, B) = (−1) ∗ (A, B) = (¬A,¬B), A, B ∈ Q, γ ∈ R.(30)

1instead of pairs (A, B) one often uses formal differences A − B



128 S. Markov

It is easy to see that G is not a vector space under “∗” defined by (29). The possibility
to obtain a vector space using other multiplication by scalar (distinct from (29)) has been
studied in [16], where the following operation has been proposed:

γ · (A, B) =

{

(γ ∗ A, γ ∗ B), γ ≥ 0,
(|γ| ∗ B, |γ| ∗ A), γ < 0,

=

{

(γ ∗ A, γ ∗ B), γ ≥ 0,
((−γ) ∗ B, (−γ) ∗ A), γ < 0.

(31)

Note that (−1)·(A, B) = (B, A) is the opposite in G, i. e. for y ∈ G we have : (−1)·y = −y;
hence y + (−1) · y = 0. �

Below we formulate a result by H. R̊adström (see [16, Theorem 1]) in slightly modified
form:

Proposition 5.2 (Theorem of H. R̊adström) Let Q be an a. c. monoid, i. e. properties
(2)–(5) are satisfied. Then:

A. Using the extension method Q can be embedded in a group G, so that any element
A ∈ Q is identical with (A, 0) ∈ G. The group G can be chosen so as to be minimal in
the following sense: if G′ is any group in which Q is embedded, then G is isomorphic to
a subgroup of G′ containing Q;

B. If a multiplication by real scalar “∗” is defined on Q, satisfying (14)–(17), and a
multiplication by real scalar “·” is defined 2 on G by means of (31), then (G, +, R, ·) is
a vector space and for any real λ ≥ 0 and A ∈ Q the product λ · (A, 0) is identical with
λ ∗ A on Q.

C. If a metric d(A, B) is given on Q satisfying (22), (23), then for (A, B) ∈ G the
function δ((A, B), (C, D)) = d(A+D, B+C) defines a metric on G, thereby δ((A, 0), (B, 0)) =
d(A, B). The metric δ is homogeneous and invariant under translation, i. e. for x, y ∈ G:
i) δ(λ · x, λ · y) = λδ(x, y), λ ≥ 0, ii) δ(x + z, y + z) = δ(x, y). Also: δ(x, y) =
δ(x + (−1) · y, 0), so that we can put δ(x, y) =‖ x + (−1) · y ‖; the function ‖ z ‖= δ(z, 0)
is a norm in G, making G a normed linear space.

It is easy to see, that the system (G, +, R, ·, ‖ · ‖) is a normed linear space.
We note that (31) is not an isomorphic extension of (13). Expression (31) is chosen in

such a way that (−1) ·a, a ∈ G, is the opposite in G, which does not produce meaningfull
results when multiplying by negative numbers. In the next section we use expression
(29) to extend the multiplication by scalar arriving thus to an isomorphic extension of
the space of convex bodies.

6 An isomorphic extension of the space of convex

bodies

Our next proposition can be considered as generalization of Proposition 5.2. The basic
idea is to take multiplication by real scalar in the group G according to (29) and to inves-

2it is sufficient to assume that multiplication only by nonnegative real scalar is defined, as done in
[16]; however such generalization is not essential
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tigate the obtained algebraic system with respect to distributivity. As result, we obtain
a simple second-distributivity-type relation. We also obtain that the multiplication (31)
used by H. R̊adström is involved in the obtained system (as composite operation); how-
ever, (29) is not involved in the vector space induced by (31). We shall also incorporate
an extension of the important inclusion relation in the spirit of [6], where this has been
done for intervals.

To facilitate the formulation of our main result we shall introduce a brief symbolic
notation for the composition of the operators opposite and negation.

Recall that opposite and negation are defined for a = (A′, A′′) ∈ G as:

−a = −(A′, A′′) = (A′′, A′),

(−1) ∗ a = (−1) ∗ (A′, A′′) = ((−1) ∗ A′, (−1) ∗ A′′);

the latter formula can be also written symbolically in the form:

¬a = ¬(A′, A′′) = (¬A′,¬A′′).

The composition of “−” and “¬” in G is called dualization (or conjugation) and is denoted
by a− = −(¬a) = ¬(−a). For the pair-wise presentation we obtain

a− = (A′, A′′)− = ¬(−(A′, A′′)) = ¬(A′′, A′) = (¬A′′,¬A′) = ((−1) ∗ A′′, (−1) ∗ A′).

We extend our symbolic notation as follows: for a ∈ G we write a = a+; then for
σ ∈ {+,−} the element aσ ∈ G is either a or a− according to the binary value of σ.

The properties of negation, opposite and dualization in G are studied in [11]. It
deserves to mention the following property. Let G0 be the image of Q0 under the embed-
ding of Q into G, that is: G0 = {(A, 0) | A ∈ Q0}. Then negation on G0 coincides with
opposite, and dualization on G0 coincides with identity.

Proposition 6.1 Let (Q,Q0, +, R, ∗) be a quasilinear system, (G,G0, +) be the extension
group according to Proposition 5.2, Part A, and multiplication by scalar “∗” be defined
on G by (29). Then,

i) the system (G,G0, +, R, ∗) satisfies (14)–(16), that is for a, b, c ∈ G, α, β, γ ∈ R:
α ∗ (β ∗ c) = (αβ) ∗ c; γ ∗ (a + b) = γ ∗ a + γ ∗ b; 1 ∗ a = a; together with the following
distributivity relation:

(α + β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β);(32)

ii) inclusion in G defined by (A, B) ⊂ (C, D) ⇐⇒ A + D ⊂ B + C is isotone
with respect to addition and scalar multiplication, i. e. a ⊂ b ⇐⇒ a + c ⊂ b + c;
a ⊂ b ⇐⇒ λ ∗ a ⊂ λ ∗ b, λ ∈ R.

Proof. Relations (14)–(16) are obvious. To prove (32), note that it is equivalent to

(α + β) ∗ c = (α ∗ c + β ∗ cσ(α)σ(β))σ(α)σ(α+β);(33)

we shall prove (32) in this latter form. Substitute c = (U, V ) ∈ G with U, V ∈ Q. The
right-hand side of (33) is:

r = (α ∗ (U, V ) + β ∗ (U, V )σ(α)σ(β))σ(α)σ(α+β).

If σ(α)σ(β) = + (and hence σ(α)σ(α + β) = +), using (17) we see that r is identical
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to the left-hand side:

l = (α + β) ∗ (U, V ) = ((α + β) ∗ U, (α + β) ∗ V ).

Consider now the case σ(α)σ(β) = −. The right-hand side becomes

r = (α ∗ (U, V ) + β ∗ (U, V )−)σ(α)σ(α+β)

= (α ∗ (U, V ) + β ∗ (¬V,¬U))σ(α)σ(α+β)

= ((α ∗ U, α ∗ V ) + ((−β) ∗ V, (−β) ∗ U)σ(α)σ(α+β)

= (α ∗ U + (−β) ∗ V, α ∗ V + (−β) ∗ U)σ(α)σ(α+β).

Now we have to consider a number of subcases. Consider, e. g. the subcase σ(α) = +,
σ(β) = −, σ(α + β) = + (in this subcase we have α ≥ −β > 0). Adding the zero term
(−β) ∗ (U + V, U + V ) = (0, 0) to the left-hand side and using the quasidistributive law
(17) we obtain:

l = (α + β) ∗ (U, V ) + (−β) ∗ (U + V, U + V )

= ((α + β) ∗ U, (α + β) ∗ V ) + ((−β) ∗ U + (−β) ∗ V, (−β) ∗ U + (−β) ∗ V )

= ((α + β) ∗ U + (−β) ∗ U + (−β) ∗ V, (α + β) ∗ V ) + (−β) ∗ V + (−β) ∗ U)

= (α ∗ U + (−β) ∗ V, α ∗ V ) + (−β) ∗ U) = r.

The rest of the cases are treated analogously. Part ii) about inclusion is also easily
verified. �

The system (G,G0, +, R, ∗) is fyrther called q-linear space. Relation (32) (or (33))
is called q-distributive law. The q-distributive law can be also written in the form:
(α + β)c = αcλ + βcµ, with λ = σ(α)σ(α + β), µ = σ(β)σ(α + β).

The next proposition shows that the linear space from Proposition 5.2 is included in
the q-linear space introduced in Proposition 6.1.

Proposition 6.2 Let (G,G0, +, R, ∗) be q-linear space in the sense of Proposition 6.1, i),
and the operation “·”: R × G −→ G be defined by

α · c = α ∗ cσ(α), α ∈ R, c ∈ G.(34)

Then (G, +, R, ·) is a linear system.

Proof. Let us check that “·” satisfies the axioms for linear multiplication.
1. Let us prove that α · (β · d) = (αβ) · d. Substitute c = dσ(β) in the relation

α ∗ (β ∗ c) = (αβ) ∗ c to obtain α ∗ (β ∗ dσ(β)) = (αβ) ∗ dσ(β). Using (34) we have
α ∗ (β ·d) = (αβ) ∗ dσ(β). “Dualizing” by σ(α) we obtain α ∗ (β ·d)σ(α) = (αβ) ∗ dσ(β)σ(α)

= (αβ) ∗ dσ(βα), or α · (β · d) = (αβ) · d, for all d ∈ G, α, β ∈ R.
2. To prove the relation γ · (a + b) = γ · a + γ · b, substitute a = cσ(γ), b = dσ(γ)

in γ ∗ (a + b) = γ ∗ a + γ ∗ b. We obtain γ ∗ (cσ(γ) + dσ(γ)) = γ ∗ cσ(γ) + γ ∗ dσ(γ), or
γ ∗ (c + d)σ(γ) = γ ∗ cσ(γ) + γ ∗ dσ(γ). This implies that γ · (c + d) = γ · c + γ · d, for all
c, d ∈ G, γ ∈ R.

The relations 1 · a = a, (α + β) · c = α · c + β · c and (−1) · a + a = 0 can be proved
similarly. �
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We proved that the system (G, +, R, ·) with multiplication by scalar “·” defined by
(34) is a linear system, hence, “·” is the linear multiplication by scalar (31) appearing
in Proposition 5.2. From (34) we see that the operation “·” is involved in the q-linear
system (G,G0, +, R, ∗) as composite operation — therefore the latter can be written in
the form (G,G0, +, R, ∗, ·). Note that the inverse is not true — R̊adström’s vector space
(G, +, R, ·) does not involve the natural extension of the multiplication by real scalar “∗”.

The q-linear system (G,G0, +, R, ∗,⊂) considered in Proposition 6.1 can be also en-
dowed with metric δ = δ(x, y) and norm ‖ x ‖= δ(x, 0) in the same manner as done in
Proposition 5.2 Part C. Due to Proposition 6.2 the linear multiplication (31) is incor-
porated in the q-linear system, so that the function x + (−1) · y = x − y = x¬y− can
be constructed in G (here “−” is the opposite and “¬” is the negation in G). We have
δ(x, y) =‖ x − y ‖=‖ x¬y− ‖, and ‖ x ‖= δ(x, 0). The system (G,G0, +, R, ∗,⊂, ‖ · ‖)
thus obtained is a normal ordered q-linear space.

Proposition 6.1 is a generalization of R̊adström’s embedding theorem [16] in the
directions: a) no restriction for the signs of the scalar multipliers in the second distributive
law (that is in the quasi- and q-distributive laws) are required (leading to embedding of
cones in R̊adström case), and b) an extension of the inclusion relation is given; c) the q-
linear space involves the linear space from Proposition 5.2. Clearly, (29) isomorphically
extends multiplication by scalar from Q into G; briefly, Proposition 6.1 says that a
quasilinear system can be isomorphically embedded into a q-linear system.

It has been shown by H. R̊adstöm that the system (K(E), +, R, ∗) satisfies the con-
ditions of Proposition 5.2 and therefore can be extended up to a normed vector space.
Note that the extension of “∗” is not isomorphic, and one can only speak of embedding
of K as a convex cone. According to Proposition 6.1 and Proposition 6.2 the system
(K(E), +, R, ∗) can be isomorphically embedded in a normed q-linear space, which incor-
porates a normed linear space.

Another example of quasilinear and q-linear space can be constructed from the set KS

of symmetric bodies considered in Section 3. The subgroup of invertible elements of KS

is the trivial group {0}. The quasilinear system of symmetric elements is (KS , 0, +, R, ∗).
Due to ¬B = (−1)∗B = B it is easy to check that α∗B = |α|∗B for B ∈ KS . Using (13),
this implies α ∗ B = {αx|x ∈ B} = {|α|x | x ∈ B}. By Proposition 6.1 the quasilinear
system (KS , 0, +, R, ∗) can be embedded in a q-linear system, which is a subsystem of
the q-linear system of general convex bodies.

7 Conclusions

Algebraic properties of convex bodies with respect to Minkowski operations for addition
and multiplication by real scalar are studied. It is demonstrated that the quasilinear
system of convex bodies can be isomorphically embedded into a q-linear system, having
group properties w. r. t. addition. The quasidistributive law induces in the q-linear
system a simple distributivity relation, called q-distributive law. A q-linear system has
much algebraic structure and is rather close to a linear system and differs from the latter
by:
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i) existence of two new automorphic operators – “negation” and “dualization” – in
addition to the familiar automorphism “opposite” (and, of course, identity);

ii) the distributivity relation (q-distributive law) resambles the usual linear distrib-
utivity law with the difference that the operator dualization is involved.

The q-linear system is endowed with metric, norm and inclusion; it has been shown
that the q-linear space involves the vector space as discussed by H. R̊adström.

Some rules for computation in a q-linear space are given in [9]–[11]. In a forthcoming
paper our main results will be interpreted in terms of support functions, cf. [2].
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