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AN ALGORITHMIC APPROACH TO INFERRING

CROSS-ONTOLOGY LINKS WHILE MAPPING

ANATOMICAL ONTOLOGIES

Peter Petrov, Milko Krachounov, Ernest A. A. van Ophuizen,
Dimitar Vassilev

Abstract. Automated and semi-automated mapping and the subsequently
merging of two (or more) anatomical ontologies can be achieved by (at least)
two direct procedures.
The first concerns syntactic matching between the terms of the two ontolo-
gies; in this paper, we call this direct matching (DM). It relies on identities
between the terms of the two input ontologies in order to establish cross-
ontology links between them.

The second involves consulting one or more external knowledge sources
and utilizing the information available in them, thus providing additional
information as to how terms (concepts) from the two input ontologies are
related/linked to each other. Each of the two ontologies is aligned to an ex-
ternal knowledge source and links representing synonymy, is-a parent-child,
and part-of parent-child relations, are drawn between the ontology and the
knowledge source. These links are then run through a set of simple logical
rules in order to come up with cross-ontology links between the two input
ontologies. This method is known as semantic matching. It proves useful
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and reasonably accurate; in this paper, we call it the source matching pre-
dictions (SMP) procedure.

Not all cross-ontology links that semantically (i.e., from a biological/ana-
tomical standpoint) exist between the two input ontologies will be discovered
by either DM or SMP. To improve the discovery of cross-ontology links we
propose a novel algorithmic procedure which involves a probability-like scor-
ing scheme. This procedure is called the child matching predictions (CMP)
procedure. Describing the DM, SMP, CMP procedures, and particularly the
CMP procedure in formal terms is the main goal of this paper.

1. Introduction. Ontologies are formal models for knowledge represen-
tation and knowledge modeling. A widely adopted definition is that “an ontology
is an explicit and formal specification of a conceptualization of a domain of in-
terest” [5]. Two main aspects are highlighted by this definition – first, that the
specification is formal, which implies that automatic reasoning can be performed
on it, and secondly, that it is practically oriented towards a particular domain of
interest. Another informal definition can be found in [6]; it states that “an ontol-
ogy grasps the entities which exist within a given portion of the world at a given
level of generality, it includes a taxonomy of the types of entities and relations
that exist in that portion of the world seen from within a given perspective”. This
definition focuses again on two aspects – first, that an ontology models only a
portion of the world, which implies its specifici, and second, that an ontology has
a formal structure (called taxonomy) that includes the entities that exist (in the
portion of the world that is being modeled) and the relations which exist among
them.

Important problems in the research area which deals with ontologies are
those of ontology integration or mediation [1]. The two terms, integration and
mediation, are pretty much synonymous but the latter is preferred for the pur-
poses of this paper as it has already been adopted by most authors. Ontology
mediation concerns integrating ontologies that model identical or similar do-
mains but which have different origin. The importance of the ontology mediation
problem comes from the fact that ontologies are designed and developed by dif-
ferent parties (research groups, business organizations) and it cannot be expected
that these parties will ever agree on using a common ontology even though the
domain being modeled is similar or even identical.

As noted in [1], two principal types of ontology mediation exist – ontology
mapping and ontology merging . Mapping is about establishing links/bridges
between two (or more) ontologies without altering them. The result of the map-
ping process of several input ontologies is, in principle, not an ontology but a
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set of semantic links/bridges/correspondences between the ontologies. That re-
sult doesn’t replace the original ontologies, but supplements them and is stored
separately of the input ontologies. Merging is about taking two ontologies and
generating a single ontology from them that unifies/unites the knowledge con-
tained in the input ontologies. The result of the merging process is a single
output ontology that could be used as a replacement of the two input ontologies.

Another important concept related to ontology mediation is ontology
alignment – the process of automatic or semi-automatic discovery of links be-
tween ontologies [1], as opposed to manual discovery of these links. In particular,
special attention should be paid to the cases of alignment of heterogeneous ontolo-
gies based on different conceptualizations of the same problem domain [3, 4]. For
the purposes of this work, it is assumed that two given ontologies can be aligned
to each other, but also to some external knowledge sources (which may or may
not be ontologies themselves).

For solving the general ontology mediation problem, various efforts have
been made in the last decade that usually produce theoretical models, which then
serve as a basis for practical program or framework implementations. We list
here only the most prominent or popular ones: (i) ontology mapping – MAFRA
[8], RDTF [9], and IF-Map [10], (ii) ontology merging – PROMPT [11], and On-
toMerge [12], (iii) ontology alignment – Anchor-PROMPT [13], GLUE [14], QOM
[15, 16], S-Match [17, 18]. Excellent surveys of the ontology mediation research
field can be found in [1], [2], and [19].

In this work, we deal with an ontology mapping and merging problem
within a very specific, practical context. This is the problem of mapping and
merging anatomical ontologies of two or more different species/organisms. The
problem is important for at least two different reasons.

First, the ability to perform cross-species automated text searches (text
mining) in scientific literature can produce valuable results. It enables a researcher
designing experiments in a particular model organism (e.g., mouse) to draw upon
earlier findings in a different model organism (e.g., zebrafish), without needing to
be an expert on both systems. Anatomical ontologies of many different species are
nowadays publicly available, but no intelligent tools exist that are able to perform
intelligent cross-species text searches (or text mining) in these ontologies or
in various text sources that contain anatomical information about the different
species (e.g., mouse, rat, chicken, zebrafish). What is needed is the ability to per-
form searches that don’t rely solely on simple text identities between term names
in order to report these terms as synonyms (e.g., head(mouse) = head(rat)),
but which would be intelligent enough to detect cross-species synonyms whose
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textual representations have nothing in common (for instance fin(zebrafish) =
wing(chicken) = foreleg(mouse, rat)). Here the equality sign denotes an anatomi-
cal similarity (roughly speaking) or homology (strictly speaking) between anatom-
ical terms of different species. It is apparent that to achieve these goals, the dif-
ferent species-specific anatomical ontologies need to be mapped onto each
other and (in the ideal case) ultimately merged into a single output anatomi-
cal super-ontology.

Second, having two species-specific ontologies mapped onto each other
and possibly merged into a common super-ontology would enable tools which
currently work with the anatomical ontology of one species to support more than
the species-specific ontology which they were originally designed for. That is,
solving the ontology mapping problem could extend the capabilities of existing
tools and could make them more intelligent and more powerful. Once the anatom-
ical super-ontology is there, existing tools could be ported (with some effort) to
the super-ontology which resulted from merging the two input species-specific
anatomical ontologies. This would turn those tools from single-species aware
to multi-species aware.

Due to the very specific nature of the problem, a very specific approach is
presented here which does not have any claims to generality but rather to speci-
ficity and biological (in particular anatomical) adequacy of the results.

The general methods listed above usually try to map, merge or align on-
tologies modeling the same or similar domains of interest. In this work, the
domains modeled by the input ontologies are rather similar when viewed from
one angle (as they are both anatomical domains) but rather distinct when viewed
from another angle (as they represent the anatomies of two different species which
may or may not be closely related from an evolutionary standpoint). Due to the
specific nature of the problem, it is possible to interrogate specific biomedical
knowledge sources (like UMLS1 [22], FMA2 [23]) and to utilize their knowledge
which inherently imparts certain intelligence to the software program (AnatOM
[7]) that implements the algorithmic procedures presented in this paper. However,
the specificity of the problem does not prevent AnatOM from also interrogating
general-purpose knowledge sources (like WordNet3 [20, 21]). Talking to such
general-purpose knowledge sources proves very useful as they provide valuable
additional insights to inferring links between the ontologies which are subject to
mapping and ultimately to merging.

1http://www.nlm.nih.gov/research/umls/ (2012)
2http://sig.biostr.washington.edu/projects/fm/ (2012)
3http://wordnet.princeton.edu/ (2012)
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2. An overview of the problem domain. Anatomy is a branch of
biology and medicine that studies the structures of the living things (organisms,
species). Three main branches of anatomy exist – (i) human anatomy, (ii) animal
anatomy (zootomy), (iii) plant anatomy (phytotomy). This work deals with (ii)
even though some of its ideas and methods are applicable also to (i) and (iii).
Anatomy can also be divided into (a) macroscopic anatomy which studies struc-
tures that can be observed even with the naked human eye, and (b) microscopic
anatomy which studies structures that the naked human eye cannot observe. Of
these two, this work deals mostly with (a). The algorithmic procedures presented
in this paper take two anatomical ontologies as input (e.g., the adult mouse
anatomical ontology and the ontology of the zebrafish anatomy and de-
velopment) and map them onto each other.

The two input ontologies are encoded in OBO [24, 25] which is a formal
language for representing ontologies (like OWL [27] and RDF-Schema [28]). The
OBO ontology language is used mainly in the biomedical sciences and in bioinfor-
matics; its computer representation is a plain text file format which is also known
as OBO. This plain text file format is easily readable by both humans and com-
puter programs; it allows for describing the terms/concepts from the domain that
is modeled together with the relations that exist among these terms/concepts.
For the purposes of this work, the ontologies originally encoded in OBO are first
translated to mathematical (graph theoretical) forms, and the procedures pre-
sented below work on these mathematical forms. The algorithmic procedures
themselves are also described in mathematical terms and not in pseudo-code or
in some practical programming language.

3. Formal definition of the problem.

3.1. The two input ontologies. Two input ontologies are given in
the form of OBO files. For the purposes of this work each of these ontologies
is viewed as a directed acyclic graph (DAG) [7] together with an edge-coloring
function. The two ontologies used as examples here are the mouse O1 = OM and
the zebrafish O2 = OZ anatomical ontologies but the method presented below is
applicable to other couples of species-specific anatomical ontologies, e.g., (mouse,
rat), (mouse, chicken), (chicken, zebrafish).

In the text below the following notations are used.

O1 : DAG1 = (V1, E1); F1 : E1 → C = {c1, c2, . . . , cn}

O2 : DAG2 = (V2, E2); F2 : E2 → C = {c1, c2, . . . , cn}
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Here O1 and O2 are the two input ontologies each of which is considered as
composed of a directed acyclic graph DAGk and an edge-coloring function
Fk. Also here, C = {c1, c2, . . . , cn} is the set of colors, F1 and F2 are two col-
oring functions which are associated with the two directed acyclic graphs DAG1

and DAG2. Each color represents one inner-ontology relation of subsumption of
certain kind (inverse generalization, i.e., specialization; inverse aggregation, i.e.,
membership; etc.). The relations is-a (specialization) and part-of (membership)
are the two typical examples of such inner-ontology relations defined within OBO
ontologies and within anatomical OBO ontologies in particular. Therefore, for the
purposes of this work, it can be assumed that n = 2, c1 = is-a, c2 = part-of.

In the notation introduced above, V1 is the set of anatomical terms/concepts
in the mouse anatomical ontology and V2 is the set of anatomical terms/concepts
in the zebrafish anatomical ontology.

V1 = {v11, v12, . . . , v1n1
}, |V1| = n1

V2 = {v21, v22, . . . , v2n2
}, |V2| = n2.

Each ontology term vij has two components which are both strings (idij,

nameij), where idij is the identifier (the id) of the term/concept vij, and
nameij is the textual name of the term/concept vij.

In general, the term ids are unique within the ontology bounds but are not
globally unique. Theoretically, if two different ontologies are given, it is possible
that there exist two terms, one term from the first ontology and the other one
from the second ontology, which are distinct but whose ids are equal. Practically,
in our case, all mouse term ids begin with the string “MA” and all zebrafish term
ids begin with the string “ZFA” so it is impossible to have two terms (one from
mouse, one from zebrafish) sharing the same term id. In the two ontologies O1

and O2 each term t = (id, name) may optionally also have a set of alternative
names or what is called inner-ontology synonyms.

Within the first ontology, the edge e1 = (v1i, v1j) ∈ E1 if and only if
the term v1i is a child of the term v1j in the graph DAG1. The same applies to
the second ontology, i.e., the edge e2 = (v2i, v2j) ∈ E2 if and only if the term
v2i is a child of the term v2j in the graph DAG2. Here, “child” is a generalized
concept meaning either an is-a or a part-of child. Throughout this text we refer
to O1 and O2 as the two input ontologies.

3.2. The three external knowledge sources. Also given are several
large external knowledge sources (biomedical or general-purpose ontologies) which
contain anatomical terms and relations (is-a, part-of, others) among those terms.
In particular, three concrete external knowledge sources are used for the purposes
of this work. These are T1 = UMLS, T2 = FMA, T3 = WordNet. Although
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questionable if these knowledge sources are indeed ontologies (in the strict sense),
they are viewed and used as such for the purposes of this work. Formally put, each
of these knowledge sources Ts (s = 1, 2, 3) contains the following information.

• Set of terms
Ms = {ts1, ts2, . . . , tsms}, where
tsk = (idsk, namesk) and
idsk is the identifier (the id) of the term/concept tsk,
namesk is the textual name of the term/concept tsk,
ms is the count of terms in the knowledge source Ts.

It should be noted at this stage that: i) it is sometimes possible that tsi 6= tsj

but namesi = namesj (same names, different ids); ii) it is sometimes possible
that tsi 6= tsj but idsi = idsj (same ids, different names); iii) in this notation,
the ids and the names are strings and the equalities (or inequalities) above express
identity (or lack of identity) between the strings involved.

• Relations of subsumption
Each knowledge source Ts also defines (at least) the following two relations:

R
′

Ts
= R

is_a

Ts
⊆Ms ×Ms

R
′′

Ts
= R

part_of

Ts
⊆Ms ×Ms

These two are the is-a and part-of relations (again) but in the way they are
defined by the knowledge source Ts. Additional relations are usually also defined
within Ts but the is-a and part-of are of greatest interest for the purposes of
this work.

3.3. The problem goal. Using the available knowledge sources T1 =
UMLS, T2 = FMA, T3 = WordNet and the is-a and part-of relations which
they define between their own terms, a set of reliable (authentic, trustworthy)
semantic relations between the terms of the two input ontologies O1 and O2

has to be found. These semantic relations should be biologically (anatomically,
evolutionary) justified and should be of one of the following types.

Type 1. Synonyms – R1 = Rsyn – terms with similar or identical meaning are
called synonyms.

Type 2. Hypernyms – R1 = Rhyper – generalization – a hypernym is a term
whose semantic range includes that of another term (its hyponym) – Fig. 1.

Type 3. Hyponyms – R1 = Rhypo – specialization – a hyponym is a term
whose semantic range is included within that of another term (its hypernym) –
Fig. 1.

Type 4. Holonym – R1 = Rholo – aggregation – term X is a holonym of term
Y, if Ys are parts of (members of) X – Fig. 2.
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Fig. 1. An is-a parent-child relation

Fig. 2. A part-of parent-child relation

Type 5. Meronym – R1 = Rmero – membership – term Y is a meronym of
term X, if Ys are parts of (members of) X – Fig. 2.

The goal here is to establish relations of the types just described (from
1 to 5) such that Ri ⊆ (V1 × V2)

⋃

(V2 × V1), for i = 1, 2, 3, 4, 5 and such
that these relations are authentic (make sense, i.e., are biologically valid, i.e.,
are evolutionary justified) based on the knowledge that is available in the ex-
ternal knowledge sources T1 = UMLS, T2 = FMA, T3 = WordNet. Of
greatest interest is establishing the relations of Type 1 (the synonymy relations
or R1 = Rsyn as these allow for mapping the two input ontologies O1 and
O2 onto each other, and ultimately for merging them into one common output
super-ontology which we denote as Osuper.

4. The algorithmic solution. In this paper an integrated algorithmic
approach to solving the problem is proposed. The method consists of three main
stages which we briefly outline here.

• Stage 1: Generate the thesauri
Within this stage from the mouse ontology O1 its thesaurus Th1 is built,

and analogically from the zebrafish ontology O2 its thesaurus Th2 is built.
• Stage 2: Align the two input ontologies to the three knowledge sources
Within this stage each of the two input ontologies O1 and O2 is aligned

to each of the three knowledge sources available T1 = UMLS, T2 = FMA,
T3 = WordNet. In fact, within this stage not the ontologies themselves, but
the thesauri Th1 and Th2 that have been generated from them, are aligned to
the three external knowledge sources. Still, we usually say that the two input
ontologies are aligned to the three external knowledge sources.

• Stage 3: Infer cross-ontology synonymy links/relations, and cross-
ontology parent-child (is-a/part-of) links/relations.

This stage consists of three phases which we outline here.
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• Phase 3.1: Synonymy links are drawn for syntactic or direct matches
between the terms from O1 and O2. This is what we denote as the direct match-
ing (DM) procedure.

• Phase 3.2: Using the results from Stage 2 (the alignments performed
there) and a set of simple logical rules, cross-ontology synonyms are predicted.
This is what we call the source matching predictions (SMP) procedure.

• Phase 3.3: For pairs of terms t1 ∈ V1 and t2 ∈ V2 for which no syn-
onymy relation has been discovered so far, the relations hereto predicted between
t1’s and t2’s children are used, in order to infer additional predictions about how
t1 and t2 are related. That’s what we call the child matching predictions
(CMP) procedure. This procedure infers new predictions about relations which
seem to exist between t1 and t2 even though these relations don’t directly origi-
nate from the knowledge contained in the three external knowledge sources.

In the next subsections, the three stages which were only briefly outlined
here, are described in more details.

4.1. Stage 1 – Generating the thesauri. The thesauri Th1 of O1 and
Th2 of O2 are simple dictionary-like tabular structures. For the id of any term
t ∈ V1, the thesaurus Th1 maintains a list Th1[t.id] that contains the primary
name and all the alternative names (if any) of the term t ∈ V1 with identifier id.
In the same way, for the id of any term t ∈ V2, the thesaurus Th2 maintains a
list Th2[t.id] containing the primary name and the alternative names (if any) of
the term t ∈ V2 with identifier id. The lists Thi[t.id] (i = 1, 2) are simple lists
of strings. Their members are all the names (as defined by the input ontologies)
of the term t with the given identifier id. Building the thesauri from the two
input ontologies is a fairl straightforward process.

4.2. Stage 2 – Aligning the input ontologies to the knowledge
sources. In this stage each of the two input ontologies (each of the two thesauri)
is aligned to the three external knowledge sources. Below is described how the
ontology O1 (i.e., its thesaurus Th1) gets aligned to the external knowledge source
T1. The other alignments are performed analogically.

Phase 2.1: For each term id k ∈ O1 do → get the list L = Th1[k] from
the pre-built thesaurus Th1.

Phase 2.2: For each term name s ∈ L do → get from T1 all distinct ids
(T1’s term ids) which correspond to the term name s, i.e., get

RS1 = {(tI.id) | tI ∈ T1 and tI.name = s}

Step 2.2.1: For each id from RS1 do → get from T1

RS2 = {(tII.id, tII.name) | tII ∈ T1 and tII.id = tI.id}
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Having performed this step, the result is that the synonyms of s (as they
are defined by T1) are now known. These are also denoted as the T1-synonyms
of s – technically this is the set

RS∗
2 = {tII.id | tII ∈ T1 and tII.id = tI.id}

composed of the first components of the ordered couples contained in RS2.

Step 2.2.2: For each id from RS1 do → get from T1 the set

RS3 = {(tIII.id) | tIII ∈ T1 and ((tIII, tI) ∈ R
is_a

T1
or (tIII , tI)

∈ R
part_of

T1
)}

Having performed this step, the result is that the followings sets are now
known

• the meronyms of s as defined by T1. These are also called the T1-
meronyms of s – technically this is the set

RS3,1 = {tIII .id | (tIII, tI) ∈ R
part_of

T1
}

• the hyponyms of s as defined by T1. These are also called the T1-
hyponyms of s – technically this is the set

RS3,2 = {tIII .id | (tIII, tI) ∈ R
is_a

T1
}

Is should be noted that RS3,1 ∪RS3,2 = RS3, RS3,1 ∩RS3,2 = ∅.

Step 2.2.3: For each id from RS1 do → get from T1 the set

RS4 = {(tIV .id) | tIV ∈ T1 and ((tI, tIV ) ∈ R
is_a

T1
or (tI, tIV )

∈ R
part_of

T1
)}

Having performed this step, the result is that the following sets are now
known

• the holonyms of s as defined by T1. These are also called the T1-
holonyms of s – technically this is the set

RS4,1 = {tIV .id | (tI, tIV ) ∈ R
part_of

T1
}

• the hypernyms of s as defined by T1. These are also called the T1-
hypernyms of s – technically this is the set

RS4,2 = {tIV .id | (tI, tIV ) ∈ R
is_a

T1
}

Again, it should be noted that RS4,1 ∪RS4,2 = RS4, RS4,1 ∩RS4,2 = ∅.

To summarize all this in plain words—the steps 2.2.1, 2.2.2, and 2.2.3 find
in the external knowledge source T1 the following sets of T1-terms:

• Step 2.2.1—synonyms of the original ontology-defined term s with id k;

• Step 2.2.2—meronyms and hyponyms of the original ontology term s

with id k;

• Step 2.2.3—holonyms and hypernyms of the original ontology term s

with id k;
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These steps complete the process of aligning the input ontology O1 (i.e.,
its thesaurus Th1) to the external knowledge source T1. Then, in an identical
manner, O2 is aligned to T1. Finally O1 and O2 are separately aligned to T2

and T3 (i.e., four more alignments are performed) by applying the exact same
procedure as described here.

4.3. Stage 3 – Inferring cross-ontology synonymy and cross-
ontology parent-child (is-a and part-of) links/relations. In this stage
three separate algorithmic procedures are applied, which are denoted as DM ,
SMP and CMP . They are described here in full details.

Phase 3.1: Within this phase (called DM) textual/syntactical/direct
matches/predictions for cross-ontology synonyms are found by checking for tex-
tual identities between the term names in the two ontologies. This procedure
is straightforward, the algorithm just iterates through all terms t1 ∈ V1 and
t2 ∈ V2 and tests if t1.name = t2.name. Whenever such matches are found,
the terms t1 and t2 are marked as synonyms and it is noted (memorized) that
this synonymy prediction comes from direct matching (DM).

Here is a simple example: In O1 (the mouse anatomy ontology) there ex-
ists a term t1 = (id = “MA0000168′′, name = “brain′′), while in O2 (the
zebrafish anatomy ontology) there exists a term t2 = (id = “ZF A0000008′′,

name = “brain′′). So by doing the checks in this step, it is easily found that
their names are identical (“brain”) and so these terms are marked as cross-ontology
synonyms coming from DM.

Phase 3.2: Within this phase (called SMP) more predictions are inferred
for synonymy links and for parent-child links between the terms of the two input
ontologies. As the two input ontologies have already been aligned to the external
knowledge sources available, a set of logical rules is applied which results in in-
ferring/predicting what is called source matching synonymy and source matching
parent-child (is-a and part-of) predictions. The rules applied in this phase are
as follows.

Rule A: If two terms tM ∈ O1 and tZ ∈ O2 have been detected as syn-
onyms of the same term t ∈ Ti (by step 2.2.1) we mark tM and tZ as a predicted
(by SMP) cross-ontology synonyms of each other.

Rule B1: If tM ∈ O1 has been detected as synonym of t ∈ Ti (by 2.2.1)
and if term tZ ∈ O2 has been detected as (is-a/part-of ) child of t (by 2.2.2), we
mark tM as a predicted (by SMP) cross-ontology (is-a/part-of ) parent of tZ .
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Rule B2: If tZ ∈ O2 has been detected as synonym of t ∈ Ti (by 2.2.1)
and if term tM ∈ O1 has been detected as (is-a/part-of ) child of t (by 2.2.2), we
mark tZ as a predicted (by SMP) cross-ontology (is-a/part-of ) parent of tM .

Rule C1: If tM ∈ O1 has been detected as synonym of t ∈ Ti (by 2.2.1)
and if term tZ ∈ O2 has been detected as (is-a/part-of ) parent of t (by 2.2.3), we
mark tM as a predicted (by SMP) cross-ontology (is-a/part-of ) child of tZ .

Rule C2: If tZ ∈ O2 has been detected as synonym of t ∈ Ti (by 2.2.1)
and if term tM ∈ O1 has been detected as (is-a/part-of ) parent of t (by 2.2.3),
we mark tZ as a predicted (by SMP) cross-ontology (is-a/part-of ) child of tM .

By applying the above described rules, a set of cross-ontology relations
(synonymy and parent-child) is drawn (established) between the nodes of DAG1

and DAG2 (i.e., between the terms of the two ontologies). These predicted links
or relations are said to come from source matching inference (SMP) because the
evidence of their existence originates from the information stored in the external
knowledge sources that are used. It should also be noted that for the so-inferred
parent-child links, the information whether these are is-a or part-of links is also
stored. This completes the description of the SMP procedure.

Before proceeding with the formal description of phase 3.3 (the so-called
child matching predictions (CMP) procedure), here is a short recap itulation of
what has been done so far. Several new notations and definitions are introduced
here which are going to help us in describing the CMP procedure (the last phase
3.3 of stage 3).

The two original (input) graphs DAG1 and DAG2 defined above are
available. The cross-ontology links which have been inferred so far (in 3.1 – DM
and in 3.2 – SMP) are also available. Now, the two original graphs together with
the links established by DM and SMP can be thought of as one single graph
G = (V, E), where V = V1 ∪ V2 and E = SIO ∪ SDM ∪ SSMP , where

• SIO is the set of all inner-ontology links in DAG1 and DAG2;

• SDM is the set of all links inferred in phase 3.1, i.e., by direct matching
(DM);

• SSMP is the set of all links inferred in phase 3.2, i.e., by the source
matching predictions (SMP) procedure.

The properties of each of these types of links are summarized in the table
on Fig. 3.

• The IO links are the original links from the two input ontologies. These
are always parent-child links and are colored/labeled either with is-a or with
part-of . These are unidirectional links as the parent-child relations are not sym-
metrical.
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Link Type Synonymy or Parent-child Color/Label Symmetry

IO Links Only parent-child Either is-a or part-of Unidirectional

DM Links Only synonymy No color/label Bidirectional

SMP Parent-child Links Parent-child Either is-a or part-of Unidirectional

SMP Synonymy Links Synonymy No color/label Bidirectional

Fig. 3. Links and link types

• The DM links are cross-ontology links which by their definition (phase
3.1) are always synonymy links and as such they are colored neither with is-a nor
with part-of . As the synonymy is a symmetrical relation, these are bidirectional
links, i.e., we may think of each DM link (t1, t2) or t1 ←→ t2 as a pair of two
links t1 → t2 and t1 ← t2.

• The SMP links are either parent-child links (steps 2.2.2 and 2.2.3 of
phase 2.2) or synonymy links (step 2.2.1 of phase 2.2). As with the IO and DM
links: the parent-child SMP links are colored either with is-a or with part-of
and are unidirectional; the synonymy SMP links have no color/label and are
bidirectional. All SMP links are cross-ontology ones by their definition (steps
2.2.1, 2.2.2, 2.2.3 from phase 2.2 and rules A, B1, B2, C1, C2 from phase 3.2).

All this having been said, the single graph G (as defined above), which
has been produced from DAG1 and DAG2 by the DM and SMP procedures,
can now be considered.

Phase 3.3: The description of the CMP procedure is what follows next.
This description is intermixed with several definitions which allow us to arrive at
one final number that we call final/aggregated CMP score of the aggregated
CMP link that gets drawn between any two nodes v1 ∈ E1 and v2 ∈ E2 that
are involved in certain patterns of connectivity within the graph G.

Definition 1. Constant I – reliability score of an inner-ontology (IO)
link. Typically I = 1 but this value could be varied/adjusted if needed.

Definition 2. Constant D – reliability score of a direct matching (DM)
link. Typically D = 1 but this value could be varied/adjusted.

Definition 3. Constants f(UMLS), f(FMA), f(WordNet) – reliabil-
ity scores of the three available knowledge sources. We require that: 0<f(Ti)<1,
for i = 1, 2, 3.

Definition 4. Constant p ∈ (0, 1) – the CMP score penalty.

It should be noted here that the CMP procedure is a probabilistic-like
procedure in the sense that it deals with scores (evidence scores or link scores
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or prediction scores) which are all real numbers from the interval [0, 1]. The
above-defined p constant aims to lower the scores of the pattern instances
and the final CMP score (these two are to be defined later in Definition 9 and
Definition 11) due to the sole fact that the predictions/links drawn in this phase
3.3, do not directly originate from the knowledge contained in the three available
knowledge sources (UMLS, FMA, WordNet), i.e., due to the fact that the CMP
links/predictions come from CMP and not through the other means described so
far (DM, SMP). This matches the intuitive observation that CMP links should
be given lower score than links coming from DM or SMP.

Next, two variable-argument probabilistic-like functions are defined which
are denoted as Conj (short for conjunction) and Disj (short for disjunction).
They are used for defining the individual CMP links and their confidence
scores.

Definition 5. The Conj function is defined recursively as follows.

5.1: Conj(A1, A2) = A1 · A2

5.2: Conj(A1, A2, . . . , AN ) = Conj(Conj(A1, A2, . . . , AN−1), AN ), for
N ≥ 3.

It is required here that all arguments Ak are within the internal [0, 1]. It
is easy to prove that if this condition holds true, then Conj(A1, A2, . . . , AN)
is also within the interval [0, 1] which means that this recursive definition is
logically correct i.e., that there is no problem at the recursive step 5.2. Instead
of Conj(A1, A2, . . . , AN) sometimes also Conj N

i=1 (Ai) can be written for
short. Note that the Conj function models the probability of two or more inde-
pendent events occurring simultaneously.

Definition 6. The Disj function is defined recursively as follows.

6.1: Disj(A1, A2) = A1 + A2 − A1 · A2

6.2: Disj(A1, A2, . . . , AN ) = Disj(Disj(A1, A2, . . . , AN−1), AN ), for
N ≥ 3.

It is required here that all arguments Ak bewithin the internal [0, 1]. It
is easy to prove that if this condition holds true, then Disj(A1, A2, . . . , AN)
is also within the interval [0, 1], which means that this recursive definition is
logically correct, i.e., that there is no problem at the recursive step 6.2. Instead of
Disj(A1, A2, . . . , AN) sometimes also Disj N

i=1 (Ai) can be written for short.
Note that the Disj function models the probability of at least one of two or more
independent events occurring.

The CMP procedure scans the graph G and looks for three different types
of patterns of connectivity within G. The patterns involve a few (3 or 4) nodes,
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some of which are children and some of which are parents. The procedure takes
into account all links involved in the pattern and infers an additional/new link
(an individual CMP link) between the parents involved. This individual CMP
link is then assigned a reliability score which (by definition) equals to the score
of the particular pattern instance that is currently being considered.

Finally, for each two parent nodes, the scores of all the pattern instances
in which these two parents are involved, are aggregated in order to produce one
final/aggregated CMP link and its score which we call final CMP score of
the two parent nodes (terms) which are under consideration. The three different
types of patterns are presented in the three figures that follow.

Fig. 4. The U-Pattern

In the figures above, the following notations have been used:

1) the vertical dashed line marks the boundary between the two input
ontologies: what’s on the left of the line belongs to O1, what’s on the right of the
line belongs to O2; the solid lines represent edges/links from the graph G;

2) the solid lines crossing the dashed line are cross-ontology edges/links,
they were inferred either by DM or by SMP; the solid lines not crossing the
dashed line are IO links which were there in the two original/input graphs DAG1

and DAG2;

3) S1, S2, S3 are sets of links from the graph G (it should be noted that
the links from G are also called supporting evidences); so S1, S2, S3 are sets
of supporting evidences;

4) Si = {si1, si2, . . . , simi
} for i = 1, 2, 3, where sij is one single link,

i.e., one single supporting evidence, and mi = |Si| is the count of links in the set
Si;
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Fig. 5. The X-Pattern

5) P ar1 stands for parent 1 ; Ch1 stands for child 1 ; v1 = P ar1 ∈ V1,
Ch1 ∈ V1;

6) P ar2 stands for parent 2 ; Ch2 stands for child 2 ; v2 = P ar2 ∈ V2,
Ch2 ∈ V2;

7) In the U-pattern and in the X-pattern

7.1) S2 is a set of cross-ontology synonymy links;

7.2) S1 and S3 are sets of parent-child links of the same color (i.e.,
either all links from S1 and S3 are is-a links or all links from S1 and S3 are
part-of links;

8) In the V-pattern

8.1) S1 is a set of inner-ontology parent-child links and S2 is a set of
cross-ontology parent-child links;

8.2) S1 and S2 are sets of parent-child links of the same color (i.e.,
either all links from S1 and S2 are is-a links or all links from S1 and S2 are
part-of links.

It is important to note here that the items 7.1, 7.2, 8.1, 8.2 are in fact
conditions for the respective connectivity patterns to be considered during the
CMP scan. In other words, these are necessary conditions for those patterns to
be processed by the CMP procedure. If these conditions are not met completely,
the respective pattern is not being considered as one of the valid connectivity
patterns that CMP is looking for and so the pattern is not processed at all by
the CMP procedure.
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Fig. 6. The two flavors of the V-Pattern

For each of the three kinds of patterns introduced above, the CMP proce-
dure then goes ahead and draws a new cross-ontology synonymy CMP link
between P ar1 and P ar2. As with DM and SMP synonymy links, this one is
also a bidirectional link P ar1 ←→ P ar2 (Fig. 7).

Fig. 7. A bidirectional CMP link

This newly drawn CMP link is called an individual CMP link between
P ar1 and P ar2. The CMP procedure assigns a reliability score to the newly
drawn individual CMP link. The score of the newly drawn link is defined as a
function of the scores of the already present links from S1, S2, S3.
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Definition 7. The score of an individual (non-CMP) link is defined as
follows

score(sij) =























I if sij is an IO link,

D if sij is a DM link,

f(src) if sij is an SMP link which came from

the source src ∈ {UMLS, FMA, WordNet}.

Definition 8. The score of a set of links (an evidence set Si) is defined
as follows score(Si) = Disj mi

j=1 (score(sij)), i = 1, 2, 3, where Disj is the
function from Definition 6.

Having these two definitions in place, the score of the individual CMP
link and also of the pattern instance which produced it is given by the following
definition.

Definition 9. The score of a pattern instance (of an individual
CMP link) is defined as follows

9.1: For U-patterns and X-patterns
score(ptrn) = Conj(score(S1), score(S2), score(S3), p)
9.2: For V-patterns
score(ptrn) = Conj(score(S1), score(S2), p)
Here Conj is the function from Definition 5; p is the CMP penalty con-

stant introduced in Definition 4; ptrn is one particular instance (one particular
occurrence) of the pattern (either U or V or X) within the graph G.

Having defined the score of an individual CMP link , it should now
be considered that two nodes v1 = P ar1 ∈ V1 and v2 = P ar2 ∈ V2 may be
(and usually are) involved in many pattern instances/occurrences discovered by
the CMP procedure. So in such cases, many individual synonymy CMP links
e1, e2, . . . , eL will be drawn between P ar1 and P ar2 by the CMP procedure.
As defined, the scores of these CMP links are equal to the scores of the pattern
instances which they originate from (Definition 9).

The goal now is to get rid of these multiple individual CMP links
between v1 = P ar1 and v2 = P ar2 and to replace them with one final/aggre-
gated CMP link denoted by eCMP (v1, v2) between the nodes P ar1 and P ar2.
To achieve this, the only thing left to do is to provide a way to aggregate the
scores of e1, e2, . . . , eL and to replace these links and their scores with the fi-
nal/aggregated CMP link eCMP (v1, v2) and with its score. This is done by
Definition 11, which is given below.
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Definition 10. Let us have MAX denote the maximal of N given real
numbers N ≥ 1.

Definition 11. Let v1 = P ar1 ∈ V1 and v2 = P ar2 ∈ V2 be two terms
from the two input ontologies. Let G be the graph produced from DAG1 and
DAG2 after all the DM and SMP links have been inferred/generated (by phases
3.1 and 3.2 of stage 3). Let also:

11.1: u = {u1, u2, . . . , uNu} be the set of all U-patterns in which v1

and v2 are involved as parents; Nu ≥ 0;

11.2: x = {x1, x2, . . . , xNx} be the set of all X-patterns in which v1

and v2 are involved as parents; Nx ≥ 0;

11.3: w = {w1, w2, . . . , wNw} be the set of all V-patterns in which v1

and v2 are involved as parents; Nw ≥ 0;

11.4: P IS(v1, v2) = u ∪ x ∪ w (here P IS denotes the pattern in-
stance set for the nodes v1 and v2, i.e., the set of all patterns instances in which
v1 and v2 are involved as parents);

11.5: |P IS(v1, v2)| = Nu + Nx + Nw > 0.

The number defined by scoreCMP (v1, v2) = MAX ∀p∈PIS(v1,v2)

(score(p)) is what we call the final/aggregated CMP score for the terms
v1 and v2. Here p stands for pattern, i.e., the MAX is taken over all patterns
which v1 and v2 are involved in (as parents). This is the final CMP score
of the final/aggregated CMP link eCMP (v1, v2) that is drawn between the
nodes v1 and v2 as a final result of the CMP procedure.

This definition completes our description of phase 3.3 (the CMP pro-
cedure) from stage 3. It was shown how individual CMP synonymy links
(which are cross-ontology links) can be drawn between two terms v1 ∈ V1 and
v2 ∈ V2. The reliability score for each of these individual CMP links was defined.
The multiple individual CMP links were aggregated and one final/aggregated
CMP link was drawn between the two nodes v1 ∈ V1 and v2 ∈ V2. At the end,
one final number scoreCMP (v1, v2) called final CMP score was defined as
score of the final/aggregated CMP link eCMP (v1, v2).

This completes the description of the whole ontology mapping algorithm
composed of the three procedures DM , SMP , and CMP .
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5. Summary and discussion. In this paper we have presented
an integrated algorithmic solution for the problem of mapping the anatomical
ontologies of two distinct species/organisms. The two ontologies were modeled as
two DAGs with their edges colored in different colors based on the inner-ontology
relations that these edges represent. Several external knowledge sources have
been used as references during the process of mapping the two input anatomical
ontologies.

Three separate algorithmic procedures have been utilized – DM , SMP ,
CMP – listed here from simplest to most complex, which run on the two given
DAGs and predict cross-ontology links between them. The DM procedure
doesn’t consult any external knowledge sources but uses information that is purely
internal with respect the two input ontologies. DM predicts synonymy links/rela-
tions only. The SMP is the procedure which consults the external knowledge
sources in order to predict various semantic cross-ontology links/relations be-
tween the two input ontologies (synonyms, hypernyms, hyponyms, holonyms,
meronyms). The CMP procedure then uses the outputs from DM and SMP
(i.e., the cross-ontology links generated by them) and infers additional cross-
ontology links/relations that hadn’t yet been discovered either by DM or by
SMP .

The CMP procedure is based on three patterns of connectivity (de-
noted as U , X , and V ) within the graph produced after DM and SMP have
finished their execution, and a probabilistic scoring scheme based on the Conj
and Disj functions defined in this paper. These two functions model the proba-
bilities of: (i) several independent events occurring at the same time (Conj), and
(ii) at least one of several independent events occurring (Disj). These functions
were chosen for two reasons: (1) for the purposes of this work the three exter-
nal knowledge sources were considered independent; (2) the choice of Conj and
Disj in the way described in this paper aligns well with the general theory of
weighted graphs (in which edge weights represent probabilities) and of weighting
routes/paths in such graphs.

Further improvements and extensions of the algorithmic procedures pre-
sented in this paper can be made in at least in three different directions: (1) as
noted in [26] further improvements of the scoring scheme (defined in this paper)
are possible by amending the functions Conj and Disj (from Definitions 5 and
6), and the aggregation function MAX (used in Definition 11). These amend-
ments turn out to be useful because assuming that the three external knowledge
sources are independent, is not the most flexible and realistic approach; in real-
ity the external knowledge sources do have certain dependencies (between each
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other) but evaluating those is a complex matter; (2) special care needs to be
taken to ensure that the graph produced after applying the DM, SMP, and CMP
procedures contains no cycles (is a DAG too) but this might require an addi-
tional cycle elimination algorithm or the need to involve a curator (a human, an
anatomy specialist) at that point; (3) the connectivity patterns that CMP looks
for may be extended to span not just across child nodes but also across grand-child
and grand-grand-child nodes in the graphs representing the two ontologies. More
generally the CMP procedure may look for k1 levels above the current node,
and k2 levels below the current node (topological sort assumed on the DAG),
i.e., the procedure may consider all nodes which fall within that [−k1, k2] node
range around the current node. If we denote that generalized CMP procedure as
[−k1, k2]-CMP then it is logical to expect that the generalized CMP would
be more sensitive and more local context aware than the standard CMP (the
[1, 1]-CMP) which was described in the current paper. Still, if that extended
[−k1, k2]-CMP is to be used, special care has to be taken for making sure that
not too much noise is introduced in the generated predictions.
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