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OPERATORS WITH POLYNOMIAL COEFFICIENTS AND
GENERALIZED GELFAND-SHILOV CLASSES

Daniela Calvo, Giuseppe De Donno, Luigi Rodino

ABSTRACT. We study the problem of the global regularity for linear partial

differential operators with polynomial coefficients. In particular for multi-
quasi-elliptic operators we prove global regularity in generalized Gelfand-
Shilov classes. We also provide counterexamples of globally regular operators
which are not multi-quasi-elliptic.

1. Introduction. Aim of this paper is to study the global regularity of the
solutions for partial differential equations with polynomial coefficients in R"

Au=f,

(1) A= 3" awa’ DY, aggeC, D*=(—i)o* .
lal +8]<m

In Nicola-Rodino [21] different sufficient conditions on the symbol

(2) a(*%&) - Z Aap xﬁ ga

laf+[B|<m
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are reviewed, proving global regularity in the Schwartz spaces S(R"), S'(R"),
namely: if u € S'(R") and Au € S(R™), then u € S(R"). In particular, this type
of global regularity is granted assuming Hormander’s property on the polynomial
a(z), z = (z,€) € R*", in (2):

3) 07 a(2)| < Cla(2)| ()71, 2] = R,

for some p with 0 < p < 1, (2) = (1 + ]2\2)%, v € N?" and C, R positive
constants. Relevant classes of polynomial a(z) satisfying (3) are given, with in-
creasing order of generality, by the elliptic, quasi-elliptic, and multi-quasi-elliptic
polynomials, cf. Boggiatto-Buzano-Rodino [1]. On the other hand, for elliptic
and quasi-elliptic symbol a(z), the regularity in the Schwartz spaces of the oper-
ator A in (1), can be improved in terms of Gelfand-Shilov classes, see Cappiello-
Gramchev-Rodino [9, 10]. Main subject of the present paper, in the Section 3,
will be to obtain a similar improvement of regularity for operators with multi-
quasi-elliptic symbols. To this end, we will introduce first a generalization of the
standard Gelfand-Shilov classes and then, following the proceeding in Gramchev-
Pilipovich-Rodino [17] we shall provide in this functional frame a result of regu-
larity for the more general problem of the iterates. In Section 4 we shall produce
an example of operator A in dimension n = 1, of the form

(4) A=D™—29+iz'D" |

which satisfies (3), but which is not multi-quasi-elliptic, see De Donno-Oliaro [13]
for a similar result, in a different contest. Since (3) is verified, the operator (4) is
globally regular in the Schwartz space, whereas the corresponding Gelfand-Shilov
regularity remains an interesting open problem. In fact, we do not know exactly
how relate the parameter p in (3) to Gelfand-Shilov regularity. Instead, in the
next Section 2 we present a short survey on Gevrey and Gelfand-Shilov classes.

2. Definitions and first properties. Let us begin by recalling the defi-
nition of Gevrey classes G*(Q2), 1 < s < 0o, € open subset of R", and Gelfand-
Shilov classes S (R"), with s >0, 7 >0, s+r > 1.

A function f belongs to G*(2) if for every compact subset K CC  we have

sup |09 f (x)] < Cl*H(al)*, Vo e N7,
reK

for a suitable positive constant C' independent of the multi-index a. We then
define G§(2) = G*(2) N C§°(£2). Passing to L%norms in R", this is equivalent
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to say that for f with compact support we have for some C < oo:
05 fl < C1*H (al)*, Vo e N™.

Willing to find a counterpart of the Schwartz space S(R"), we are then led to the
classes of Gelfand-Shilov [15]. Namely, a function f belongs to the Gelfand-Shilov
class S (R"™), if there exists a constant C' < oo such that

(5) o702 1

] < Ol (1) (81, Vo € N*, V3 € N™.

According to [11], this definition is equivalent to the following one, seemingly
weaker than (5). A function f belongs to the Gelfand-Shilov class SZ(R"), if
f € S(R™) and there exists a constant C' < oo such that f satisfies the following
two conditions

(6) (i) ogf|| < ClelF(al)®, Vo e N7,
(i@) |l f| < CPHL(B)”, V6 e N™

The Gevrey classes G*(€2) have been generalized in different ways by several
authors. Here we address in particular to the multi-anisotropic Gevrey classes,
see Bouzar-Chaili [2, 3], Calvo [4], Calvo-Hakobyan [5], Gindikin-Volevich [16],
Zanghirati [23, 24].

In short, we fix a complete polyhedron P C R’}. Let us denote

k(a»fp):inf{t>0:t*1a€73}, a€RY,

and let p be the formal order of P, see the next section 3 for details. We may
introduce the multi-anisotropic class with compact support GS’P(R”), s> 1, of
all the functions f € C§°(R") satisfying for suitable C' < oo

(7) 109 F|| < CloTH 1 (o, PYHH@P) | yo e N

We recapture the standard Gevrey classes G{j(R") when P is the polyhedron
of vertices {0,me;, j = 1,...,n} for some integer m > 1. Another relevant
example is given by the anisotropic Gevrey classes, when P is the polyhedron
of vertices {0, mje;, j =1,...,n} for some integers m; > 1, see [23, 24]. In the
next section 3 we shall present a Gelfand-Shilov version of the multi-anisotropic
Gevrey classes. Namely, taking (7) as a model and fixing a complete polyhedron

1
P in dimension 2n, P C R?", we define S”*(R"), s > 50 38 the subset of S(R™)
of all the functions f satisfying

(®) (B

| < Ok (7, P) 40 P) vy = (a,8) € N2
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for some positive constant C' < co. Main result in the following will be to show the
equivalence of (8) with suitable estimates of type (6), for 25 f(z); let us address
to the next Theorem 1 for a precise statement. We leave to future papers possible
applications to partial differential equations in R™ with polynomial coefficients,
cf. Boggiatto-Buzano-Rodino [1], and a discussion of a generalization of the

definition (8) to the case when s < 37 which presents difficult problems of non-

triviality for the class S*7 (R"). For a different class of multi-anisotropic Gelfand-
Shilov classes, we address to [6]. See also the bibliography in [22], about functions
of Gevrey type, and in [8], about recent applications of Gelfand-Shilov classes to
linear and non-linear partial differential equations.

3. Generalized Gelfand-Shilov classes and main results. To in-
troduce our study of Gelfand-Shilov classes of multi-anisotropic type, we start
by describing complete polyhedra and some related properties. For more prop-
erties and applications to the theory of partial differential equations, we can
refer to [1, 2, 3, 4, 5, 14, 16, 23, 24]. Let P be a convex polyhedron in RY,
then P can be obtained as convex hull of a finite set V(P) C R? of convex-
linearly-independent points, called the vertices of P and uniquely determined by
‘P. Moreover, if P has non-empty interior and the origin belongs to P, there is a
finite set N (P) = No(P) UN1(P), with |v| =1, Vv € Ny(P), such that

P={:cRYv-2>0,Yv e No(P),v-2z<1,YveN(P)},
Ni(P) is the set of the normal vectors to the faces of P.

Definition 1. A complete polyhedron is a convex polyhedron P C Ri such
that the following properties are satisfied

1. V(P) ¢ N9 (i.e. all vertices have non-negative integer coordinates);

2. the origin (0,0,...,0) belongs to P;

3. No(P) ={e1,e2,...,eq}, withe; = (0,...,0,1;_4,0,...,0) € R,
forjg=1,...,d;

4. every v € N1(P) has strictly positive components.

Remark. The condition 4 implies that for every x € P the set Q(z) =
{y € RY0 < y < z} is included in P and if = belongs to a face of P and y > ,
then y ¢ P (where for 2,y € R y < x means that y; < 2;, i = 1,...,d;
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and y < x means y < z, y # x). In the definition of Gelfand-Shilov classes
in the sequel, we shall have d = 2n, i.e. we shall only need to consider P in
even dimension d. Let us now summarize some notations related to a complete
polyhedron P: k(y,P) = inf{t > 0:t 1y € P} = max,en, (pyV Y, VY € R;
i (P) = max,en, (p) l/j_l; p = p(P) = maxj—1__qp; the formal order of P;
p® = O Py = min, cypy\ (o} [y|  the minimum order of P; pM = M (P) =
max.cy(py [y]  the maximum order of P. Finally, we define the weight function
associated to P:

(9) lp ::( ) \w)%, ve e R

veV(P)

It is a weight function according to the definition of Liess-Rodino [18]. The defi-
nition of the previous quantities is clarified by the following result (for the proof
we refer to [4]).

Proposition 1. Let P be a complete polyhedron in R with vertices v' =

(0, ...,0h), forl=1,...,N(P). Then

1. for every j = 1,2,...,d, there is a vertex v“ of P such that vY = Uj-jej,

l.
v?

;= max,epy; = m;(P);

2. the boundary of P has at least one vertex lying outside the coordinate axes
if the formal order pu(P) is greater than the mazimum order ™M (P);

3. if v belongs to P, then |{7| < Zl]i(lp) \{”l\, Ve € RY, where €7 = H?Zl f}j
and N(P) is the number of vertices of P, including the origin;

4. 7"3( 777) , for any v € N9, belongs to the boundary of P, and therefore v =
", |
k(y, P) 2 Al N >0, 0 = 1,...,m, YO N =1, where o

are the vertices of the face of P where

|m

lies;

5
k(v,P)

5. For all ¢ € R?, saying N(P) the number of vertices of P, the following in-

equality is satisfied N (P13, oy, [€77] < [€fp < 2NP-D 37 )0 1€9],
forany j=1,2,....

Proposition 2. For any complete polyhedron P and any s € Ri, k(v,P) is
bounded as follows:
|

1]
— <k(v,P) < —.
Iu(l) M(O)
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To clarify our treatment, we give now some examples of complete polyhedra (for
more details cf. [4]).

1. Consider the complete polyhedron of vertices {0,me;, 7 =1,...,d}. The
set N1(P) is reduced to the point v = m~1 Z?Zl ej, and m;(P) = p;(P) =
pO(P) = uM(P) = w(P) =m, for all j =1,...,d.

2. Consider the complete polyhedron P with vertices {0,mje;, j =1,...,d},
where m; = m;(P) are fixed integers. The set Ni(P) is reduced to a
point v = Z;l:1 mj_lej; then u;(P) = my, for all j = 1,...,d, uO(P) =
minj—y . gm;, p(P) = pM(P) = max;—1,. qm;. It is the anisotropic case.

3. If P C R? is the polyhedron of vertices V(P) = {(0,0), (0,3), (1,2),(2,0)},

11 11
then P is complete and N7 (P) = {Vl = (5, §> , Vg = (5, Z) } We have
m1(P) = pO(P) = 2, my(P) = m(P) = uM(P) =3, u(P) = 4. We ob-
serve that in this case the formal order p(P) is bigger than the maximum
order and P has a vertex lying outside the coordinate axes (cf. Proposi-

tion 1).

Basing on the definition of complete polyhedra, we now introduce the multi-
anisotropic version of the standard Gelfand-Shilov classes [15], cf. the Introduc-
tion.

Definition 2. Let P be a complete polyhedron in R*". We say that a fun-
1
ction f belongs to the Gelfand-Shilov class ST*(R"), for s > 3 if there is a

constants C < oo such that

(10) (B

| < P E (3, PYI*OP) vy = (0, ) € N2,

We may note that polyhedra P and P’, which are similar in the sense of the
Euclidean geometry, define the same class S7»*(R"), since denoting u and '
the respective formal orders we have uk (v,P) = p'k (v, P’). As first example,
consider the polyhedron of vertices {0,me;, j = 1,...,2n}. By similarity, we
may limit ourselves to the case m = 1. Since then p = p(© = 41 = 1, in view
of Proposition 2 we have k (v, P) = ||, so that (10) reads

(ER

’ < chlH1 |yl
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From (5) and standard factorial estimates we obtain then for such P:

1
ST (R") = S5 (R™), s> 5
Before analysing other examples, it will be convenient to have equivalent defini-
tions of S (R™). Let us introduce, for p € N:

(11) o= Y |lefors
where vy € pP means that p~'y € P, i.e. k(v,P) < p, and morever

y=(,3) €pP
(12) D DR S

7=(a,8) €pV(P)
where v € pV(P) means that v = pv! for some vertex v*, [ = 1,...,N(P). Our
main result is the following.

Theorem 1. For any f € S(R"), the following conditions are equivalent:
i) f belongs to ST+* (R™).
1) There exists a constant C' < oo such that

(13) |fl, < CPri(ph™, VpeN.

iii) There exists a constant C < oo such that

(14) |fl; <P (pH)™, VpeN.

In the proof we shall use the following lemma.

Lemma 1. There exists a constant C' < oo, depending on P, such that for
every p € N and every v = (a, 3) € pP we have

(15) [z | < et (sl + @ E 011

Proof. Of Theorem 1. First, observe that i) is equivalent to ii). In fact, if
i) is satisfied, i.e. the estimates (10) are satisfied, for v = («,3) € pP, i.e.
k(v,P) < p, then we have

e

’ < C|’Y|+1k (,y’p)sl‘k(%’])) < C|’y|+1ps,up‘
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On the other hand |y| < pMk (v, P) < uMp by Proposition 2, and by standard
factorial estimates we obtain for a new constant C' < oo:

o2 s

| <y,

By observing that the number of the terms in the sum in (11) can be estimated
by CP for a constant C' < oo, we obtain ii). To prove ii) = i), given v = («, [3),
take the integer p such that p—1 < k (v,P) < p. Then v € pP and from (13) we
have

s

< Cf+1 (p . 1)sp(p71) < C%H_lk (777))3;#6(7,77)

<oy < opt (-1

for a constant C independent of p. Hence i) is satisfied. Let us now prove that
ii) is equivalent to iii). That ii) = iii) is obvious, since V(P) C P. Assume that
iii) is satisfied. Given v € pP, we apply (15) in Lemma 1. Combining with (14),
we have for a new constant C':

aoa2 £ < e (™ + w05 111)

. Summing up in (11) for v € pP,

N —

At this moment we use the assumption s >

we obtain ii). Theorem 1 is proved.

O The proof of Lemma 1 is omitted for brevity. A corresponding result in the
case of standard Gelfand-Shilov semi-norms is in [7], Lemma 2.2; see also [17],
Proposition 4.1. The proof of Lemma 1 follows the lines of [7], by using 3, 4, 5 in
the preceding Proposition 1. Since the number of the vertices in V(P) is finite,
from iii) in Theorem 1 we may obtain for the classes S™** (R") the following
counterpart of the result of [11] for standard Gelfand-Shilov classes.

Corollary 1. We have f € S7* (R"), s >

=Y if and only if there exists a

constant C < oo such that
b0t . PP gper L gpon || < CPTL(pl)*, Wpe N,

for every vertex v = (a1, ...,0n,f1,...,0n) € V(P), v # 0. As before, pu denotes
the formal order of P.

As a first example, consider the polyhedron P with vertices

{0, mi€el,y ..., Mp€n, Mlen—i-l; Ce ,Mnegn}



Generalized Gelfand-Shilov classes 15

in R?". The formal order is g = max{my,...,m,, My,..., M,}. By Corollary
1, and after easy computations, we have that the function f belongs to the

corresponding spaces S7* (R") if and only if for every j =1,...,n:
i

(16) 182 fIl < CPTHpH™, WpEN,
sp

(17) [e2r| <y, wpen.

We then recapture the anisotropic classes of Gelfand-Shilov [15]. In particular,

under the assumptions s,r € Q,r > s > 2 we obtain the classes S? (R") defined

in (5), by taking my = --- =m, = m, My = --- = M, = M, with m and M
e r m

positive integers such that — = i In the case when P has at least one vertex

s
lying outside the coordinate axes, estimates (16) and (17) are not sufficient to
characterize the class S¥* (R™). For example, consider as before the polyhedron
of vertices V(P) = {(0,0),(0,3),(1,2),(2,0)}, with formal order y = 4. From

1
Corollary 1 we have that the corresponding space S7»*(R), s > 5 is defined by

the estimates

IfP) < cPipn®, vpeN,

4s

|z f]l < CPT(p!)s  VpeN,
to which we add the further condition
|z fP)|| < CPHi(p!)*s,  Vpe N.

Let us now present our result of regularity for operators with polynomial coeffi-
cients. We write the symbol in the form

a(z)= Y ay2", z=(z,6) eR™, yeN™
[v]<m

Consider the Newton Polyhedron P of a(z), i.e. the convex hull of QJ{0} with

Q={yeN",  a,#0}.
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Definition 3. We say that a(z) is multi-quasi-elliptic if the corresponding
Newton Polyhedron is complete, cf. Definition 1, and if

l2lp < Cla(2)] |2 = R,
where |z|p is defined as in (9), with C and R positive constants.

Multi-quasi-elliptic polynomials satisfy the Hormander’s estimates (3), see Bog-
giatto-Buzano-Rodino [1].

Theorem 2. Let a(z) be multi-quasi-elliptic, z = (x,£) € R?*", and write

A for the corresponding partial differential operator with polynomial coefficients

1
in R?™. Let P be its complete Newton polyhedron and let ST-*(R™),s > 3

the generalized Gelfand-Shilov-classes as in Definition 2. Then u € S'(R"),
Au € SP3(R™) imply u € STS(R"). In particular all the solutions u € S'(R™)
of Au =0 belong to SP’%(R”).

Theorem 2 will be a consequence of the following more general result, concerning
the so-called problem of the iterates.

Theorem 3. Let a(z), A, P, ST*(R"),s >
be u = pu(P) the formal order of P. Then u € S

positive constant C, we have

be as in Theorem 2, and let
(R™) if and only if for some

1
27
P,s
(18) |APul| < CPTH(p1)**,  Vp € N.
In fact, if Au = f, where f € S7*(R") then

[APul| = AP~ | < CPHY £, < CPH (p 1),

in view of Theorem 1, i), hence (18) is satisfied. Therefore Theorem 3 implies
Theorem 2. In turn, to prove Theorem 3 we use the following two propositions.
For P as before, we define ||} as in (12), and k(v,P), v = (, ) € N?7 as in
Definition 1 and sequel.

Lemma 2. There exist a positive constant C' such that for any given p € N,
for every v = (o, ) € N?™ with p < k = k(y,P) <p+ 1, and for every e > 0:

k7
(19) 2 DPul| < e|ul’ iy + CP ¢~ whiok ul?, + CF KR% ull.
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The proof is omitted for brevity. The counterpart of (19) in the elliptic case is
proved in Calvo-Rodino [7], Proposition 2.1.

Lemma 3. Let A be an operator with multi-quasi-elliptic symbol. Then there
exists a positive constant C such that for every v € S(R™)

(20) Yol Dol < () Av]| + Jlol)).
v=(0,m) €V(P)

For the proof we address to Boggiatto-Buzano-Rodino [1].

Proof of, Theorem 3. We shall limit ourselves to a sketch of the proof.
Note first that, if u € S7+*(R™), then the estimates (18) are obviously satisfied,
since as before we apply Theorem 1, ii). In the opposite direction, let us assume
formulas (18) and prove that u € S¥**(R"). In view of Theorem 1, 4ii), it will
be sufficient to check the boundedness of the sequence

op(u, A) = (p)! AP |ul,, p=0,1,...
for X sufficiently large. The basic step is to prove the recurrence estimate
Tpr1(u, A) < [(pp+1) - (pput )] op(Au, A) + 0p(u, A) +0p-1(u, A) + 00 (u, A).

This is obtained by applying to each term x°DJu, v = (a, 3) € (p + 1) V(P), the
estimates in Lemma 3. Namely, we take (v,d) € pV(P) so that (o — 7,0 —9) €
V(P), and then apply (20) to v = 2° DJu, with § = 3-8, n = a—v. We now write
Av = 29 DY Au+ [A, 2% D?]u and estimate finally the terms in the commutators
by Lemma 2. At this moment the proceeding is the same as in Calvo-Rodino [7]
and Gramchev-Pilipovic-Rodino [17], so we omit further details. [

4. A hypoelliptic polynomial, which is not multi-quasi-elliptic.
This section regards with the global regularity in Schwartz space for the operator,
in dimension n = 1,

(21) A=D"™—29+iz"'D",
where m,q,r,t e N,m>1,1<qg<m,1<r+t<m.
Let
(22) a(z,§) =™ —al+ia'¢", (z,€) € R?,

be the symbol associated to the differential operator A with polynomial coeffi-
cients, in (21). In order to check the Hormander’s conditions (3) for the symbol
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in (22), we consider the following equivalent conditions listed by Hérmander in
[19]:
[02a(2)]

1) Ve >0,
) V>0 T )]

<e z=(1,6) R, |z| > R, Vy € N*" R = R(e) >

2) 107 a(2)| < Cla(2)| (z)=?11, |2] > R, for some p, 0 < p<1, C >0, R > 0.
In order to obtain the condition 1), Hormander showed in [19, 20] that it suffices
to consider only the first order derivatives of the symbol a; see also an alternative

proof in De Donno [12]. Then, in the case of the symbol a(z,£) in (22), the
property 1) is equivalent to the conditions:

jag(z, &) jaz(x, )|
ja(z, &) ja(, &)
Now, we shall prove the global regularity in Schwartz space of the operator (21)

by proving the two conditions in (23) . The conditions ¢) and i) in (23) will be
studied separately in the following three regions of the plane II, ¢ of axes x,§:

(23) i) <e, 24+ >R

<e and i)

D) clz|? <[]§]™ < Clal?,
1) ¢" = Clal?,
1) (g™ < clzff,

1
where C' > 2 and ¢ < 3 Let us limit attention, for simplicity, to the cases = > 0,

and & > 0.
We start to prove the condition i) in (23) regarding the first derivative with
respect to &:

|a§($7§)’2 _ m2e2(m=1) 4 p2,.2t¢2(r=1)
]a(x,§)|2 (&m — xQ)Q + p2tg2r

) — ?

By using the inequality (€7 — 29)? + 22627 > ¢2"22! and the second part of I),
we obtain:
m2€2(m=1) | 2,20 ¢2(r—1) LE2m=1) ;2

e —oiroe S oaE T g
2(m—1) .2

(24)

< const — 0, & — o0,

§2r+2m7t T e
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t
provided r + m >m—1,1e gr+mt>qm—1), forall r > 1 and t > 0.
q

2
m .
We have set const = —-. Here and in the next pages we use const for all the

constants in the formu(lja;. Formula (24) is satisfied also for r = 0, (¢ > 1).

In the region II), we get (€™ — 29)? + 22462 > (1 - %) £2m 4 22t 5o we
have:
m2€2m=1) | y2,2¢2(r=1) m2€2(m=1) r2g2t2(r=1)

(25) (é—m . xq)Q + xgtfgr — (1 _ %)me + x2t§2r (1 _ %)me 4 x2t§2r;

by removing x?¢£2" in the first part at the right-hand side of (25) and ™ in the
second part, we may further estimate by:

1
const§—2—>0, E— o0, Vr>1, Vt>D0.

The conclusion remains valid for r = 0, (¢t > 1), too.

In the region IIT) we have (£™ — z9)% 4 220¢2" > (1 — 2¢)229 + 22662", and we
can estimate as:
m2e2m=1) 4 p25.2te2(r=1) m2g2(m=1) 22t e2r=1)

(é-m . LL‘q)2 + $2t€2r — (1 _ 20)1.2(1 + $2t€27‘ + (1 — 20)1.2(1 + x2t§2r .

(26)

By using again inequality IIT) at the numerator in the first part of the right-hand
side of (26), and factoring out z?* at the denominator in the second part, we
further estimate by:

const 1:2qu71 L2 52(T—1)
r
(1 — 2c)x?q + x2&2r (1 — 2¢)z2@—t) 4 g2r’

and hence by

52(T_1)
(1 — 2c)x2(a=t) 4 ¢2r

1
(27) const 21—#7’2 — 0,
Tr m
r—o0, Vr >1, t >0, t<aq.

To handle the second term in (27) we have used the following lemma:
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Lemma 4. For all a,3,7,0 € N, with 7,0 #0, t+& — 00, £ >0, x > 0,
we have:

zafﬁ

ey 06 (27 —a)(20 — B) > ap.

The proof is direct and we omit it. Formula (27) holds for » = 0, (¢ > 1), too.
Now we study the condition i) in (23) involving the derivative with respect
x of the symbol a(z,§). By starting from region I) we have as above:
q2$2(q71) + t2$2(t71)§2r x2(q71) +2

@ — oo+ gmgr O g g e

provided ¢ + N qg—1,1ie gr+mt > m(q—1), for r+¢ > 1, which is less
m
restrictive than what required for formula (24), since m > ¢. For region II) we
get:
2,2(q—1) | $2,2(t-1)g2r om 4=1 e
q°x +t°x 13 < const 25 ’ 7 _ g g2(1&2 1)522 i
(é‘m _ mq)2 + $2t€27‘ (175)6 Mg 2tg2r (176)5 Mg 2tg2r
(28) < const — 4 2 221
const —
- 27 (1 _ %)52(17177“) 42t

x+E&— 0

_)07

provided r < m, and r +t¢ > 1. For r = m, and therefore t = 0, the second part
of formula (28) vanishes, so the result is true for s = 0, too.
In the region III) we get:
q2$2(q71) + t2$2(t71)§2r q2x2(q71) + t2x2(t71)€2r
(em — mq)Q +a2ter T (1 —2c)220 + g2EP

1
gconst—2—>0, T — 00.
x
Summing up, a(z,§) satisfies the estimates (22) if:

(29)

rg+mt > q(m—1)
t < ¢q

It is easy to see that for r = 0, by (27) and the first of (29), a(x, &) is hypoelliptic
if t > q. For t = 0 we obtain hypoellipticity only for » = m. One can also easily
check that the previous conditions are necessary for hypoelliptcity. Let 4+t = p,
from formula (29) by replacing r with p — ¢ we then obtain:

q

(30) ———(m-1-p)<t<gqg, m>q.
m—gq
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If m = ¢, from (29) we obtain r + ¢ > m — 1, then there is hypoellipticity only
for r +t =m.

Remark. Let p < g — 1, we then obtain from the first part of the formula
(30):

4 m—1-p)>—12
m—q m—q

t >

contradicting the second part, so we have hypoellipticity only for r +t = p,
where p > ¢. Similar computations, shows that there is hypoellipticity for some
couple (r,t) on the straight linep=r+t=q¢+a, a =0,...,m — ¢, if and only
if:

m
—<a+2
q

More precisely there are at least G values of t, 3 =1,...,q— 1, for hypoellipticity
on the straight line p=q¢+a, a =0,...,m — ¢, if and only if:

q B

In particular we obtain all the ¢ — 1 values of ¢ for having hypoellipticity, on the

m a+3+1
Phid kil

m

straight line p = ¢, if — < Ll’ and m > ¢, which imply g = m — 1. It is
q q—

convenient to distinguish two regions, in the set of all the possible couples (r, )

giving hypoellipticity:

(31) g(m —1) <rg+mt < gm,
and,
(32) rqg+mt >qm, t<gq.

In the case when (31) is valid with rq + mt = gm, or (32) is satisfied, the
polynomial (22) is multi-quasi-elliptic, cf. Boggiatto-Buzano-Rodino [1]. In the
follow we shall be mainly interested in non multi-quasi-elliptic polynomials.

Remark. We find hypoellipticity on straight line p = ¢ + « in the region
(31) if and only if:

a+1<@<a+2.
q
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More precisely There are at least § values of t, 8 = 1,...,q — 1, for having
hypoellipticity on the straight line p = ¢+, « =0,...,m —g, in the region (31),
if and only if:

1
a+1<m<%'
q B
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