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BULGARICA

MAXIMIZATION OF A LINEAR UTILITY FUNCTION
OVER THE SET OF THE HOUSING MARKET

SHORT-TERM EQUILIBRIA*

A.B. Khutoretsky

Some generalization of the housing market models published by Herbert and Stevens
[4], Gustafsson et al. [2], and Wiesmeth [7] is suggested. The set of short-term
equilibria in a housing market in the sense of Wiesmeth [7] is parameterized by
Pareto-maximal integral points of some polyhedron. The problem of maximization
of a linear utility function over the set of short-term equilibriums is studied. The
problem is proved to be reducible (under some natural assumptions) to a linear
programming problem (LPP), or to finite number of the LPPs in general case. The
possible applications of the results and some related problems are pointed out.

Keywords: housing market, quantity constrained equilibrium, linear programming, unimodu-

larity.

AMS subject classification: 90C05, 90A14.

1 Model

The first model of the considered type was suggested by Herbert and Stevens [4], the
advanced variant was included in the survey of Gustafsson et al. [2]. Wiesmeth [7] offered
(maybe, independently) the similar model which, nevertheless, somewhat differs from the
preceding ones. These three models are the particular cases of the following one. We
consider an imaginary market period throughout which the asset and rental prices, and
consumers’ preferences are invariable, and new consumers and suppliers do not appear.

The information basis of the model is formed by two classifications: groups of house-
holds and types of dwellings. These classifications should satisfy the following conditions.

1. The utility function of each household over the set of the dwellings types is
well-defined.

*This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 934/1996.
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2. The households of the same group which occupy the dwellings of the same type
have identical utility functions.

Notations:

H is the set of (numbers of) groups of households;

I is the set of (numbers of) types of dwellings, 0 ∈ I;

Dih is the number of h-group households occupying the i-type dwellings at the beginning
of the market period, (i, h) ∈ I×H (D0h is the number of h-group consumers having
no dwelling in the housing market being considered);

Si is the number of i-type dwellings, which are vacant at the beginning of the market
period, i ∈ I (S0 is some sufficiently large number).

Each triplet (i, j, h) ∈ I2 × H can be interpreted as a bargain resulting in moving
of an h-group household from i-type to j-type dwelling. As the prices and households’
preferences are fixed within the market period, the set of all bargains acceptable for their
participants is completely defined. Let V be the set of triplets (i, j, h) corresponding to
feasible bargains. Without loss of generality we assume that Dih 6= 0 for (i, j, h) ∈ V .

Description of some initial situation in housing market includes the parameters
H, I, V, {Dih} , {Si}. Gustafsson et al. [2] assume V = I2 × H . Wiesmeth [7] defines V
as the set {(i, j, h)/h ∈ H, i /∈ Ah, j ∈ Ah}, where Ah ⊆ I is the given set of (numbers
of) types of dwellings acceptable for the h-group households. Our results are true for an
arbitrary V .

The model describes “activity” of a market as follows: a bargain (i, j, h) ∈ V can
be carried out if some j-type dwelling is vacant or may be vacated. We assume each
household to change its dwelling no more than once for the period.

Notations:

xijh is the number of h-group households which have exchanged i-type to j-type dwellings
during considered period (for (i, j, h) ∈ V ), unknown quantity;

x = (xijh/(i, j, h) ∈ V ));

T−

ih(x) =
∑

j xijh, T−

i (x) =
∑

h T−

ih(x);

T +
jh(x) =

∑
i xijh, T +

j (x) =
∑

h T +
jh(x);

Q = {x/xijh ≥ 0, T−

ih(x) ≤ Dih, T +
i (x) − T−

i (x) ≤ Si for (i, j, h) ∈ V, i ∈ I, h ∈ H};

P is the set of all integral vectors from Q.

To each x ∈ Q there corresponds some “final situation” in the housing market:
the vectors D(x) and S(x) with the components Dih(x) = Dih + T +

ih(x) − T−

ih(x) and
Si(x) = Si + T−

i (x) − T +
i (x). D(x) describes the allocation of households over the

dwellings and Si(x) specifies the number of vacant i-type dwellings at the end of the
period if all bargains corresponding to x would be carried out.
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2 Short-term equilibriums

Notations:

E(M) = {x/x ∈ M and (y ∈ M&y ≥ x → y = x)} for M ⊆ Rn; E = E(P ).

The vector x ∈ Q is efficient and the final situation (D(x), S(x)) is a short-term
equilibrium if x ∈ E, i.e., no bargain from V is possible after all bargains described by x
were carried out. We assume (with some idealization) the households to have the perfect
information on supply of housing. Then any initial situation over the considered period
will be transformed into some equilibrium.

In this section we shall describe the elements of Q which belong to E (Corollary 2).

Theorem 1 The matrix U of constraints describing the polyhedron Q is totally uni-

modular.

Proof. Let’s denote by aih and bi the vectors of coefficients of linear forms T−

ih(x)
and T +

i (x) respectively, ci = bi−
∑

h aih. The matrix U consists of all rows aih and ci.
For any B ⊆ H let ci(B) = bi −

∑
h∈B aih; clearly ci = ci(H). Let vijh be the

column of U corresponding to variable xijh. Notice that non-zero aih is not equal to any
cj(B). We set M(D) = {(i, h)/∃B(h ∈ B and the rows aih and ci(B) are both in D)} for
arbitraty matrix D containing the rows of the types aih and ci(B). An arbitrary square
submatrix D of U can be transformed now as follows.

Let D0 = D. Assume the matrix Dk (k ≥ 0) to be already defined and det(Dk) =
= det(D). If M(Dk) = Ø, then the transformation is finished.

Otherwise, after choosing any pair (i, h) ∈ M(Dk) and replacing in Dk the corre-
sponding row ci(B) by ci(B) + aih = ci(B \ {h}) we shall obtain the matrix Dk+1 with
det(Dk+1) = det(Dk) = det(D).

Described procedure is obviously finite, and we shall obtain the matrix D∗ such that
M(D∗) = Ø and det(D∗) = det(D). For proving the total unimodularity of D∗, let us
divide the rows of D∗ into subsets M1 (including all rows of the type ci(B)) and M2

(including all rows of the type aih). For each i there is no more than one non-zero row
of the type ci(B) in D∗, denote it (if any) by ri. If i = j then the column vijh contains
no more then two non-zero elements: 1 in the rows ri and aih. If i 6= j then the column
vijh contains no more then three non-zero elements: 1 in the rows rj and aih, −1 in ri.
From M(D∗) = Ø it follows that each column of D∗ contains no more than two non-zero
elements. Consider some column of D∗ containing exactly two non-zero elements. If
these elements are identical in sign then the corresponding rows belong to the distinct
sets Mn (n ∈ {1, 2}), and if the elements are opposite in sign then the corresponding
rows belong to the same set. D∗ is totally unimodular by the theorem of Heller and
Tompkins [3]. So, det(D) = det(D∗) ∈ {−1, 0, 1}. �

Corollary 1 All corner points of Q belong to P .

Proof. The right sides of the inequalities describing Q are integers, so all corner
points of Q are integral by the theorem of Hoffman and Kruskal [5] and, therefore, belong
to P . �
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Obviously, every integral element of E(Q) belongs to E. The less evident reverse
inclusion is also true.

Lemma 1 If M = {x/x ∈ Rn, A · x ≤ b} and A is a totally unimodular matrix then for

any integral y ∈ M \ E(M) there exists an integral z ∈ M such that y ≤ z, y 6= z.

Proof. Let b1 = A · y. If y is integral and y ∈ M \ E(M) then b1 is in-
tegral (because all elements of A are integers); b1 ≤ b. From y /∈ E(M) it follows
that there exists some d, d ≥ 0, d 6= 0, A · (y + d) ≤ b. Consider the polyhedron
M1 = {x/x ∈ Rn, A · x ≤ b − b1, x ≥ 0}. d ∈ M1, therefore M1 has some non-zero corner
point z1. Vector b − b1 is integral, hence all corner points of M1 are integral. Therefore,
z = y + z1 is the desired vector. �

Corollary 2 E is exactly the set of all integral points of E(Q).

Proof. If y ∈ E then y is integral and y ∈ Q. If y /∈ E(Q) then, by Lemma 1, there
exists an integral z ∈ Q such that y ≤ z, y 6= z. Existence of such z ∈ P contradicts
the choice of y. Inversely, let y be an integral point of E(Q) \ E. Then some z exists in
P ⊆ Q such that y ≤ z, y 6= z, in contradiction with the choice of y. �

3 Maximization of a linear utility function

Each short-term equilibrium corresponds to some vector x ∈ E. We cannot predict the
specific equilibrium which will be realized at the end of the period in a given initial
situation. Nevertheless, the equilibriums created by the vectors maximizing some social
utility function are of especial interest for (at least) two reasons:

(a) when knowing the optimal x ∈ E, a planning body (e.g., the local administration)
can support and promote the corresponding bargains (all the more, it does not contradict
the consumers’ preferences);

(b) having the method for calculating the maximum of some objective function at
any initial situation, it is possible to look for modification of the initial situation in order
to increase the maximum.

Let us assume the utility function g(x) to be linear with respect to variables xijh:
g(x) = c · x, c ≥ 0. Our problem is:

(1) max {c · x/x ∈ E} , c ≥ 0.

Any solution of this problem creates some equilibrium maximizing the utility function
c · x.

Theorem 2 If c > 0, x∗ is a corner point of Q, and x∗ ∈ ArgmaxQ(c · x) then

x∗ ∈ ArgmaxE(c · x).
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Proof. If x∗ is a corner point of Q and x∗ ∈ ArgmaxQ(c · x) then x∗ is integral by
Corollary 1. Thus x∗ ∈ E(Q), as Charnes and Cooper proved [1, Theorem 1, p. 301].
By Corollary 2, x∗ ∈ E ⊆ Q, therefore x∗ ∈ ArgmaxE(c · x). �

From Theorem 2 it follows that the problem (1) in the case of c > 0 can be reduced
to the LPP maxQ(c · x). Note, that Wiesmeth [7] reduced the problem maxE

∑
i,j,h xijh

to a nonlinear programming problem.
For c ∈ Rn

+ let I(c) = {i/ci = 0}, and for any real α let us define the vector c(α):
ci(α) = ci, if i /∈ I(c); ci(α) = α, if i ∈ I(c).

Lemma 2 If D is a polytop in Rn
+, then there exists some real α0 > 0 such that

ArgmaxD (c(α) · x) ⊆ ArgmaxD (c · x) for any α ∈ (0, α0).

Proof. Without loss of generality we assume

(2) max
D

xi > 0 for each i,

since otherwise the variable xi can be excluded from the description of D (by fixing
xi = 0) and we can consider D and c in Rn−1

+ . If I(c) = Ø then c(α) = c and the lemma
is true. Assume now I(c) 6= Ø.

Let d = maxD

∑
I(c) xi; let p1 < p2 < · · · < pr be the values of c · x at the corner

points of D. d > 0 by (2), and pr = maxD (c · x). If r = 1 then c · x is constant over D
and the lemma is true. Assume r > 1 and consider some a, 0 < α < α0 = (pr − pr−1)/d.
Let y ∈ ArgmaxD(c(α) · x), then c · y ≤ pr. If c · y < pr, then c · y ≤ pr−1, c(α) · y ≤
≤ α ·

∑
I(c) yi + c · y < α0 ·

∑
I(c) yi + c · y ≤ pr − pr−1 + c · y ≤ pr.

On the other hand, for x ∈ ArgmaxD (c ·x) we have c(α) ·x = α ·
∑

I(c) xi + c ·x ≥ pr

in contradiction with the choice of y. So, c · y = pr and y ∈ ArgmaxD c · x. �

The algorithm for solving the problem (1) in the case of I(c) 6= Ø can now be
described as follows.

Let αn = 2−n; let us assume that x(n) ∈ ArgmaxQ (c(αn) · x) and x(n) is a corner
point of Q for n > 0. By Lemma 2, x(n) ∈ ArgmaxQ (c · x) for some sufficiently large n.
The criterion for detecting such n is: maxQ (c · x) = c · x(n). x(n) ∈ E by Theorem 2.
So, x(n) solves the problem (1).

The algorithm described above requires us to solve a finite number of the LPPs
maxQ(c(αn) · x). When c ≥ 0 is integral, the procedure can be simplified as follows.

Let a = max {max {Dih}, max {Si}}, n = |V |, m1 = |{(i, h) /∃j((i, j, h) ∈ ∈ V )}|,
m2 = |{i /∃j∃h((i, j, h) ∈ V )}|, m = m1 +m2. If A is the m× (n+m) matrix of the LPP
maxQ (c ·x) in the canonical form then max |aij | = 1. Let M = (n+m) · (1+a) ·m2m+3 ,
α∗ = (Mn)−1.

Theorem 3 If vector c is integral nonnegative, I(c) 6= Ø, and α < α∗ then

ArgmaxQ(c(α) · x) ⊆ ArgmaxQ (c · x).

Proof. It is enough to prove that α∗ ≤ α0 (Lemma 2). α0 = (pr − pr−1)/d (see the
proof of Lemma 2), pr = c ·x1, pr−1 = c ·x2, where x1, x2 are some distinct corner points
of Q (both integral by Corollary 1). So, pr − pr−1 is the positive integer, and α0 ≥ 1/d.
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d = maxQ

∑
I(c) xijh ≤ M · |I(c)| in consequence of the result of Papadimitriou and

Steiglitz [6, Theorem 13.5]. Hence d ≤ Mn and α0 ≥ (Mn)−1 = α∗. �

If α < α∗ and x∗ from ArgmaxQ (c(α) · x) is the corner point of Q then x∗ ∈ E
by Theorem 2 and x∗ solves the problem (1). So, for an integral c the problem (1) is
reducible to LPP maxQ (c(α) · x).
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