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THE GRAVES THEOREM REVISITED II:
ROBUST CONVERGENCE OF THE NEWTON METHOD"

Asen L. Dontchev

Based on the original proof of the Graves theorem [9] we study the convergence of
the Newton method for the solution of the equation f(z) = y, uniform with respect
to the starting point and the parameter y. We show that the surjectivity of the
Jacobian implies the Aubin continuity, relative to the supremum norm, of the map
taking the starting point and the parameter y to the set of all Newton sequences.
These results complement our previous paper [4].

Keywords: Newton’s method, Aubin property, robust convergence.
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1 The Graves theorem

As in our previous paper [4] devoted to the Graves theorem, we start with the formulation
and the proof of the result given in the original paper of Graves [9]. It uses the following
version of the Banach open mapping theorem: Let X and Y be Banach spaces and
A: X — Y be a linear and continuous. Then A is onto if and only if there is a constant
M > 0 such that for every operator y € Y there exists © € X such that y = A(z) and

(1) fz <Myl .

In the sequel X,Y are Banach spaces and B,(z) is the closed ball centered at x with
radius a.

Theorem 1.1 (Graves [9]). Let f be a continuous function from X to Y defined in
B.(0) for some € > 0 with f(0) = 0. Let A be a continuous and linear operator from

*This work was supported by The National Science Foundation. The revised version of this paper
was prepared during author’s visit at the University of Ziirich, Switzerland.
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X ontoY and let M be the corresponding constant in (1). Suppose that there exists a
constant 6 < M~ such that

(2) | (1) — f(x2) = A(wr — @) [[< 0 || 21 — 2 |

whenever x1,22 € B:(0). Then the equation y = f(x) has a solution x € B.(0) whenever
|y ||< ce, where c = M~1 — 6.

PrOOF. Let y € Y, || y ||< cg, and let g = 0. Since A is surjective, by (1) there
exists x1 € X such that

Afzy) =y and [l [ M [ly|<e.
Suppose that for nl we are given z;,i = 1,---,n — 1, satisfying
A(zi) =y — fzio1) + Alwir) and || 2 — 21 [|[< MME) ™ |y ||

Then

IN

i |l

7
dollwy =z
j=1

MLy || Y (Mo~ < Myl /(1 —M8)=|lyl/c<e.

j=1

IA

By the surjectivity of A and (1), there exists an x,, such that
(3) Alzn) =y = flzn-1) + Alzn-1)

and
|| Tp — Tn—1 HS M || Yy— f(mn—l) || .

Since y = A(xp—1) — A(Tn—2) + f(zn_2), from (2) we have
|| Tn — Tp—1 HS M6 || Tn—1 — Tpn-—2 || .

Hence,
| = @n-1 [|< M) |y || -

Thus z,, is a Cauchy sequence, hence it is convergent to some = € B.(0). Passing to the
limit in (3) with n — oo we obtain y = f(x). O

Let us assume that the function f is continuously differentiable (for short, f € C1)
around 0. Then the Graves theorem can be stated as follows: If Vf(0) is onto, then
there exist a neighborhood U of 0 and a constant ¢ > 0 such that for every x € U and
7> 0 with B,(xz) C U,

(4) Ber (f(x)) C f(Br()).
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The property (4) is called linear openness, openness with linear rate around a point or
covering in a neighborhood and can be extended to set-valued mappings acting in metric
spaces. In very general circumstances the linear openness of a mapping is equivalent
to both the Aubin property and the metric regularity of its inverse. Recall that a set-
valued map F from X to the subsets of Y is Aubin continuous at (y*,z*) € graphF
if there exist constants a, b, and M such that for every y',y” € By(y*) and for every
x' € F(y') N By (z*) there exists 2" € F(y") with

o' = ")l < My ="

Remark 1.1 By the definition, if a map F is Aubin continuous at (y*,x*) with constants
a, b, and M, then for every 0 < @’ < a and every 0 < b <min{b,a’/M} the map F is
Aubin continuous at (y*, x*) with constants a’, b, and M, and moreover F(y)N By (x*) #
O for all y € By (y*).

We showed in [4] that the Graves theorem is a special case of the following general
observation: the Aubin property is stable under perturbations of the inverse of order
o(x). In particular, for smooth functions we have the following characterization:

Theorem 1.2 Let f € C' around 0. Then the following are equivalent:
(i) V£(0) is onto;
(ii) the map f~1 is Aubin continuous at (0,0).

The Graves theorem is sometimes viewed as a version of a theorem by Lyusternik
[11] which is stated as follows: if a function f from Banach space X into a Banach space
Y is Fréchet differentiable near xq, its derivative V f is continuous at zq, and V f(z) is
onto, then the tangent manifold to f~1(0) at x¢ is exactly zo+KerV f(x¢). Actually, the
Lyusternik theorem can be deduced from the Graves theorem, see [4]. On the other hand,
it is important to note that in his proof Lyusternik used the iterative process (3), with A =
V£(0). The Lyusternik theorem and the Graves theorem and their various extensions
have numerous applications in variational analysis and optimization. Here we shall not go
into this further, for samples of results in this direction see [1, 2, 6, 7, 8, 10, 12, 13, 14, 15].

2 The Newton method

Let us go back to the proof of the Graves theorem. Suppose that f € C! around 0. Then
for every § > 0 there exists € > 0 such that for every x1,z2 € B-(0),

| f(@1) = f(x2) = Vf(0) (@1 —w2) [|[< O || 21 — 2 || -

If Vf(0) is surjective, with a constant M in (1), then the operator A in the proof of
Graves can be replaced by V f(0) provided that § < M ~!. The points x,, n =1,2,---,
obtained by the iterative procedure (3) satisfy

y= f(xn_1)+VIO0)(@n —Tpn_1).
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This procedure is a version of the Newton method, sometimes called the modified Newton
method, for solving the equation y = f(z). That is, to prove the linear openness of
the map f, Graves applied a Newton-type method proving simultaneously its geometric
convergence. Note that this convergence is independent of the choice of the starting point
o and the parameter y. The result is not of the conventional type where the Jacobian
V f(0) is assumed invertible. In his proof Graves assumes surjectivity of the Jacobian
and proves the existence of a convergent Newton-type sequence. Recall that the standard
version of the Newton method is:

(5) Y= f(mn—l) + vf(xn—l)(xn - xn—l)-

In the following theorem we show that, by modifying the proof of Graves, one obtains the
existence of a sequence x,, satisfying (5) which converges @Q-superlinearly to a solution,
uniformly in the starting point and the parameter.

Theorem 2.1 Suppose that f(0) =0, f € C' around 0 and Vf(0) is onto. Then there
exist positive constants p and € such that for every y € B,(0) and for every initial point
xo € B:(0) there exists a Newton sequence x,, € B:(0) which converges Q-superlinearly,
uniformly in xg € B:(0) and y € B,(0), to a solution x(y) of the equation

(6) y=[f(z).

PROOF. Let M’ > M and let 6 > 0 be such that (M’ + 1) < 1. Choose £ > 0 such
that for every x, 21, z2 € B:(0),

(7) | f(21) = f(x2) = Vf(2)(w1 —22) [< 6 [ 21 — 2 ||

and, moreover, for every x € B.(0) the following holds: for every y € Y there exists
z € X such that
(8) y=Vf(z)z and |[z]| < M[lyl.

Let p > 0 be such that

M'p+ de

M5 = °
Let zo € B:(0) and y € B,(0). From (8) there exists a Newton step z1,
(9) 1 € V(o) (y — f(x0) + Vf(x0)z0),

such that

M|ly = f(o) + Vf (zo)zol|
M (llyll + 11f (zo) = £(0) = Vf(zo)(xo — 0)])
M(lyll + dllzoll) < M'p+ e <e.

1]

IA N CIA

Then, again from (8), we can find a Newton step xs, that is,

To — X1 € Vf(l’l)_l(y - f(l’l))7
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with
22 — a1 < M'[ly — f(a1)] = M'[| f(z0) + V£ (@0)(x1 — z0) — f(z1)]| < M'6]lz1 — zo]-
By induction, suppose that the sequence x1, s, - -+, x,_1 satisfies
s — @i || < (M'8)' ™y — o
and ||a;|| <eforalli=1,2,---,n— 1. Then there exists

Tn S Tn—1 + vf(l’nfl)il(y - f(xnfl))
such that
Zn — Zn-1| < M’Hy = flzn—1)l| < M/(SHxn—l — Tp—2-

Hence
20 = @na || < (M'8)" w1 — zoll.

Further, from
p € Vf(@n-1)" (Y = f(@n—1) + Vf(xn-1)Tn-1)

we have

lznll < M|y — f(xn—1) + Vf(zn-1)zn_1]|
< M'(Jlyll + 0l|zn-1l]) < M'p+de <e.

Thus for every n, z, is in B:(0) and the sequence {x,} is convergent. Passing to the
limit with n — oo in (5) we obtain that {z,} is convergent to a solution z(y) of (6).
Furthermore, observe that for every n,

[Zni1 — xnll < M|y — f(zn)ll
= M/”f(xnfl) + Vf(@n-1)(@n — 2n-1) — f(zn)||

1
M| /0 (Vf(@p—1 4 txn — zn-1)) = Vf(@n1))dt||||zn — zp_1],

IN

that is,

1
Iener Zanll 9+t = 0m)) = 9],
0

|20 — Tn—1l —

Since Vf is continuous in B.(0) and z, — z(y) uniformly in x¢ and y, the convergence
is @Q-superlinear and uniform. [

Of course, the origin 0 of X does not play any special role in the above proof; it can
be replaced by any fixed point z* and then the origin of Y will be replaced by f(z*).
Further, if we assume that the Jacobian V f is Lipschitz continuous around z*, then we
obtain the existence of a Q-quadratic convergent Newton sequence, see [3].
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We note that Theorem 2.1 is an existence theorem; it does not show how to construct
a Newton sequences. A natural choice is to take the iterate with minimal norm; this
means at each iteration to solve a least squares problem.

Theorem 2.1 is a special case of Theorem 1 in [5], where we considered a generalized
equation of the form y € f(x) + F(x), with f a smooth function and F a set-valued map
acting in Banach spaces. In [5], however, no connection to the Graves theorem had been
made and the proof was much more involved. In further lines we will not discuss more
general models (e.g. variational inequalities) but rather focus on an issue of different
nature: how a Newton sequence depends on changes of the parameter y.

3 Well-posedness of Newton sequences

Let X be the space of infinite sequences z1, 22, -, Zp, - -, denoted {z,}, of elements of
X equipped with the norm

[{zn} | = sup ||z, .
n>1

We denote by N(xo,y) the set of all Newton sequences in X starting at the initial point
xo and associated with the value y of the parameter. Obviously, the sequence {0} with
all components zero is an element of N(0,0). We have the following result.

Theorem 3.1 Suppose that f(0) =0, f € C! around 0, the derivative V f is Lipschitz
continuous around 0. Let Vf(0) be onto. Then the map N is Aubin continuous at

((0,0),{0});

In the proof we use the following lemma.

Lemma 3.1 Suppose that the assumptions of Theorem 3.1 hold and let M be the constant
of surjectivity of Vf(0), as in (1). Then the map

Pi(wy) = (fl@) = V@) —2) " (1)

has the following property: for every M' > M and for every v > 0 there exists a > 0
such that for every y',y" € Y, a’,a2" € B,(0) and for every z' € P(a',y") N B,(0) there
exists 2" € P(z",y") with
12" = 2" < M'lly" — " [ +~]l2" — "]
PROOF. Let M’ > M and v > 0, and let § and ¢ be chosen as at the beginning of
the proof of Theorem 2.1 so that (7) and (8) hold. Taking ¢ smaller if necessary, let L

be the Lipschitz constant of V f in B.(0). Take ¢ smaller if necessary and choose a such
that

(10) 0<a<e and gM’Lag’y.
Let o', 2" € B,(0), v',y” € Y and let 2’ € P(2',y') N B,(0). Then

vo= f@)+VIE)E -
= [@)+VIE")E -2+ (V) = VIE")(E 2.
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From (8) there exists 2z’ such that

yl/ — f(xl/) +vf(:r//)(zll _ x,//)

and moreover

Il = 2" < My =y — f) + VI ")
(V@) = VI — ') + (@) = V)"
< My =y + M) - F@") = V") =)
MV ") - V@) E )
1
< M =g+ M [ (V16 o) = il

+M|[(Vf(z") = V()" =2
1
< Mlly' —y"| + gM Lalla” = 2"| + M'Ll" = 2"||(l"]| + [|=']}

5
< My —y"|| + gM'Lafja" - 2"

Taking into account (10) the proof is complete. [

PROOF OF THEOREM 3.1. Let Vf(0) be onto and let M be the constant in (1).
Choose M’ > M and 0 < v < 1 and let a be a constant satisfying (10) with ¢ and L
as in the beginning of the proof of Lemma 3.1. Let 0 < @ < a and 0 < 8 < min{p, e},
where p is as in the statement of Theorem 2.1. By Theorem 2.1, for every zo € Bg(0)
and y € Bg(0), the set N(x¢,y) N By (0) is nonempty. Let ¢, y" € Bs(0), xp, zj € Bg(0),
and let {z,} € N(z(,y’) N B4({0}). By Lemma 3.1, for every n there exists a Newton
step x/! from !/ _, associated with y” and such that

|z — x|l < M'ly" — " || + e, 1 — 27,4

Hence, for every n

/

[y, = 23]l < ly" ="l + 7" llxo — 26 -

I—x

Thus the map N is Aubin continuous at ((0,0),{0}) with constants «, 8, and A =
max{M'/(1 —v),7}. O

If the Jacobian V f(0) is nonsingular, then, by a parallel analysis one can show that
the map N can be locally identified with a Lipschitz continuous function. In other words,
in this case the Newton sequence is not only unique and Q-quadratically convergent, but
also it depends in a Lipschitz way on parameters.

The observations presented in this paper can be extended for more elaborate versions
of the Newton method for solving variational inequalities and optimization problems.

Acknowledgment. The author wishes to thank anonymous referee for inspiring
comments.
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