
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pliska Stud. Math. Bulgar. 12 (1998), 5-20
STUDIA MATHEMATICA

BULGARICA

n –DIMENSIONAL ORTHOGONAL
TILE SIZING PROBLEM

Rumen Andonov, Nicola Yanev

We discuss in this paper the problem of generating highly efficient code when a
n + 1-dimensional nested loop program is executed on a n-dimensional torus/grid
of distributed-memory general-purpose machines. We focus on a class of uniform
recurrences with non-negative components of the dependency matrix. Using tiling
the iteration space strategy we show that minimizing the total running time reduces
to solving a non-trivial non-linear integer optimization problem. For the later we
present a mathematical framework that enables us to derive an O(n log n) algorithm
for finding a good approximate solution. The theoretical evaluations and the exper-
imental results show that the obtained solution approximates the original minimum
sufficiently well in the context of the considered problem. Such algorithm is real-
time usable for very large values of n and can be used as optimization techniques in
parallelizing compilers as well as in performance tuning of parallel codes by hand.

Keywords: coarse grain pipelining, dynamic programming, uniform recurrence equations,

parallelizing compilers, integer non-linear optimization

AMS subject classification: 68Q22, 90C90

1 Introduction

A common approach to generate highly efficient parallel code when a nested loop program
is executed in SPMD (Single Program Multiple Data) fashion on DMM (distributed mem-
ory multicomputers) is the iteration space tiling (also called “super-node partitioning”)
[1, 12, 20, 25]. It may be used as a technique in parallelizing compilers (see [11, 17])
where it is called coarse-grain pipelining) as well as in performance tuning of parallel
codes by hand [14, 21, 22]. A canonical tile is an n-dimensional parallelepiped box in an
n-dimensional iteration space, and denotes a block of computations that are performed
atomically. Tiling refers to the process of paving the entire iteration space with translated
copies of the canonical tile. The tiling problem can be broadly defined as the problem of

6 Rumen Andonov, Nicola Yanev

choosing the tile parameters (notably the tile shape and size) in an optimal manner. It
may be decomposed into two subproblems: choosing a “good” tile shape [8], and finding
the “best” tile size [15, 21]. For the former problem, the communication cost is approxi-
mated by the number of dependency vectors crossing a tile border. The latter problem
assume the tile shape is first given and then seeks to minimize the total execution time.
Successfully solving the both problems guarantees choosing the optimal task granularity
that balances the available parallelism with the cost of communication. Exact, but time
expensive solutions are not of significant practical interest taking in account the context
of their use. In general, both problems are hard optimization problems and researchers
use different heuristics to solve them. The emphasis of this study is on finding “best”
tile size and we show that even in the simplest case this implies solving a non-trivial
non-linear integer optimization problem.

We address the tile sizing problem in the case of n + 1-dimensional perfect nested
loop nest with constant loop bounds [6] and uniform recurrence equations (UREs) [13]
with non-negative dependencies. More precisely, the problem is to compute, for all
j = [j1, j2, . . . , jn+1]

T ∈ Dom ⊂ Zn+1
+ , a function, Y [j] given by

Y [j] = f(Y [j − d1], Y [j− d2], . . . , Y [j − dl])(1)

with appropriate boundary conditions in a domain Dom = {j : 0 < j1 ≤ m1, 0 < j2 ≤
m2, . . . , 0 < jn+1 ≤ mn+1}, also called the iteration space. We call D = [d1,d2, . . . ,dl]
the dependency matrix of (1). We assume D to be a full rank matrix of size (n + 1) × l
where l ≥ n+1. f is a single-valued function, computed at point j in a single unit of time
and Y [j] is its value in this point. In addition to these common assumptions we suppose
D to have non-negative components, i.e. D ≥ 0. Typical example for such recurrences
can be found in dynamic programming algorithms for solving optimization problems as
finding the edit distance between strings [23].

The above assumptions imply that the iteration space is a parallelepiped and that
the dependencies admit orthogonal tiling (i.e. they are such that tiles whose boundaries
are parallel to the domain boundary are valid). We assume in this case a rectangular
parallepiped for tile shape and we focus only on the tile sizing problem. The goal is
for any instance of the domain Dom, to determine in a reasonably acceptable time the
optimal tile size and to generate in this way a highly efficient SPMD code for executing
(1) on a virtual n-dimensional torus of p1 × p2 × . . . × pn general-purpose processors.

The two-dimensional version of (1) has been recently addressed [4] where the authors
also show how the methods of systolic array synthesis can be used for optimal tiling. The
main observation is that independent of the original dependencies, the tiled computation
for all programs in the considered class can be abstracted by a single, specific URE. An
analysis of this URE using a realistic model of the communication cost yields a non-linear
integer minimization problem having the total running time as objective function and
where all the available resources (size of iteration space as well size of the processors
array) appear in the problem constraints. The results in [4, 5] give a closed form formula
for the optimal tile size in the two and three-dimensional version of (1). Here we give an
O(n log n) algorithm for solving the n-dimensional case and show in this way that the tile

n-dimensional orthogonal tile sizing problem 7

sizing problem is easily solvable when orthogonal tiling is possible. The proposed model
has been experimentally validated in 2 and 3-dimensional cases in [3, 5]. Let us point
that each one of these generalizations is not a straightforward extension of our previous
low-dimensional results but requires a development of a new technique for its solution.
This is due to the hardness of underlying minimization problem which is complicated
by the non-convexity of its continuous relaxation. This problem could be harder even in
the two-dimensional case (as shown in [4] for the Bitz-Kung path planning algorithm [7]
whose dependency vectors have negative components). The existence of elegant and fast
tile sizing algorithms for larger class of recurrences is still an open question.

Let us mention again that the emphasis of this paper, being an extension of previous
results is on the new points in the mathematical framework that enable deriving the algo-
rithm for the n-dimensional case. More details about the used definitions, notations and
their interpretations, as well about some practical aspects of the experimental validations
the interested reader can find in [4, 3].

The remainder of the paper is organized as follows. In the following section, we
obtain analytic formula for the running time of a tiled program on a torus by combining
the systolic synthesis design methodology with a realistic message passing communication
model for general purpose DMM. We solve the associated minimization problem when the
matrix D is the identity matrix I in section 3. We present experimental results in section
4 and we conclude in section 5. For the lack of space we shorten the explanations and
we omit the proofs of few lemmata which are easy or very similar to the 3-dimensional
case.

2 Orthogonal tiling in a rectangular parallelepiped

2.1 Analysis of the general case for a dependency matrix with

non-negative components

Let us denote N = {1, 2, . . . , n}, N = {N
⋃

{n + 1}} and let us first suppose D to be
a diagonal matrix with integer components dii, i ∈ N such that dii ≥ 1. Under these
assumptions (1) is a perfect loop nest of depth n + 1 whose dependencies are positive
multiples of the orthogonal basis vectors {ei}

n+1
i=1 and whose iteration space is a n + 1

dimensional rectangular parallelepiped Dom . We are interested in executing Eqn. (1)
on a n-dimensional grid of general-purpose processors. Following the approach from [4]
applied in the n + 1 dimensional space, we perform the following steps:

1. Choose the slopes of n + 1 families of parallel hyperplanes in order to partition the
iteration space into parallelogram shaped tiles of of size x1×x2× . . .×xn+1. Leave
xi, ∀i ∈ N , as free integer variables.

2. “Cluster” recurrence into tiles, yielding a new uniform recurrence over a new do-
main (say Dom). Each tile is considered as an atomic computation and the ob-
tained graph is called a tile graph.

8 Rumen Andonov, Nicola Yanev

3. Apply systolic space-time transformations, yielding a virtual n-dimensional systolic
array. Implement this array on a torus/grid of size p1 × p2 × . . . × pn by perform-
ing multiple passes if necessary (the so called locally parallel, globally sequential
partitioning [16]).

4. Relax the systolic timing model to account for practical machines, and obtain a
formula for the total running time of the final implementation. This formula will
be expressed as a function of xi, i = 1, . . . , n+1, as well as other parameters which
are constants.

5. Choose the tile size that minimizes this running time by solving the corresponding
optimization problem. This is a non-linear integer problem, and special techniques
are used to solve it.

The first step in our procedure is to choose a convenient tile shape. For this particular
case (D is square and non-singular) the result of Boulet et al. [8] shows that the optimal
tile shape is a rectangular parallelepiped, the tile boundaries being parallel to the domain
boundaries. We therefore, partition the domain in parallelepipeds of size x1 × x2 ×
. . . × xn+1, specified by orthogonal planes. Now the tile graph is a parallelepiped of
⌈

m1

x1

⌉

×
⌈

m2

x2

⌉

×. . .×
⌈

mn+1

xn+1

⌉

nodes (we will drop the ceilings from all subsequent formulæ).

It is easily seen that the volume of the transmitted message between any two tiles in axis
k (say) is the volume of the tile facet in this axis multiplied by dkk i.e. dkk

∏

i∈N

i6=k

xi.

Let us suppose now that the n + 1-th axis is chosen for projection of the tile graph
on the array of processors. To guarantee local communications between tile nodes we
impose dkk, k 6= n + 1, to be lower bound for the variable xk. For the variable xn+1

we can keep xn+1 ≥ 1 since the non-local communications are in fact projected in the
processors memory. As for the tile graph dependencies, it is known [12] that the tile
graph will always have the standard basis vectors as dependencies, provided the tiles are
large compared to the original dependencies.

In the more general case of dependency matrix they will be some additional (diagonal)
dependencies. By assumption they are with non-negative components and they will lie
in the cone of the basis vectors, and can be represented as positive linear combinations of
these. The corresponding data can always be combined with the results of the orthogonal
dependencies and their communication can be subsumed. The volume of the tile facet
should be multiplied by an appropriate constant multiplier, but its value does not modify
the nature of our analysis. Static diagonal dependencies can be easily ignored in this
way for analysis purposes in our approach, and for these reasons we keep the orthogonal
tiling.

Typical examples of n-dimensional orthogonal tiling can be found in Waterman’s
book [23]. They are often related with the application of dynamic programming to
combinatorial optimization problems (as the alignment of protein sequences in [23]).

Y [j] = min
i

(Y [j− di] + ρ(. . .)) di ∈ {0, 1}n+1,di 6= 0

j ∈ Dom ⊂ Zn+1
+ , where Dom = {[j] : 0 < j1 ≤ m1, 0 < j2 ≤ m2, . . . , 0 < jn+1 ≤ mn+1},

n-dimensional orthogonal tile sizing problem 9

2.2 “Systolic” space-time transformation for the tile graph

As shown in the previous section the dependency matrix of the tile graph can be consid-
ered to be the identity matrix and the iteration space now is given by Dom = {j : 0 <
j1 ≤ m1

x1
, 0 < j2 ≤ m2

x2
, . . . , 0 < jn+1 ≤ mn+1

xn+1
} where each point represents a tile. We

then apply a space-time transformation [16, 18] by choosing a(j) = (j : jn+1 = 0) as an
allocation function and t(j) = j1 +j2 + . . .+jn+1 as a timing function. This is an optimal
linear schedule for this recurrence and this gives a virtual n-dimensional “systolic”array
of m1

x1
× m2

x2
× . . . × mn

xn

nodes. We consider the P processors in the network as a logical

p1 × p2 × . . . × pn n-dimensional torus, where
∏n

i=1 pi = P . We reasonably assume that

P ≤
∏n+1

i=1 mi and pi ≤ mi for ∀i ∈ N . We will denote the [k1, k2, . . . , kn]th processor
in this mesh as Pk1,k2,...,kn

. The virtual array will be distributed to the physical array
by using multiple passes, so that the [j1, j2, . . . , jn]th tile node is assigned to processor
P(j1−1) mod p1,(j2−1) mod p2,...,(jn−1) mod pn

.
The above explanations could seem not enough explicit but let us point that we use

known results from systolic synthesis from recurrences which is now a well developed
research area [10, 13, 16, 18, 19]. We would like however to emphasize that the architec-
ture is not really a conventional systolic array, but has the granularity of a tile which is
imposed by the communication model on DMM machine.

2.3 Relaxing the systolic model: execution time on DMM

Using the standard communication model [9, 11, 15, 17], we now develop an expression
for the running time of such a tiled program on a DMM machine, which is valid for the
range of all possible values of the tile size x = (x1, x2, . . . , xn+1), where xi - integer, and
x ∈ X ,

X =

{

x ∈ Rn+1 : 1 ≤ xi ≤ ui =
mi

pi

, i = 1, . . . , n, 1 ≤ xn+1 ≤ un+1 = mn+1

}

(2)

The code executed for a tile is the standard loop (the receive call is a blocking one
to ensure synchronization):

repeat
receive(v1); receive(v2), ...,receive(vn) ;
compute(body);
send(v1); send(v2), ..., send(vn) ;

end

where we denote by vi the message transmitted in the ith axis. In the DMM communi-
cation model the time to transmit a message of v words between two processors is given
by

transfer(v) = β + vτt.(3)

where β is the start-up latency, τt is the transmission rate for a specific architecture. We
assume that the time to execute a single instance of the loop body in (1) is τa. The time

10 Rumen Andonov, Nicola Yanev

to execute a tile body is therefore τav(x) where v(x) =
∏n+1

i=1 xi is the volume of the tile
associated to any point x ∈ Rn+1.

We will use the convention that P , Λ and T denote period, latency and completion
time, respectively. Let us define the tile period, Pt as the time elapsed (in the steady
state) between corresponding instructions of any two successive tiles (the tiles are con-
sidered successive if one depends directly on the other) that are mapped to the same
processor. The tile latency, Λ is the time elapsed between corresponding instructions of
two successive tiles mapped to adjacent processors.

Since Pt is at least as large as the time that the CPU is busy during each tile, (2n
OS calls, and the tile body) we can specify it as,

Pt(x) = 2nβ + τav(x)(4)

Now consider the latency, Λ, between tiles. Assume that two (successive) tiles start
simultaneously on adjacent processors. Because of the dependency between the tiles, the
receive on the second tile will block until the first tile is finished, its results are sent, and
they arrive into user memory. Taking in account that the volume of the message in a

fixed axis (say k, k 6= n + 1) is v(x)
xk

, we get for the latency Λk:

Λk(x) = Pt(x) + τt

v(x)

xk

− nβ(5)

Observe that because the call to receive is overlapped, we subtract a factor of nβ,

and the τt
v(x)
xk

accounts for the transmission time. When the axis coincides with the
direction of projection we simply neglect the propagation time and therefore we obtain:

Λn+1(x) = Pt(x)(6)

We have a tile graph of M1 × M2 × . . . × Mn+1 tiles, where Mi = mi

xi

. The total
running time of the program is then obtained using a straightforward application of
systolic like counting arguments. In general, we will need

∏n
i=1

Mi

pi
passes through the

torus of processors where each pass treats in a pipelined way p1 × p2 × . . .× pn × Mn+1

tiles. In fact, each pass consumes a parallelepiped of (p1x1)×(p2x2)×. . .×(pnxn)×mn+1

points of the original iteration space. Note that because the (n + 1)th axis is chosen as
direction for projection, we explore the iteration space in this axis completely (i.e, we
perform Mn+1 tiles in the (n + 1)th axis), before to start a new pass in any other axis.
Therefore, the period in the (n + 1)th axis is given by:

Pn+1(x) = Mn+1Pt(x)(7)

A single pass in kth axis, (k 6= n+1), involves communications between pk processors,
and we define the latency of a pass in this axis as pkΛk(x). The pass-period of the torus
is determined as the earliest instant when the next pass can start and is given by

Ptorus(x) = max(Pn+1(x), min
i=1,n

(piΛi(x)))(8)

n-dimensional orthogonal tile sizing problem 11

In a single pass, the execution time of a pass is given by

Tpass(x) = Pn+1(x) +

n
∑

i=1

(pi − 1)Λi(x)(9)

The entire program is executed in
∏n

i=1
Mi

pi

passes through the torus, and hence the

last pass can only start at
(

∏n

i=1
Mi

pi
− 1
)

Ptorus(x). Thus, the total running time is

given by

T (x)=

(

n
∏

i=1

Mi

pi

−1

)

Ptorus(x)+Tpass(x)=

(

1

P

n
∏

i=1

mi

xi

−1

)

Ptorus(x)+Tpass(x)(10)

Let us set p̃k = pk−1 and let us assume for the sake of simplicity that min
i=1,n

(piΛi) = p1Λ1.

Our problem reduces therefore to the following minimization problem.

min T (x)=

T1(x)=
Pt(x)

P

n+1
∏

i=1

mi

xi

+

n
∑

i=1

p̃iΛi(x) if Pn+1(x) ≥ p1Λ1(x)

T2(x)=

(

m1

x1

n
∏

i=2

mi

xipi

−1

)

Λ1(x)+

n
∑

i=2

p̃iΛi(x)+Pn+1(x) otherwise

(11)

where xi are integers and x ∈ X given by (2).

3 Solution of the optimization problem

3.1 Basic properties of the objective function

We saw in the previous section that minimizing the total execution time for Eqn (1) is
equivalent to finding the minimum of a non-linear objective function (11) in the paral-
lelepiped (2). This domain is divided by the non-linear constraint Pn+1(x) = p1Λ1(x)
into two regions. Similar to the two(and three)-dimensional case [4, 5] it is easy to ar-
gue that region Pn+1(x) < p1Λ1(x) is not an interesting one and our problem reduces
to minimizing T1(x) in the region Pn+1(x) ≥ p1Λ1(x). Substituting and simplifying in
(11), we obtain

min T (x) =
n+1
∏

i=1

mi

xi

(

2nβ

P
+

τav(x)

P

)

+
n
∑

k=1

p̃k

(

nβ + τt

v(x)

xk

+ τav(x)

)

(12)

subject to x ∈ X
⋂

Zn+1
+ , where by Zn+1 we denote the integer points in Rn+1, and

p1

(

nβ + τt

v(x)

x1
+ τav(x)

)

≤
mn+1

xn+1
(2nβ + τav(x))(13)

12 Rumen Andonov, Nicola Yanev

Consider the set of n + 1 edges of the parallelepiped X defined as follows

Ek =

x ∈ X :

n+1
⋂

i=1

i6=k

(xi = ui)

, k = 1, 2, . . . , n + 1(14)

It is convenient to denote by W the volume of the iteration space, i.e. W =
∏n+1

i=1 mi.
The following lemma describes the behavior of the objective function T (x) for a fixed
tile volume.

Lemma 3.1 For any fixed feasible volume v (i.e. v(x) = v), where v ∈ [1,
∏n+1

i=1 ui],
T (x) is an increasing function with respect to xn+1 and reaches its minimum for xn+1 =
max(1, v/

∏n

i=1 ui) which is equivalent to saying that the solution of problem (12–13) lies
either on the facet xn+1 = 1 or on the edge En+1 of the parallelepiped X.

This lemma is a natural extension of the two(and three)-dimensional cases and it
reduces the dimension of the solution space for problem (12–13). The objective function
in this case has the form, T (u1, u2, . . . , un, xn+1) = A

xn+1
+Bxn+1+C, for some constants

A, B, C and its minimum on the edge En+1 is given by

x∗
n+1 =

√

A/B =

√

2nβW

P
∏n

i=1 u2
i (
∑n

k=1 p̃k(τt/uk + τa))
(15)

3.2 Exploration of facet xn+1 = 1 of the parallelepiped solution

space

Now we are looking for a solution when the minimum lies on the facet xn+1 = 1. We
consider the space Rn

+ but for the sake of simplicity we keep the same notation (x) for
the points and we denote by T the restriction of the objective function T when xn+1 = 1.
We have to solve the problem

min T (x) =
W

v(x)

(

2nβ

P
+

τav(x)

P

)

+

n
∑

k=1

p̃k

(

nβ + τt

v(x)

xk

+ τav(x)

)

(16)

subject to x ∈
{

X
⋂

{xn+1 = 1}
⋂

Zn+1
+

}

, and

p1

(

nβ + τt

v(x)

x1
+ τav(x)

)

≤ mn+1 (2nβ + τav(x))(17)

Our strategy will be the following: in this section we will find the global minimum
of the function (16) in Rn

+, and in the following section we discuss how to project in a
convenient way this minimum in the feasible domain of the problem (16)–(17).

Let us set P̃ =

n
∏

i=1

p̃i. The properties of the objective function T (x) are given by the

following theorem.

n-dimensional orthogonal tile sizing problem 13

Theorem 3.2 For the function T (x) over the domain Rn
+ = {x : xi > 0, i = 1, . . . , n}

holds:

(i) The tile volume v̂ which minimizes T (x), belongs to the interval [µ, ν] where

µ =

√

2nβW

(n − 1)τtP
n
√

P̃ + Pτa

∑n
k=1 p̃k

and ν =

√

√

√

√

−2nβW + (n − 1)τtP
n
√

P̃

−Pτa

∑n

k=1 p̃k

(18)

(ii) The global minimum of T (x) is attained at the point x̃ with components

x̃i = p̃i
n

√

v̂

P̃
(19)

Proof. It is convenient to partition the points of Rn
+ into classes

Hv = {x ∈ Rn
+ :

n
∏

i=1

xi = v}. Then from Rn
+ =

⋃

v

Hv we have

min
Rn

+

T (x) = min
v

min
Hv

T (x)(20)

Let us set A = 2nβW
P

, B = τa

n
∑

i=1

p̃i and g(v) = A
v

+ Bv. T (x) can be represented as

T (x) = g(v) + τt

n
∑

k=1

p̃k

v

xk

+ const = g(v) + vτt

n
∑

k=1

yk + const(21)

where we set yk = p̃k

xk

and const = τaW
P

+ nβ

n
∑

k=1

p̃k. Using the inequality

n
∑

k=1

yk ≥ n n

√

√

√

√

n
∏

k=1

p̃k

xk

= n
n

√

P̃

v
(22)

and setting C = τt

n
√

P̃ and f(v) = A
v

+ Bv + nCv1− 1
n , we obtain

T (x) ≥
A

v
+ Bv + nCv1− 1

n + const = f(v) + const(23)

Hence, for a fixed v the minimum of T (x) is achieved when y1 = y2 = . . . = yn in which
case (22) is reduced to equality. Hence, we have argmin

Hv

T (x) = xv, where xv is the

intersection point of the hyperbola

n
∏

k=1

xk = v(24)

14 Rumen Andonov, Nicola Yanev

with the line
p1 − 1

x1
=

p2 − 1

x2
= . . . =

pn − 1

xn

(25)

From (24) and (25), for any i, 1 ≤ i ≤ n, we obtain the equality
(

p̃i

xi

)n

= P̃
v

which

gives the solution (19) for the optimal tile volume v̂. Therefore, (20) is reduced to

min
Rn

+

T (x) = min
v>0

f(v) + const(26)

The function f(v) is in fact, the function T (x) along the optimal line (25) and is
suitably expressed in terms of the tile volume v. The minimal value of f(v) can be
find through the equation f ′(v) = 0 whose positive zero is bounded from above and
from below by the roots of the polynomials h(v) and r(v) defined below. We have

f ′(v) = − A
v2 + B + (n − 1)Cv−

1
n and

h(v) = −
A

v2
+ B + (n − 1)

C

v2
≤ f ′(v) ≤ −

A

v2
+ B + (n − 1)C = r(v).

Since r(v) = 0 ⇔ v =
√

A
B+(n−1)C and h(v) = 0 ⇔ v =

√

−A+(n−1)C
−B

we obtain for the

bounds

µ =

√

A

B + (n − 1)C
≤ v ≤

√

−A + (n − 1)C

−B
= ν(27)

More precised bounds can be obtained but our observation is that the upper bound ν
gives sufficiently good approximation in practice and we use it because of its simplicity.
�

Example 1
Let us take the nested loop: n = 4, m1 = 200, m2 = 700, m3 = 100, m4 = 150, m5 =

500 and suppose we have 1050 PE configured in a grid where p1 = 5, p2 = 2, p3 = 7, p4 =
15. For the architectural parameters values we use β = 60, τa = 1, τt = 0.01 µsec which
we have from our experiments on the Intel Paragon [3]. Substituting in (23) we obtain
a = 135538.8711, b = 135873.2441. Solving numerically f ′(v) = 0 gives the exact value
for the optimal volume v̂ = 135856 and the root of s(v) provides the value 135873.2416.
We observe the exact value is significantly closer to its upper bounds and also the gap
between the roots of the polynoms s(v) and h(v) is really insignificant. This behavior has
been confirmed in all our experiments. Furthermore, applying the formula (19) we obtain
the point of global minimum x̃1 = 17.9368, x̃2 = 4.4829, x̃3 = 26.8978, x̃4 = 62.7614 using
135856 for value of v̂ and the point x̃1 = 17.9368, x̃2 = 4.4829, x̃3 = 26.8978, x̃4 = 62.7614
using 135873.2441 for v̂.

3.3 The projection of the global minimum over the parallelepiped

domain

In this section we suppose the optimal tile volume v̂ and the point of the global minimum
x̃ are found by theorem 3.2. For the lake of space we do not present here the proof that

n-dimensional orthogonal tile sizing problem 15

the non-linear constraint (17) is non-active, whenever (mn+1 − p1)τa/(p1τt) > 1, which
is true for the majority of the contemporary parallel machines. The goal in this section
is to find the point which minimizes the total time (16) in the parallelepiped X . As
shown in theorem 3.2 the global minimum point x̃ lies on the intersection of the optimal
tile volume hyperbola (24) with the line (25). If this intersection is not in the feasible
domain, we need to “project” this point in the parallelepiped X . Our strategy will be
to keep as close as possible to the optimal tile volume hyperbola (24). This is justified
by the observation that the volume participates in the dominant term in the objective
function (16) and small movements from the optimal tile volume may seriously degrade
the optimal function value. Our strategy leads to the problem

Minimize

{

n
∑

k=1

(xk − x̃k)2 :

n
∏

k=1

xk = v̂,x ∈ X
⋂

{xn+1 = 1}

}

(28)

If v̂ >
∏n

k=1 uk then we set xk = uk, k = 1, . . . , n.

Lemma 3.3 Let 1 ≤ v̂ ≤
∏n

k=1 uk. The set ∆ = {x ∈ Rn
+ : 1 ≤ xk ≤ uk,

n
⋂

k=1

xk = v̂}

is non-empty.

Proof. Let us suppose the variables xi are indexed by the following order of the
upper bounds u0 = 1 < u1 ≤ u2 ≤ u3 ≤ . . . ≤ un. Let us consider the products
u0u1, u0u1u2, . . .

∏n

i=0 ui. Our assumption implies that, for some k, the following rela-

tionship
∏k−1

i=0 ui ≤ v̂ ≤
∏k

i=0 ui holds. If v̂ < u1 then x = (v̂, 1, 1, . . . , 1) ∈ ∆, else the
point

xi =

ui i = 1, . . . , k − 1

v̂
∏

k−1

l=0
ul

i = k

1 i = k + 1, . . . , n

(29)

belongs to the domain ∆. �

This lemma suggests the following algorithm of O(n log n) complexity for approxi-
mately solving problem (28).

16 Rumen Andonov, Nicola Yanev

Algorithm 1 (An algorithm of O(n log n) complexity)

input : The global solution x̃ given by (19)
output : solution x of the problem (28)
begin

N := {1, 2, . . . , n} ;
L := {i : x̃i < 1} ;
U := {i : x̃i > ui} ;

ri :=

x̃i i ∈ N\
(

L
⋃

U
)

1 i ∈ L
ui i ∈ U

assume ri are ordered (and re-indexed if necessary) s.t. r1 ≤ r2 ≤ . . . ≤ un.

If ∃k s.t.
∏k−1

i=1 ri ≤ v̂ ≤
∏k

i=1 ri then
stop (output xi := ri, i < k, xk := v̂

∏

k−1

l=1
rl

, xi := 1, i > k)

else order the set N\U s.t. ui − ri ≥ ui+1 − ri+1.
for i = 1 to |N\U | do
ri := ui

if
∏n

j=1 rj ≥ v̂ then stop (output xj = rj , j 6= i, xi := v̂
∏

n

l=1

l 6=i

xl

)

endfor
end

Example 1 – continuation
Let us apply the algorithm 1 to the considered example. In the previous section

we obtained that the point of the global minimum is x̃1 = 17.9368, x̃2 = 4.4842, x̃3 =
26.9052, x̃4 = 62.7788 with optimal volume v̂ = 135856. The upper bounds ui = mi/pi

are u1 = 40, u2 = 350, u3 = 14, u4 = 10. We use therefore for initial approximation
of our solution the point x1 = 17.9368, x2 = 4.4842, x3 = 14, x4 = 10 which lies in the
domain but not on the optimal volume hyperbola. Since

∏4
j=1 xj = 11260.5 < v̂ we

need to increase the values of some variables. According to the above discussion the best
candidate is x2 since u2 − x2 reaches the maximum between the gaps ui − xi and this
variable should take the value v̂

x1x2x3
= 54.10. In this way the proposed algorithm yields

the point x1 = 17.9368, x2 = 54.10, x3 = 14, x4 = 10 which lies on the intersection of the
domain with the optimal volume hyperbola.

3.4 Toward an integer solution

In the previous section we obtain a real values point lying on the intersection of the
domain with the optimal volume hyperbola. When this intersection is empty we take the

n-dimensional orthogonal tile sizing problem 17

point xk = uk, for ∀k ∈ N . In this section we discuss how to minimize the error due to
the integer rounding at the very last step. More precisely the problem is as follows.

Assuming a solution x of the problem (28) is known, find an integer point solving
the problem

Minimize

{

|

n
∏

k=1

xk − v̂| :

n
∏

k=1

xk = v̂, x ∈ X
⋂

{xn+1 = 1}, xi ∈ Z

}

(30)

For solving this problem we propose the algorithm 2 which is a heuristic algorithm
with linear complexity.

Example 2
Let suppose we know that the solution x for a nested loop with data n = 4, u1 =

40, u2 = 350, u3 = 14, u4 = 10 is x1 = 2.77, x2 = 350, x3 = 14, x4 = 10. The volume

for this tile is V̂ =
∏4

i=1 xi = 135730. However, after moving to the closest integer
point x̂′ = (3, 350, 14, 10) the tile volume gets the value 147000 and the gap is 11270.
Following the algorithm (2) we have to update the second component of this point. Since
⌈

v̂−
∏

n

k=1
x̂′

k
∏

n

k=1

k 6=i∗

x̂′
k

⌉

= −26 we can get closer to the optimal volume hyperbola by moving from

point x̂′ to point x̂ = (3, 324, 14, 10) which has tile volume equal to 136080 with gap only
350.

Algorithm 2 (An algorithm of O(n) complexity)

input : solution x of the problem (28)
output : solution x̂ of the problem (30)
begin

NZ := {i : xi 6= 0 (mod 1)}
x̂i := xi, i ∈ N\NZ
x̂i := ⌈xi⌉, i ∈ NZ
find i∗ s.t. x̂i∗ = max

i∈N
{x̂i}

x̂i∗ := x̂i∗ +

⌈

v̂−
∏

n

k=1
x̂k

∏

n

k=1

k 6=i∗

x̂k

⌉

end

4 Experimental results, discussions and illustrations

In this section, we present few results from our computational experiments on the In-
tel Paragon at IRISA1 performed in the case of 3-dimensional iteration space. The
Paragon’s processing nodes are arranged in a two-dimensional rectangular grid (56 Intel

1Campus de Beaulieu, 35042 Rennes Cedex, France

18 Rumen Andonov, Nicola Yanev

Figure 1: Plots of time vs tile size when the optimal solution needs several passes. The
considered instance is m1 = 30000, m2 = 2000, m3 = 20, p1 = 5, p2 = 4

i860 processors). Each node contains a message processor acting in parallel with the
application processor, and access to memory by DMA.

To validate the theoretical results, we created special purpose parallel code which
models recurrence (1). First of all, we designed a series of experiments to precisely
measure the constants β, τt and τa. We obtained β = 90µsec, τt = 0.011µsec per byte
and τa = 0.51µsec. Let us point that the purpose of this section is only to illustrate the
peculiarities of the model in the considered (three-dimensional) case. Questions related
to the way we measure these constants, some aspects of the impact of the cache on the
precision of the results, comparisons with other models . . ., are discussed in details in
our experimentally oriented paper [3] which concerns the two-dimensional case.

Next, we performed experiments to validate the value of the optimal tile size. We
show a series of such experiments in Fig. 1 which illustrates the case when the minimum
lies on the plane x3 = 1 . We consider an asymmetric domain m1 = 30000, m2 =
2000, m3 = 20. Fig. 1 (a) illustrates how faster the running time increases by moving
away from the facet where the minimum is situated. On Fig. 1 (b) and Fig. 1 (c) (which
is a magnified part of 1 (b)) we compare the theoretical with the experimental values on
the edge E1 = {(x1, x2, x3) : 1 ≤ x1 ≤ m1/p1, x2 = m2/p2, x3 = 1}. In all these cases2

we observe that the theoretical predictions matched the experimental results very closely.
The minimum is attained in the point xopt

1 = 142, xopt
2 = 500, xopt

3 = 1. The optimal tile
size requires 42 passes along the edge E1 in order to compute the whole iteration space of
size [30000, 2000, 20]. We observe for this instance a gain of 10 sec. provided by multiple
passes strategy versus the optimal one pass strategy requiring 40 sec. running time (Fig.
1 (a)). The good agreement between the theoretical and experimental time especially in
this case is a good criterium both for our theoretical model and for our parallel code.
When multiples passes are required, the last processor can produce the result before the
first one is ready to accept it, hence a message buffering is needed. A deadlock could
appear (when all the processors buffers are full) if the communications are not correctly
synchronized between the processors on the border of the torus. This synchronization
can be avoided by using a threads (light processes) to ensure a communications between
boundary processors. Although, this strategy may seem complicated, our results shows
that it is worth providing it. This is especially true when assymetric iteration domains
are treated and some restrictive factors could impose fixing of a particular direction of

2more experiments are presented in [3, 5]

n-dimensional orthogonal tile sizing problem 19

projection, which could be not the most convenient.

5 Conclusion

We have addressed the problem of the optimal tile size in the case of n + 1-dimensional
perfect nested loop nest with constant loop bounds [6] and uniform recurrences with non-
negative components of the dependency matrix. In the most general case of this particular
class and we derive an O(n log n) algorithm for finding an approximate solution. We also
reveal new and useful relationships between the objective function and the optimal tile
volume. Although, that from mathematical view this is an approximate algorithm, the
loss of precision is so insignificant that the results can be considered as exact in the
context of the considered application. The validity of the proposed approach has been
confirmed by our experimentation for the 3-dimensional case on the Intel Paragon.

Although the considered class may seem very restrictive, similar assumptions are
often made by most researchers treating the problem. For example, the Fortran 90 and
Paradigm compiler automatically determine the block size for coarse grain pipelined
loops [17, 11], assuming that the iteration space is rectangular. Moreover, regardless
of the fact that they treat arbitrarily nested loops, it is only the two innermost loops
that are tiled. Our approach guarantees exploration of the entire solution domain in
the n + 1-dimensional space and for any size of the parallelepiped iteration space and
for any torus configuration this ensures choosing the optimal task granularity. Such
global search could provide better solutions, especially when the iteration space is very
assymetric which is often the case in dynamic programming algorithms. Let us also
mention here the algorithm developed by Wolf and Lam [2, 24] for applying unimodular
transformations which leave the original loop nests (even with negative dependencies)
in a canonical form consisting of a nest of fully permutable loop nests. What prevents
us from a direct application of the described here solution is that the iteration space
could be not any more a rectangular parallelepiped. It would be interesting to see how
our result could be integrated in such “normalizing” algorithms which is automatically
a subject of our ongoing research.

REF ER ENCES

[1] C. Ancourt, F. Irigoin. Scanning polyhedra with DO loops. In: Third Symposium on
Principles and Practice of Parallel Programming (PPoPP). ACM SIGPLAN, ACM Press,
1991, 39-50.

[2] J. Anderson, M. Lam. Global optimisation for parallelism and locality on scalable par-
allel machines. ACM Sigplan Notices 28, 6 (1993), 112-125.

[3] R. Andonov, H. Bourzoufi, S. Rajopadhye. Two-dimensional orthogonal tiling: from
theory to practice. In: International Conference on High Performance Computing (HiPC).
India, IEEE Computer Society Press, 1996, 225-231.

[4] R. Andonov, S. Rajopadhye. Optimal orthogonal tiling of 2-D iterations. Journal of
Parallel and Distributed Computing 45 (1997), 159-165.

[5] R. Andonov, N. Yanev, H. Bourzoufi. Three-dimensional orthogonal tile sizing prob-
lem: mathematical programming approach. In: International Conf. on Application Spe-
cific Systems, Architectures and Processors ASAP’97, Zurich, Switzerland (eds. L. Thiele,
J. Fortes, K. Visser, V. Taylor, T. Noll, J. Teich) IEEE, 1997, 209-218.

20 Rumen Andonov, Nicola Yanev

[6] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
1988.

[7] F. Bitz, H. T. Kung. Path planning on the WARP computer: using a linear systolic
array in dynamic programming. Int. J. Computer Math. 25 (1988) 173-188.

[8] P. Boulet, A. Darte, T. Risset, Y. Robert. (Pen)-Ultimate Tiling? INTEGRATION,
the VLSI journal 17 (1944), 33-51.

[9] J. J. Choi, J. Dongarra, D. W. Walker. PUMMA: parallel universal matrix multipli-
cation algorithms on distributed memory concurrent computers. Concurrency: Practice
and Experience 6, 7 (1994), 543-570.

[10] A. L. Darte, Y. Robert. Affine-by-statement scheduling of uniform and affine loop
nests over parametric domains. Journal of Parallel and Distributed Computing 29 (1995),
43-59.

[11] S. Hiranandani, K. Kennedy, C. Tseng. Evaluating compiler optimizations for Fortran
D. Journal of Parallel and Distributed Computing 21 (1994), 27-45.

[12] F. Irigoin, R. Triolet. Supernode partitioning. In: 15th ACM Symposium on Principles
of Programming Languages, ACM, Jan 1988, 319-328.

[13] R. M. Karp, R. E. Miller, S. Winograd. The organization of computations for uniform
recurrence equations. JACM 14, 3 (1967), 563-590.

[14] C-T. King, W-H. Chou, L. Ni. Pipelined data-parallel algorithms: Part II – Design.
IEEE Transactions on Parallel and Distributed Systems 1, 4 (1990), 486-499.

[15] S. Miguet, Y. Robert. Path planning on a ring of processors. Intern. J. Computer Math.
32 (1990), 61-74.

[16] D. I. Moldovan, J. A. B. Fortes. Partitioning and mapping algorithms into fixed size
systolic arrays. IEEE Transaction on Computers C-35, 1 (1986), 1-12.

[17] D. Palermo, E. Su, A. Chandy, P. Banerjee. Communication optimizations used
in the PARADIGM compiler for distributed-memory multicomputers. In: International
Conference on Parallel Processing, St. Charles, IL, August 1994.

[18] P. Quinton, Y. Robert. Algorithmes et architectures systoliques. Masson, 1989. (Eng-
lish translation by Prentice Hall, Systolic Algorithms and Architectures, Sept. 1991).

[19] S. V. Rajopadhye, R. M. Fujimoto. Synthesizing systolic arrays from recurrence equa-
tions. Parallel Computing 14 (1990), 163-189.

[20] J. Ramanujam, P. Sadayappan. Tiling multidimensional iteration spaces for non shared-
memory machines. In: Supercomputing 91, 1991, 111-120.

[21] R. Schreiber, J. Dongarra. Automatic Blocking of Nested Loops. Technical Report 38,
RIACS, NASA Ames Research Center, Aug 1990.

[22] V. Van Dongen. Loop parallelization on distributed memory machines: problem state-
ment. In: Proceedings of EPPP, 1993.

[23] M. S. Waterman. Mathematical Methods for DNA Sequences. CRC Press, Inc. Boca
Raton, Florida, 1989.

[24] M. Wolf, M. S. Lam. A Loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems 2, 4 (1991), 452-471.

[25] M. Wolfe. Iteration space tiling for memory hierarchies. In: Parallel Processing for
Scientific Computing (SIAM), 1987, 357-361.

Rumen Andonov
LIMAV, Université de Valenciennes
Le Mont Houy, B.P.311
59304 Valenciennes Cedex
France
e-mail: Rumen.Andonov@univ-valenciennes.fr

Nicola Yanev
University of Sofia
Faculty of Mathematics and

Informatics
5, J. Baucher str., Sofia, Bulgaria

e-mail: choby@math.bas.bg

